Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Controversies Around COVID-19 Vaccines and Antidepressants: Scope and Perspective in Malaysia

Author(s): Ng Chong Guan*, Siew Weng Hou, Aya Ahmed Abousheishaa, Low Sue Yin, Abdul Rasyid bin Sulaiman and Kok Chee Khin

Volume 15, Issue 2, 2023

Published on: 27 December, 2022

Page: [159 - 169] Pages: 11

DOI: 10.2174/2589977515666221123093522

Price: $65

Abstract

Background: Individuals with severe mental illness are prone to severe COVID-19 infection with increased morbidity and mortality. Psychiatric patients are often concerned about the potential interactions between the newly approved COVID-19 vaccines in Malaysia and psychotropic drugs like antidepressants. To date, such data are unavailable.

Objectives: This review aims to clear the polemics of COVID-19 vaccine-antidepressants interaction in these 3 aspects: (1) cytokines and cytochrome P450 pathway, (2) blood-brain barrier (BBB) involvement and (3) and its interaction with polyethylene glycol (PEG), the potential allergenic culprit following COVID-19 vaccination.

Methods: A scoping approach was employed to search for peer-reviewed journal articles across four healthcare and scientific databases (PubMed, MEDLINE, PsycINFO and Cumulative Index to Nursing and Allied Health Literature (CINAHL)).

Results: Antidepressants metabolism often involves the CYP450 enzymes. Vaccine-antidepressants interactions are probable, likely to be triggered by interactions of CYP450 enzymes and inflammatory cytokines, resulting in diminished drug metabolism and chemical detoxification. Aside, PEG, the excipient in mRNA-based COVID-19 vaccines and antidepressants, has been reported as an anaphylaxis causative allergen. However, whether it leads to synergistic, potentiation or antagonistic effects when used in combination remains to be elucidated.

Conclusion: Psychotropic medications, including antidepressants, showed potentially relevant safety risks for COVID-19 patients. These vulnerable patient group must be prioritized for early access to safe and efficacious COVID-19 vaccines, as vaccination remains the most important public health intervention to tackle the ongoing COVID-19 pandemic.

Graphical Abstract

[1]
Amirfakhryan H. safari F. Outbreak of SARS-CoV2: Pathogenesis of infection and cardiovascular involvement. Hellenic J Cardiol 2021; 62(1): 13-23.
[http://dx.doi.org/10.1016/j.hjc.2020.05.007] [PMID: 32522617]
[2]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[3]
COVID NOW. COVID now in Malaysia. 2021, Available from: https://covidnow.moh.gov.my/
[4]
World Health Organization (WHO). COVID19 Vaccine Tracker. 2022. Available from: https://covid19.trackvaccines.org/agency/who/
[5]
Mazereel V, Van Assche K, Detraux J, De Hert M. COVID-19 vaccination for people with severe mental illness: Why, what, and how? Lancet Psychiatry 2021; 8(5): 444-50.
[http://dx.doi.org/10.1016/S2215-0366(20)30564-2] [PMID: 33548184]
[6]
Taquet M, Luciano S, Geddes JR, Harrison PJ. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 2021; 8(2): 130-40.
[http://dx.doi.org/10.1016/S2215-0366(20)30462-4] [PMID: 33181098]
[7]
Liu L, Ni SY, Yan W, et al. Mental and neurological disorders and risk of COVID-19 susceptibility, illness severity and mortality: A systematic review, meta-analysis and call for action. EClinicalMedicine 2021; 40: 101111.
[http://dx.doi.org/10.1016/j.eclinm.2021.101111] [PMID: 34514362]
[8]
Wang Y, Yang Y, Ren L, Shao Y, Tao W, Dai X. Preexisting mental disorders increase the risk of COVID-19 infection and associated mortality. Front Public Health 2021; 9: 684112.
[http://dx.doi.org/10.3389/fpubh.2021.684112] [PMID: 34434913]
[9]
Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-neuroendocrineimmune interactions in COVID-19: Potential impacts on mental health. Front Immunol 2020; 11: 1170.
[http://dx.doi.org/10.3389/fimmu.2020.01170] [PMID: 32574266]
[10]
De Picker LJ, Dias MC, Benros ME, et al. Severe mental illness and European COVID-19 vaccination strategies. Lancet Psychiatry 2021; 8(5): 356-9.
[http://dx.doi.org/10.1016/S2215-0366(21)00046-8] [PMID: 33609450]
[11]
Kumar S, Pathare S, Esponda GM. COVID-19 vaccine prioritisation for individuals with psychoses. Lancet Psychiatry 2021; 8(9): 751.
[http://dx.doi.org/10.1016/S2215-0366(21)00236-4] [PMID: 34147156]
[12]
Madison AA, Shrout MR, Renna ME, Kiecolt-Glaser JK. Psychological and behavioral predictors of vaccine efficacy: Considerations for COVID-19. Perspect Psychol Sci 2021; 16(2): 191-203.
[http://dx.doi.org/10.1177/1745691621989243] [PMID: 33501900]
[13]
Pellegrino P, Clementi E, Capuano A, Radice S. Can vaccines interact with drug metabolism? Pharmacol Res 2015; 92: 13-7.
[http://dx.doi.org/10.1016/j.phrs.2014.09.003] [PMID: 25258293]
[14]
Pellegrino P, Perrotta C, Clementi E, Radice S. Vaccine–drug interactions: Cytokines, cytochromes, and molecular mechanisms. Drug Saf 2015; 38(9): 781-7.
[http://dx.doi.org/10.1007/s40264-015-0330-8] [PMID: 26239715]
[15]
Kelly H, Sokola B, Abboud H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J Neuroimmunol 2021; 356: 577599.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577599] [PMID: 34000472]
[16]
Irwin MR, Levin MJ, Laudenslager ML, et al. Varicella zoster virusspecific immune responses to a herpes zoster vaccine in elderly recipients with major depression and the impact of antidepressant medications. Clin Infect Dis 2013; 56(8): 1085-93.
[http://dx.doi.org/10.1093/cid/cis1208] [PMID: 23413415]
[17]
Seifert J, Heck J, Eckermann G, et al. Vaccination against COVID-19 in patients treated with psychotropic drugs. Psychiatr Prax 2021; 48(8): 399-403.
[http://dx.doi.org/10.1055/a-1531-4460] [PMID: 34344044]
[18]
Gelenberg AJ, Freeman MP, Markowitz JC, et al. Practice guideline for the treatment of patients with major depressive disorder third edition. Am J Psychiatry 2010; 167(10): 1.
[19]
Preissner S, Kroll K, Dunkel M, et al. SuperCYP: A comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 2010; 38: D237-43.
[http://dx.doi.org/10.1093/nar/gkp970] [PMID: 19934256]
[20]
Taylor DM, Barnes TR, Young AH. The Maudsley prescribing guidelines in psychiatry. Wiley-Blackwell 2018, Available from: https://www.wiley.com/en-pk/The+Maudsley+Prescribing+Guidelines+in+Psychiatry%2C+13th+Edition-p-9781119442608
[21]
Malaysian Health Technology Assessment Section (MaHTAS). Clinical practice guidelines: Management of major depressive disorder. 2019. Available from: https://www.moh.gov.my/moh/resources/Penerbitan/CPG/Psychiatry%20&%20Mental%20health/CPG_Management_of_MDD_(Second_Edition)_04092020.pdf
[22]
Slaughter RL, Edwards DJ. Recent advances: The cytochrome P450 enzymes. Ann Pharmacother 1995; 29(6): 619-24.
[http://dx.doi.org/10.1177/106002809502900612] [PMID: 7663035]
[23]
D’Arcy PF. Vaccine-drug interactions. Drug Intell Clin Pharm 1984; 18(9): 697-700.
[http://dx.doi.org/10.1177/106002808401800904] [PMID: 6383754]
[24]
Jann MW, Fidone GS. Effect of influenza vaccine on serum anticonvulsant concentrations. Clin Pharm 1986; 5(10): 817-20.
[PMID: 3780149]
[25]
Jonsson-Schmunk K, Ghose R, Croyle MA. Immunization and drug metabolizing enzymes: Focus on hepatic cytochrome P450 3A. Expert Rev Vaccines 2021; 20(5): 623-34.
[http://dx.doi.org/10.1080/14760584.2021.1899818] [PMID: 33666138]
[26]
Hayney MS, Muller D. Effect of influenza immunization on CYP3A4 activity in vivo. J Clin Pharmacol 2003; 43(12): 1377-81.
[http://dx.doi.org/10.1177/0091270003260330] [PMID: 14615474]
[27]
Donato MT, Guillén MI, Jover R, Castell JV, Gómez-Lechón MJ. Nitric oxide-mediated inhibition of cytochrome P450 by interferongamma in human hepatocytes. J Pharmacol Exp Ther 1997; 281(1): 484-90.
[PMID: 9103535]
[28]
Meredith CG, Christian CD, Johnson RF, Troxell R, Davis GL, Schenker S. Effects of influenza virus vaccine on hepatic drug metabolism. Clin Pharmacol Ther 1985; 37(4): 396-401.
[http://dx.doi.org/10.1038/clpt.1985.61] [PMID: 3979001]
[29]
Abdel-Razzak Z, Loyer P, Fautrel A, et al. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 1993; 44(4): 707-15.
[PMID: 8232220]
[30]
Kow CS, Hasan SS. Potential interactions between COVID-19 vaccines and antiepileptic drugs. Seizure 2021; 86: 80-1.
[http://dx.doi.org/10.1016/j.seizure.2021.01.021] [PMID: 33578259]
[31]
Bernstein E, Gardner EM, Abrutyn E, Gross P, Murasko DM. Cytokine production after influenza vaccination in a healthy elderly population. Vaccine 1998; 16(18): 1722-31.
[http://dx.doi.org/10.1016/S0264-410X(98)00140-6] [PMID: 9778748]
[32]
Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. medRxiv 2020; 2020.12.09.20245175.
[http://dx.doi.org/10.1101/2020.12.09.20245175]
[33]
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2-preliminary report. N Engl J Med 2020; 383(20): 1920-31.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[34]
Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos 2007; 35(9): 1687-93.
[http://dx.doi.org/10.1124/dmd.107.015511] [PMID: 17576808]
[35]
Robertson WC Jr. Carbamazepine toxicity after influenza vaccination. Pediatr Neurol 2002; 26(1): 61-3.
[http://dx.doi.org/10.1016/S0887-8994(01)00332-0] [PMID: 11814738]
[36]
Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol 2020; 19(9): 767-83.
[http://dx.doi.org/10.1016/S1474-4422(20)30221-0] [PMID: 32622375]
[37]
Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry 2020; 7(10): 875-82.
[http://dx.doi.org/10.1016/S2215-0366(20)30287-X] [PMID: 32593341]
[38]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A singlecentered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[39]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[40]
Xiong W, Mu J, Guo J, et al. New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology 2020; 95(11): e1479-87.
[http://dx.doi.org/10.1212/WNL.0000000000010034] [PMID: 32554771]
[41]
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood–brain barrier. Int J Mol Sci 2021; 22(5): 2681.
[http://dx.doi.org/10.3390/ijms22052681] [PMID: 33800954]
[42]
Erickson MA, Wilson ML, Banks WA. In vitro modeling of blood–brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS 2020; 17(1): 26.
[http://dx.doi.org/10.1186/s12987-020-00187-3] [PMID: 32228633]
[43]
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARSCoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis 2020; 146: 105131.
[http://dx.doi.org/10.1016/j.nbd.2020.105131] [PMID: 33053430]
[44]
O’Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: Clinical significance of in vitro and in vivo findings. Br J Pharmacol 2012; 165(2): 289-312.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01557.x] [PMID: 21718296]
[45]
Hsuchou H, Kastin AJ, Mishra PK, Pan W. C-reactive protein increases BBB permeability: Implications for obesity and neuroinflammation. Cell Physiol Biochem 2012; 30(5): 1109-19.
[http://dx.doi.org/10.1159/000343302] [PMID: 23018453]
[46]
Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 6(8): 591-602.
[http://dx.doi.org/10.1038/nrn1728] [PMID: 16025095]
[47]
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57(2): 173-85.
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[48]
Flight MH. Predicting antidepressant response. Nat Rev Neurosci 2008; 9(3): 162.
[http://dx.doi.org/10.1038/nrn2346]
[49]
Su JR, Moro PL, Ng CS, Lewis PW, Said MA, Cano MV. Anaphylaxis after vaccination reported to the vaccine adverse event reporting system, 1990-2016. J Allergy Clin Immunol 2019; 143(4): 1465-73.
[http://dx.doi.org/10.1016/j.jaci.2018.12.1003] [PMID: 30654049]
[50]
Turner PJ, Ansotegui IJ, Campbell DE, et al. COVID-19 vaccine-associated anaphylaxis: A statement of the World Allergy Organization Anaphylaxis Committee. World Allergy Organ J 2021; 14(2): 100517.
[http://dx.doi.org/10.1016/j.waojou.2021.100517] [PMID: 33558825]
[51]
Kelso JM. IgE-mediated allergy to polyethylene glycol (PEG) as a cause of anaphylaxis to mRNA COVID-19 vaccines. Clin Exp Allergy 2021; 52(1): 10-1.
[PMID: 34318537]
[52]
Moghimi SM. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol Ther 2021; 29(3): 898-900.
[http://dx.doi.org/10.1016/j.ymthe.2021.01.030] [PMID: 33571463]
[53]
Hatziantoniou S, Maltezou HC, Tsakris A, Poland GA, Anastassopoulou C. Anaphylactic reactions to mRNA COVID-19 vaccines: A call for further study. Vaccine 2021; 39(19): 2605-7.
[http://dx.doi.org/10.1016/j.vaccine.2021.03.073] [PMID: 33846043]
[54]
Sellaturay P, Nasser S, Islam S, Gurugama P, Ewan PW. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin Exp Allergy 2021; 51(6): 861-3.
[http://dx.doi.org/10.1111/cea.13874] [PMID: 33825239]
[55]
Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccin Immunother 2018; 14(3): 550-64.
[http://dx.doi.org/10.1080/21645515.2017.1415684] [PMID: 29232151]
[56]
Bruusgaard-Mouritsen MA, Johansen JD, Garvey LH. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin Exp Allergy 2021; 51(3): 463-70.
[http://dx.doi.org/10.1111/cea.13822] [PMID: 33394522]
[57]
myHealthbox. 2022. Available from: https://myhealthbox.eu/en/
[58]
Wong LP, Alias H, Md Fuzi AA, et al. Escalating progression of mental health disorders during the COVID-19 pandemic: Evidence from a nationwide survey. PLoS One 2021; 16(3): e0248916.
[http://dx.doi.org/10.1371/journal.pone.0248916] [PMID: 33765039]
[59]
Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007; 76(3): 391-6.
[60]
Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153(3): 311-20.
[http://dx.doi.org/10.1176/ajp.153.3.311] [PMID: 8610817]
[61]
Hemeryck A, Belpaire F. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: An update. Curr Drug Metab 2002; 3(1): 13-37.
[http://dx.doi.org/10.2174/1389200023338017] [PMID: 11876575]
[62]
Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: An update. Clin Ther 2008; 30(7): 1206-27.
[http://dx.doi.org/10.1016/S0149-2918(08)80047-1] [PMID: 18691982]
[63]
Drozda K, Müller DJ, Bishop JR. Pharmacogenomic testing for neuropsychiatric drugs: Current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy 2014; 34(2): 166-84.
[http://dx.doi.org/10.1002/phar.1398] [PMID: 24523097]
[64]
Wenande E, Garvey LH. Immediate-type hypersensitivity to polyethylene glycols: A review. Clin Exp Allergy 2016; 46(7): 907-22.
[http://dx.doi.org/10.1111/cea.12760] [PMID: 27196817]
[65]
Garvey LH, Nasser S. Anaphylaxis to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br J Anaesth 2021; 126(3): e106-8.
[http://dx.doi.org/10.1016/j.bja.2020.12.020] [PMID: 33386124]
[66]
Cabanillas B, Novak N. Allergy to COVID-19 vaccines: A current update. Allergol Int 2021; 70(3): 313-8.
[http://dx.doi.org/10.1016/j.alit.2021.04.003] [PMID: 33962863]
[67]
Jover Cerdá V, Rodríguez Pacheco R, Doménech Witek J, Marco de la Calle FM, de la Sen Fernández ML. Immediate hypersensitivity to polyethylene glycols in unrelated products: When standardization in the nomenclature of the components of drugs, cosmetics, and food be-comes necessary. Allergy Asthma Clin Immunol 2019; 15(1): 9.
[http://dx.doi.org/10.1186/s13223-019-0327-4] [PMID: 30820197]
[68]
Ostuzzi G, Papola D, Gastaldon C, et al. Safety of psychotropic medications in people with COVID-19: Evidence review and practical recommendations. BMC Med 2020; 18(1): 215.
[http://dx.doi.org/10.1186/s12916-020-01685-9] [PMID: 32664944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy