Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation, Characterization and in vitro/vivo Evaluation of Long-Acting Rivaroxaban-Loaded Microspheres

Author(s): Chunli Tan and Subin Xiong*

Volume 20, Issue 10, 2023

Published on: 13 December, 2022

Page: [1547 - 1558] Pages: 12

DOI: 10.2174/1567201820666221122124510

Price: $65

Abstract

Background: Rivaroxaban is widely used for long-term prevention and maintenance therapy of thromboembolic disorders. The existing oral dosage forms of rivaroxaban lead to poor patient adherence because of repeated daily administration. The aim of this study is to design long-acting rivaroxaban- loaded microspheres to reduce dosing frequency and improve patient compliance.

Methods: Rivaroxaban-loaded microspheres were prepared using the emulsion-solvent evaporation method. The microspheres were evaluated in terms of morphology, particle size, drug loading and encapsulation efficiency, the physical state of the drug in the matrix, in vitro release/release mechanism, and in vivo pharmacokinetics in Sprague Dawley rats.

Results & Discussion: Rivaroxaban-loaded microspheres presented spherical-shaped particles displaying a mean particle size of 89.3 μm, drug loading of 16.5% and encapsulation efficiency of 97.8%. The X-ray diffraction indicated that rivaroxaban existed in crystal form in the microspheres. in vitro release lasting approximately 50 days was characterized as a tri-phasic pattern: (1) an initial burst release, mainly due to the dissolution of drug particles with direct access to the microparticles’ surface, (2) a “plateau” phase with a slow-release rate controlled by the diffusion and (3) a final, rapid drug release phase controlled by polymer erosion. Pharmacokinetic studies showed that rivaroxaban microspheres maintained a sustained release for more than 42 days.

Conclusion: Rivaroxaban-loaded microspheres have great potential clinical advantages in reducing dosing frequency and improving patient compliance. The data obtained from this study could be used as scientific evidence for decision-making in future formulation development.

Graphical Abstract

[1]
Xue, X.; Cao, M.; Ren, L.; Qian, Y.; Chen, G. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech, 2018, 19(4), 1847-1859.
[http://dx.doi.org/10.1208/s12249-018-0991-6] [PMID: 29637496]
[2]
Kubitza, D.; Becka, M.; Wensing, G.; Voith, B.; Zuehlsdorf, M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939-An oral, direct Factor Xa inhibitor-After multiple dosing in healthy male subjects. Eur. J. Clin. Pharmacol., 2005, 61(12), 873-880.
[http://dx.doi.org/10.1007/s00228-005-0043-5] [PMID: 16328318]
[3]
FDA. Approved Drug Products: Xarelto® (rivaroxaban) [pre-scribing information]. Available from: http://www.accessdata.fda.gov/scripts/cder/drugsatfda (Accessed Mar 01, 2022)
[4]
Choi, G.W.; Lee, S.; Kang, D.W.; Kim, J.H.; Kim, J.H.; Cho, H.Y. Long-acting injectable donepezil microspheres: Formulation development and evaluation. J. Control. Release, 2021, 340, 72-86.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.022] [PMID: 34715262]
[5]
Cramer, J.A.; Roy, A.; Burrell, A.; Fairchild, C.J.; Fuldeore, M.J.; Ollendorf, D.A.; Wong, P.K. Medication compliance and persistence: Terminology and definitions. Value Health, 2008, 11(1), 44-47.
[http://dx.doi.org/10.1111/j.1524-4733.2007.00213.x] [PMID: 18237359]
[6]
Simpson, S.H.; Eurich, D.T.; Majumdar, S.R.; Padwal, R.S.; Tsuyuki, R.T.; Varney, J.; Johnson, J.A. A meta-analysis of the association between adherence to drug therapy and mortality. BMJ, 2006, 333(7557), 15.
[http://dx.doi.org/10.1136/bmj.38875.675486.55] [PMID: 16790458]
[7]
Salminen, W.F.; Wiles, M.E.; Stevens, R.E. Streamlining nonclinical drug development using the FDA 505(b)(2) new drug application regulatory pathway. Drug Discov. Today, 2019, 24(1), 46-56.
[http://dx.doi.org/10.1016/j.drudis.2018.07.005] [PMID: 30041014]
[8]
Elsayad, M.K.; Mowafy, H.A.; Zaky, A.A.; Samy, A.M. Chitosan caged liposomes for improving oral bioavailability of rivaroxaban: In vitro and in vivo evaluation. Pharm. Dev. Technol., 2021, 26(3), 316-327.
[http://dx.doi.org/10.1080/10837450.2020.1870237] [PMID: 33356742]
[9]
Machado, M.E.; de Souza Furtado, P.; da Costa Bernardes Araújo, C.; Simon, A.; de Moraes, M.C.; Rodrigues Pereira da Silva, L.C.; do Carmo, F.A.; Cabral, L.M.; Sathler, P.C. Novel rivaroxaban-loaded poly(lactic-co-glycolic acid)/poloxamer nanoparticles: preparation, physicochemical characterization, in vitro evaluation of time-dependent anticoagulant activity and toxicological profile. Nanotechnology, 2021, 32(13), 135101.
[http://dx.doi.org/10.1088/1361-6528/abd0b5] [PMID: 33276347]
[10]
Anwer, M.K.; Mohammad, M.; Iqbal, M.; Ansari, M.N.; Ezzeldin, E.; Fatima, F.; Alshahrani, S.M.; Aldawsari, M.F.; Alalaiwe, A.; Alzahrani, A.A.; Aldayel, A.M. Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect. J. Thromb. Thrombolysis, 2020, 49(3), 404-412.
[http://dx.doi.org/10.1007/s11239-019-02022-5] [PMID: 31898270]
[11]
Abouhussein, D.M.N.; Bahaa El Din Mahmoud, D.; Mohammad, F. E. Design of a liquid nano-sized drug delivery system with enhanced solubility of rivaroxaban for venous thromboembolism management in paediatric patients and emergency cases. J. Liposome Res., 2019, 29(4), 399-412.
[http://dx.doi.org/10.1080/08982104.2019.1576732] [PMID: 30720378]
[12]
Metre, S.; Mukesh, S.; Samal, S.K.; Chand, M.; Sangamwar, A.T. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol. Pharm., 2018, 15(2), 652-668.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01027] [PMID: 29287144]
[13]
Sherje, A.P. Jadhav, M. β-Cyclodextrin-based inclusion complexes and nanocomposites of rivaroxaban for solubility enhancement. J. Mater. Sci. Mater. Med., 2018, 29(12), 186.
[http://dx.doi.org/10.1007/s10856-018-6194-6] [PMID: 30523419]
[14]
Araújo, C.C.B.; Simon, A.; Honório, T.S.; da Silva, S.V.C.; Valle, I.M.M.; da Silva, L.C.R.P.; Rodrigues, C.R.; de Sousa, V.P.; Cabral, L.M.; Sathler, P.C.; do Carmo, F.A. Development of rivaroxaban microemulsion-based hydrogel for transdermal treatment and prevention of venous thromboembolism. Colloids Surf. B Biointerfaces, 2021, 206, 111978.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111978] [PMID: 34293580]
[15]
Ahmed, A.M.Q.; Chen, L.Q.; Du, H.H.; Sun, W.; Cao, Q.R. Formulation optimization and in vitro characterization of granisetronloaded polylactic-co-glycolic acid microspheres prepared by a dropping-in-liquid emulsification technique. Curr. Drug Deliv., 2022, 19(6), 721-729.
[http://dx.doi.org/10.2174/1567201818666210729111646] [PMID: 34325634]
[16]
Liang, Y.; Zhang, J.; Zhao, X.; Wang, M.; Ding, S.; Wang, Y.; Chen, Y.; Liu, J. Study on the slow-release mometasone furoate injection of PLGA for the treatment of knee arthritis. Curr. Drug Deliv., 2021, 18(3), 357-368.
[http://dx.doi.org/10.2174/1567201817666200917124759] [PMID: 32940181]
[17]
Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013] [PMID: 15336378]
[18]
Zhang, H.; Pu, C.; Wang, Q.; Tan, X.; Gou, J.; He, H.; Zhang, Y.; Yin, T.; Wang, Y.; Tang, X. Physicochemical characterization and pharmacokinetics of agomelatine-loaded PLGA microspheres for intramuscular injection. Pharm. Res., 2019, 36(1), 9.
[http://dx.doi.org/10.1007/s11095-018-2538-7] [PMID: 30411255]
[19]
Singh, S.; Singha, P. Effect of modifications in poly (lactide-co-glycolide) (PLGA) on drug release and degradation characteristics: A mini review. Curr. Drug Deliv., 2021, 18(10), 1378-1390.
[http://dx.doi.org/10.2174/1567201818666210510165938] [PMID: 33970845]
[20]
Hua, Y.; Wang, Z.; Wang, D.; Lin, X.; Liu, B.; Zhang, H.; Gao, J.; Zheng, A. Key factor study for generic long-acting PLGA microspheres based on a reverse engineering of Vivitrol®. Molecules, 2021, 26(5), 1247.
[http://dx.doi.org/10.3390/molecules26051247] [PMID: 33669152]
[21]
Hua, Y.; Su, Y.; Zhang, H.; Liu, N.; Wang, Z.; Gao, X.; Gao, J.; Zheng, A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv., 2021, 28(1), 1342-1355.
[http://dx.doi.org/10.1080/10717544.2021.1943056] [PMID: 34180769]
[22]
Kim, Y.; Sah, H. Protein loading into spongelike PLGA microspheres. Pharmaceutics, 2021, 13(2), 137.
[http://dx.doi.org/10.3390/pharmaceutics13020137] [PMID: 33494293]
[23]
Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm., 2008, 364(2), 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[24]
Doty, A.C.; Zhang, Y.; Weinstein, D.G.; Wang, Y.; Choi, S.; Qu, W.; Mittal, S.; Schwendeman, S.P. Mechanistic analysis of triamcinolone acetonide release from PLGA microspheres as a function of varying in vitro release conditions. Eur. J. Pharm. Biopharm., 2017, 113, 24-33.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.008] [PMID: 27865933]
[25]
Gu, B.; Wang, Y.; Burgess, D.J. in vitro and in vivo performance of dexamethasone loaded PLGA microspheres prepared using polymer blends. Int. J. Pharm., 2015, 496(2), 534-540.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.056] [PMID: 26520407]
[26]
Zhu, D.; Bai, H.; Xu, W.; Lai, W.; Song, L.; Deng, J. Hyaluronic acid/parecoxib-loaded PLGA microspheres for therapy of temporomandibular disorders. Curr. Drug Deliv., 2021, 18(2), 234-245.
[http://dx.doi.org/10.2174/1567201817999200817151048] [PMID: 32811397]
[27]
Zolnik, B.S.; Burgess, D.J. Evaluation of in vivoin vitro release of dexamethasone from PLGA microspheres. J. Control. Release, 2008, 127(2), 137-145.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.004] [PMID: 18282629]
[28]
D’Souza, S.S.; DeLuca, P.P. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res., 2006, 23(3), 460-474.
[http://dx.doi.org/10.1007/s11095-005-9397-8] [PMID: 16400516]
[29]
Barbosa-Alfaro, D.; Andrés-Guerrero, V.; Fernandez-Bueno, I.; García-Gutiérrez, M.T.; Gil-Alegre, E.; Molina-Martínez, I.T.; Pastor-Jimeno, J.C.; Herrero-Vanrell, R.; Bravo-Osuna, I. Dexamethasone PLGA microspheres for sub-tenon administration: Influence of sterilization and tolerance studies. Pharmaceutics, 2021, 13(2), 228.
[http://dx.doi.org/10.3390/pharmaceutics13020228] [PMID: 33562155]
[30]
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release, 1987, 5(1), 37-42.
[http://dx.doi.org/10.1016/0168-3659(87)90035-6]
[31]
Ye, M.; Duan, H.; Yao, L.; Fang, Y.; Zhang, X.; Dong, L.; Yang, F.; Yang, X.; Pan, W. A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian J. Pharm. Sci., 2019, 14(2), 222-232.
[http://dx.doi.org/10.1016/j.ajps.2018.05.010] [PMID: 32104454]
[32]
Zhang, C.; Wang, A.; Wang, H.; Yan, M.; Liang, R.; He, X.; Fu, F.; Mu, H.; Sun, K. Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term therapy of chronic hepatitis-B: Preparation and in vitro and in vivo evaluation. Int. J. Pharm., 2019, 560, 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.052] [PMID: 30711615]
[33]
Burghaus, R.; Coboeken, K.; Gaub, T.; Kuepfer, L.; Sensse, A.; Siegmund, H.U.; Weiss, W.; Mueck, W.; Lippert, J. Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation. PLoS One, 2011, 6(4), e17626.
[http://dx.doi.org/10.1371/journal.pone.0017626] [PMID: 21526168]
[34]
Eriksson, B.I.; Borris, L.C.; Dahl, O.E.; Haas, S.; Huisman, M.V.; Kakkar, A.K.; Muehlhofer, E.; Dierig, C.; Misselwitz, F.; Kälebo, P. A once-daily, oral, direct Factor Xa inhibitor, rivaroxaban (BAY 59-7939), for thromboprophylaxis after total hip replacement. Circulation, 2006, 114(22), 2374-2381.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.642074] [PMID: 17116766]
[35]
ICH. Quality Guidelines. Q1B (R4): Photostability testing of new drug substances and products. Available from:https://www.ich.org/page/quality-guidelines (Accessed Apr 15, 2022).
[36]
Li, J.; Zheng, H.; Xu, E.Y.; Moehwald, M.; Chen, L.; Zhang, X.; Mao, S. Inhalable PLGA microspheres: Tunable lung retention and systemic exposure via polyethylene glycol modification. Acta Biomater., 2021, 123, 325-334.
[http://dx.doi.org/10.1016/j.actbio.2020.12.061] [PMID: 33454386]
[37]
Gu, B.; Papadimitrakopoulos, F.; Burgess, D.J. PLGA microsphere/PVA hydrogel coatings suppress the foreign body reaction for 6 months. J. Control. Release, 2018, 289, 35-43.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.021] [PMID: 30261203]
[38]
Gasmi, H.; Siepmann, F.; Hamoudi, M.C.; Danede, F.; Verin, J.; Willart, J.F.; Siepmann, J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int. J. Pharm., 2016, 514(1), 189-199.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.032] [PMID: 27543353]
[39]
Park, K.; Skidmore, S.; Hadar, J.; Garner, J.; Park, H.; Otte, A.; Soh, B.K.; Yoon, G.; Yu, D.; Yun, Y.; Lee, B.K.; Jiang, X.; Wang, Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J. Control. Release, 2019, 304, 125-134.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.003] [PMID: 31071374]
[40]
Yoo, J.; Won, Y.Y. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater. Sci. Eng., 2020, 6(11), 6053-6062.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01228] [PMID: 33449671]
[41]
Lin, X.; Yang, H.; Su, L.; Yang, Z.; Tang, X. Effect of size on the in vitro / in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J. Drug Deliv. Sci. Technol., 2018, 45, 346-356.
[http://dx.doi.org/10.1016/j.jddst.2018.03.024]
[42]
Rawat, A.; Bhardwaj, U.; Burgess, D.J. Comparison of in vitroin vivo release of Risperdal® Consta® microspheres. Int. J. Pharm., 2012, 434(1-2), 115-121.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.006] [PMID: 22659126]
[43]
Shen, J.; Lee, K.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D.J. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int. J. Pharm., 2016, 498(1-2), 274-282.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.031] [PMID: 26705156]
[44]
Shen, J.; Burgess, D.J. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings. Int. J. Pharm., 2012, 422(1-2), 341-348.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.020] [PMID: 22016033]
[45]
Wan, B.; Andhariya, J.V.; Bao, Q.; Wang, Y.; Zou, Y.; Burgess, D.J. Effect of polymer source on in vitro drug release from PLGA microspheres. Int. J. Pharm., 2021, 607, 120907.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120907] [PMID: 34332059]
[46]
Andhariya, J.V.; Jog, R.; Shen, J.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J. in vitro-in vivo correlation of parenteral PLGA microspheres: Effect of variable burst release. J. Control. Release, 2019, 314, 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.014] [PMID: 31654687]
[47]
Marquette, S.; Peerboom, C.; Yates, A.; Denis, L.; Langer, I.; Amighi, K.; Goole, J. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. Int. J. Pharm., 2014, 470(1-2), 41-50.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.063] [PMID: 24792974]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy