Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses

Author(s): Igor José dos Santos Nascimento*, Érica Erlanny da Silva Rodrigues, Manuele Figueiredo da Silva, João Xavier de Araújo-Júnior and Ricardo Olimpio de Moura

Volume 22, Issue 29, 2022

Published on: 05 December, 2022

Page: [2435 - 2462] Pages: 28

DOI: 10.2174/1568026623666221122121330

Price: $65

Abstract

The Flaviviridae virus family consists of the genera Hepacivirus, Pestivirus, and Flavivirus, with approximately 70 viral types that use arthropods as vectors. Among these diseases, dengue (DENV) and zika virus (ZIKV) serotypes stand out, responsible for thousands of deaths worldwide. Due to the significant increase in cases, the World Health Organization (WHO) declared DENV a potential threat for 2019 due to being transmitted by infected travelers. Furthermore, ZIKV also has a high rate of transmissibility, highlighted in the outbreak in 2015, generating consequences such as Guillain-Barré syndrome and microcephaly. According to clinical outcomes, those infected with DENV can be asymptomatic, and in other cases, it can be lethal. On the other hand, ZIKV has severe neurological symptoms in newborn babies and adults. More serious symptoms include microcephaly, brain calcifications, intrauterine growth restriction, and fetal death. Despite these worrying data, no drug or vaccine is approved to treat these diseases. In the drug discovery process, one of the targets explored against these diseases is the NS2B-NS3 complex, which presents the catalytic triad His51, Asp75, and Ser135, with the function of cleaving polyproteins, with specificity for basic amino acid residues, Lys- Arg, Arg-Arg, Arg-Lys or Gln-Arg. Since NS3 is highly conserved in all DENV serotypes and plays a vital role in viral replication, this complex is an excellent drug target. In recent years, computer-aided drug discovery (CADD) is increasingly essential in drug discovery campaigns, making the process faster and more cost-effective, mainly explained by discovering new drugs against DENV and ZIKV. Finally, the main advances in computational methods applied to discover new compounds against these diseases will be presented here. In fact, molecular dynamics simulations and virtual screening is the most explored approach, providing several hit and lead compounds that can be used in further optimizations. In addition, fragment-based drug design and quantum chemistry/molecular mechanics (QM/MM) provides new insights for developing anti-DENV/ZIKV drugs. We hope that this review offers further helpful information for researchers worldwide and stimulates the use of computational methods to find a promising drug for treating DENV and ZIKV.

« Previous
Graphical Abstract

[1]
Sukhralia, S.; Verma, M.; Gopirajan, S.; Dhanaraj, P.S.; Lal, R.; Mehla, N.; Kant, C.R. From dengue to Zika: The wide spread of mosquito-borne arboviruses. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(1), 3-14.
[http://dx.doi.org/10.1007/s10096-018-3375-7] [PMID: 30267170]
[2]
Silva, N.M.; Santos, N.C.; Martins, I.C. Dengue and Zika Viruses: Epidemiological history, potential therapies, and promising vaccines. Trop. Med. Infect. Dis., 2020, 5(4), 150.
[http://dx.doi.org/10.3390/tropicalmed5040150] [PMID: 32977703]
[3]
Versiani, A.F.; Martins, E.M.N.; Andrade, L.M.; Cox, L.; Pereira, G.C.; Barbosa-Stancioli, E.F.; Nogueira, M.L.; Ladeira, L.O.; da Fonseca, F.G. Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections. Sci. Rep., 2020, 10(1), 11302.
[http://dx.doi.org/10.1038/s41598-020-68357-9] [PMID: 32647259]
[4]
Huber, R.G.; Lim, X.N.; Ng, W.C.; Sim, A.Y.L.; Poh, H.X.; Shen, Y.; Lim, S.Y.; Sundstrom, K.B.; Sun, X.; Aw, J.G.; Too, H.K.; Boey, P.H.; Wilm, A.; Chawla, T.; Choy, M.M.; Jiang, L.; de Sessions, P.F.; Loh, X.J.; Alonso, S.; Hibberd, M.; Nagarajan, N.; Ooi, E.E.; Bond, P.J.; Sessions, O.M.; Wan, Y. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat. Commun., 2019, 10(1), 1408.
[http://dx.doi.org/10.1038/s41467-019-09391-8] [PMID: 30926818]
[5]
Zheng, B.; Yu, J.; Xi, Z.; Tang, M. The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression. Ecol. Modell., 2018, 387, 38-48.
[http://dx.doi.org/10.1016/j.ecolmodel.2018.09.004]
[6]
Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, T.M.; Araújo-Júnior, J.X.; Silva-Júnior, E.F. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem., 2021, 224, 113698.
[http://dx.doi.org/10.1016/j.ejmech.2021.113698] [PMID: 34274831]
[7]
Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Mahmoudi, T.; Chenab, K.K.; Baradaran, B.; Hashemzaei, M.; Radinekiyan, F.; Mokhtarzadeh, A.; Maleki, A. Dengue virus: a review on advances in detection and trends–from conventional methods to novel biosensors. Mikrochim. Acta, 2019, 186(6), 329.
[http://dx.doi.org/10.1007/s00604-019-3420-y] [PMID: 31055654]
[8]
St John, A.L.; Rathore, A.P.S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol., 2019, 19(4), 218-230.
[http://dx.doi.org/10.1038/s41577-019-0123-x] [PMID: 30679808]
[9]
Troost, B.; Smit, J.M. Recent advances in antiviral drug development towards dengue virus. Curr. Opin. Virol., 2020, 43, 9-21.
[http://dx.doi.org/10.1016/j.coviro.2020.07.009] [PMID: 32795907]
[10]
Balasubramanian, A.; Pilankatta, R.; Teramoto, T.; Sajith, A.M.; Nwulia, E.; Kulkarni, A.; Padmanabhan, R. Inhibition of dengue virus by curcuminoids. Antiviral Res., 2019, 162, 71-78.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.002] [PMID: 30529358]
[11]
Bhatt, P.; Sabeena, S.P.; Varma, M.; Arunkumar, G. Current understanding of the pathogenesis of dengue virus infection. Curr. Microbiol., 2021, 78(1), 17-32.
[http://dx.doi.org/10.1007/s00284-020-02284-w] [PMID: 33231723]
[12]
Basak, S.C.; Majumdar, S.; Nandy, A.; Roy, P.; Dutta, T.; Vracko, M.; Bhattacharjee, A.K. Computer-assisted and data driven approaches for surveillance, drug discovery, and vaccine design for the Zika Virus. Pharmaceuticals (Basel), 2019, 12(4), 157.
[http://dx.doi.org/10.3390/ph12040157] [PMID: 31623241]
[13]
Mottin, M.; Borba, J.V.V.B.; Braga, R.C.; Torres, P.H.M.; Martini, M.C.; Proenca-Modena, J.L.; Judice, C.C.; Costa, F.T.M.; Ekins, S.; Perryman, A.L.; Horta Andrade, C. The A–Z of Zika drug discovery. Drug Discov. Today, 2018, 23(11), 1833-1847.
[http://dx.doi.org/10.1016/j.drudis.2018.06.014] [PMID: 29935345]
[14]
Pathak, N.; Kuo, Y.P.; Chang, T.Y.; Huang, C.T.; Hung, H.C.; Hsu, J.T.A.; Yu, G.Y.; Yang, J.M. Zika Virus NS3 Protease pharmacophore anchor model and drug discovery. Sci. Rep., 2020, 10(1), 8929.
[http://dx.doi.org/10.1038/s41598-020-65489-w] [PMID: 32488021]
[15]
Fernandes, R.S.; de Godoy, A.S.; Santos, I.A.; Noske, G.D.; de Oliveira, K.I.Z.; Gawriljuk, V.O.; Gomes Jardim, A.C.; Oliva, G. Discovery of an imidazonaphthyridine and a riminophenazine as potent anti-Zika virus agents through a replicon-based high-throughput screening. Virus Res., 2021, 299, 198388.
[http://dx.doi.org/10.1016/j.virusres.2021.198388] [PMID: 33887282]
[16]
Regla-Nava, J.A.; Wang, Y.T.; Fontes-Garfias, C.R.; Liu, Y.; Syed, T.; Susantono, M.; Gonzalez, A.; Viramontes, K.M.; Verma, S.K.; Kim, K.; Landeras-Bueno, S.; Huang, C.T.; Prigozhin, D.M.; Gleeson, J.G.; Terskikh, A.V.; Shi, P.Y.; Shresta, S. A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Rep., 2022, 39(2), 110655.
[http://dx.doi.org/10.1016/j.celrep.2022.110655] [PMID: 35417697]
[17]
Zou, J.; Shi, P.Y. Strategies for Zika drug discovery. Curr. Opin. Virol., 2019, 35, 19-26.
[http://dx.doi.org/10.1016/j.coviro.2019.01.005] [PMID: 30852345]
[18]
Lim, L.; Gupta, G.; Roy, A.; Kang, J.; Srivastava, S.; Shi, J.; Song, J. Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. Prog. Biophys. Mol. Biol., 2019, 143, 52-66.
[http://dx.doi.org/10.1016/j.pbiomolbio.2018.08.009] [PMID: 30217495]
[19]
Nunes, D.A.F.; Santos, F.R.S.; da Fonseca, S.T.D.; de Lima, W.G.; Nizer, W.S.C.; Ferreira, J.M.S.; de Magalhães, J.C. NS2B‐NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. J. Med. Virol., 2022, 94(2), 442-453.
[http://dx.doi.org/10.1002/jmv.27386] [PMID: 34636434]
[20]
Huber, S.; Braun, N.J.; Schmacke, L.C.; Quek, J.P.; Murra, R.; Bender, D.; Hildt, E.; Luo, D.; Heine, A.; Steinmetzer, T. Structure-based optimization and characterization of Macrocyclic Zika Virus NS2B-NS3 Protease Inhibitors. J. Med. Chem., 2022, 65(9), 6555-6572.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01860] [PMID: 35475620]
[21]
Nie, S.; Zhao, J.; Wu, X.; Yao, Y.; Wu, F.; Lin, Y.L.; Li, X.; Kneubehl, A.R.; Vogt, M.B.; Rico-Hesse, R.; Song, Y. Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease. Eur. J. Med. Chem., 2021, 225, 113767.
[http://dx.doi.org/10.1016/j.ejmech.2021.113767] [PMID: 34450494]
[22]
Maus, H.; Barthels, F.; Hammerschmidt, S.J.; Kopp, K.; Millies, B.; Gellert, A.; Ruggieri, A.; Schirmeister, T. SAR of novel benzothiazoles targeting an allosteric pocket of DENV and ZIKV NS2B/NS3 proteases. Bioorg. Med. Chem., 2021, 47, 116392.
[http://dx.doi.org/10.1016/j.bmc.2021.116392] [PMID: 34509861]
[23]
Phoo, W.W.; El Sahili, A.; Zhang, Z.; Chen, M.W.; Liew, C.W.; Lescar, J.; Vasudevan, S.G.; Luo, D. Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antiviral Res., 2020, 182, 104900.
[http://dx.doi.org/10.1016/j.antiviral.2020.104900] [PMID: 32763315]
[24]
Majerová, T.; Novotný, P.; Krýsová, E.; Konvalinka, J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie, 2019, 166, 132-141.
[http://dx.doi.org/10.1016/j.biochi.2019.05.004] [PMID: 31077760]
[25]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug Repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/0929867327666200812215852] [PMID: 32787752]
[26]
Nascimento, I.J.S.; de Aquino, T.M.; da Silva-Júnior, E.F. The new era of drug discovery: The power of computer-aided drug design (CADD). Lett. Drug Des. Discov., 2022, 19(11), 951-955.
[http://dx.doi.org/10.2174/1570180819666220405225817]
[27]
José dos Santos Nascimento, I.; Mendonça de Aquino, T.; Fernando da Silva Santos-Júnior, P.; Xavier de Araújo-Júnior, J.; Ferreira da Silva-Júnior, E. Molecular modeling applied to design of cysteine protease inhibitors – a powerful tool for the identification of hit compounds against neglected tropical diseases. Front. Comput. Chem., 2020, 5, 63-110.
[28]
Dos Santos Nascimento, I.J.; da Silva-Júnior, E.F. TNF-α Inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents. Comb. Chem. High Throughput Screen., 2021, 25(14), 2317-2340.
[PMID: 34269666]
[29]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Molecular docking and dynamics simulations studies of a dataset of NLRP3 inflammasome inhibitors; Recent Adv. Inflamm. Allergy Drug Discov, 2022. [Epub ahead of print].
[30]
dos Santos Nascimento, I.J.; da Silva-Júnior, E.F.; de Aquino, T.M. Molecular modeling targeting transmembrane Serine Protease 2 (TMPRSS2) as an alternative drug target against Coronaviruses. Curr. Drug Targets, 2021, 23(3), 240-259.
[PMID: 34370633]
[31]
Santos Nascimento, I.J.; Silva-Júnior, E.F.; Aquino, T.M. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro: A study by applying virtual screening, molecular dynamics, MM-PBSA calculations and covalent docking. Lett. Drug Des. Discov., 2022, 19(7), 637-653.
[http://dx.doi.org/10.2174/1570180819666220106110133]
[32]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva Júnior, E.F. Computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E2 synthase-1 (mPGES-1). Curr. Med. Chem., 2022, 29(33), 5397-5419.
[http://dx.doi.org/10.2174/0929867329666220317122948] [PMID: 35301943]
[33]
Sundar, S.; Piramanayagam, S.; Natarajan, J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes, 2022, 58(3), 151-171.
[http://dx.doi.org/10.1007/s11262-022-01898-5] [PMID: 35394596]
[34]
Adawara, S.N.; Shallangwa, G.A.; Mamza, P.A.; Abdulkadir, I. Computer-aided drug design and ADMET of novel potent dengue virus NS-5 inhibitors. Chem. Africa, 2022, 5, 855-869.
[35]
Vincetti, P.; Kaptein, S.J.F.; Costantino, G.; Neyts, J.; Radi, M. Scaffold morphing approach to expand the toolbox of broad-spectrum antivirals blocking dengue/zika replication. ACS Med. Chem. Lett., 2019, 10(4), 558-563.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00583] [PMID: 30996796]
[36]
Jansen, S.; Smlatic, E.; Copmans, D.; Debaveye, S.; Tangy, F.; Vidalain, P.O.; Neyts, J.; Dallmeier, K. Identification of host factors binding to dengue and Zika virus subgenomic RNA by efficient yeast three-hybrid screens of the human ORFeome. RNA Biol., 2021, 18(5), 732-744.
[http://dx.doi.org/10.1080/15476286.2020.1868754] [PMID: 33459164]
[37]
Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; Simmons, C.P.; Hay, S.I. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol., 2014, 22(3), 138-146.
[http://dx.doi.org/10.1016/j.tim.2013.12.011] [PMID: 24468533]
[38]
Sun, J.; Wu, D.; Zhou, H.; Zhang, H.; Guan, D.; He, X.; Cai, S.; Ke, C.; Lin, J. The epidemiological characteristics and genetic diversity of dengue virus during the third largest historical outbreak of dengue in Guangdong, China, in 2014. J. Infect., 2016, 72(1), 80-90.
[http://dx.doi.org/10.1016/j.jinf.2015.10.007] [PMID: 26546854]
[39]
Halstead, S.B. Travelling arboviruses: A historical perspective. Travel Med. Infect. Dis., 2019, 31, 101471.
[http://dx.doi.org/10.1016/j.tmaid.2019.101471] [PMID: 31472285]
[40]
Mlacker, S.; Shafa, G.; Aldahan, A.S.; Shah, V.V.; Samarkandy, S.; Nouri, K. Origin of the Zika virus revealed: a historical journey across the world. Int. J. Dermatol., 2016, 55(12), 1369-1372.
[http://dx.doi.org/10.1111/ijd.13399] [PMID: 27650823]
[41]
Posen, H.J.; Keystone, J.S.; Gubbay, J.B.; Morris, S.K. Epidemiology of Zika virus, 1947–2007. BMJ Glob. Health, 2016, 1(2), e000087.
[http://dx.doi.org/10.1136/bmjgh-2016-000087] [PMID: 28588942]
[42]
Bos, S.; Viranaicken, W.; Turpin, J.; El-Kalamouni, C.; Roche, M.; Krejbich-Trotot, P.; Desprès, P.; Gadea, G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology, 2018, 516, 265-273.
[http://dx.doi.org/10.1016/j.virol.2017.12.003] [PMID: 29395111]
[43]
Armstrong, N.; Hou, W.; Tang, Q. Biological and historical overview of Zika virus. World J. Virol., 2017, 6(1), 1-8.
[http://dx.doi.org/10.5501/wjv.v6.i1.1] [PMID: 28239566]
[44]
Qi, R.; Zhang, L.; Chi, C. Biological characteristics of dengue virus and potential targets for drug design. Acta Biochim. Biophys. Sin. (Shanghai), 2008, 40(2), 91-101.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00382.x] [PMID: 18235970]
[45]
Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol., 2005, 3(1), 13-22.
[http://dx.doi.org/10.1038/nrmicro1067] [PMID: 15608696]
[46]
Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue virus life cycle: Viral and host factors modulating infectivity. Cell. Mol. Life Sci., 2010, 67(16), 2773-2786.
[http://dx.doi.org/10.1007/s00018-010-0357-z] [PMID: 20372965]
[47]
Sager, G.; Gabaglio, S.; Sztul, E.; Belov, G. Role of host cell secretory machinery in zika virus life cycle. Viruses, 2018, 10(10), 559.
[http://dx.doi.org/10.3390/v10100559] [PMID: 30326556]
[48]
McBride, W.J.H.; Bielefeldt-Ohmann, H. Dengue viral infections; Pathogenesis and epidemiology. Microbes Infect., 2000, 2(9), 1041-1050.
[http://dx.doi.org/10.1016/S1286-4579(00)01258-2] [PMID: 10967284]
[49]
Lebeau, G.; Lagrave, A.; Ogire, E.; Grondin, L.; Seriacaroupin, S.; Moutoussamy, C.; Mavingui, P.; Hoarau, J.J.; Roche, M.; Krejbich-Trotot, P.; Desprès, P.; Viranaicken, W. Viral Toxin NS1 implication in dengue pathogenesis making it a pivotal target in development of efficient vaccine. Vaccines (Basel), 2021, 9(9), 946.
[http://dx.doi.org/10.3390/vaccines9090946] [PMID: 34579183]
[50]
Giraldo-García, A.M.; Castaño-Osorio, J.C. Effects of flavivirus cross-reactivity (zika and dengue) on the development of vaccines for use in pregnancy. Curr. Trop. Med. Rep., 2019, 6(4), 223-230.
[http://dx.doi.org/10.1007/s40475-019-00191-0]
[51]
Poletto, F.; Cerruti, L.; Spiezia, L. Dengue fever as a rare cause of pulmonary embolism. J. Thromb. Thrombolysis, 2020, 49(4), 690-693.
[http://dx.doi.org/10.1007/s11239-020-02082-y] [PMID: 32170526]
[52]
Translateur, A.; Perez-Rueda, M. Acute macular neuroretinopathy associated to dengue disease. Am. J. Ophthalmol. Case Rep., 2022, 26, 101474.
[http://dx.doi.org/10.1016/j.ajoc.2022.101474] [PMID: 35402749]
[53]
Oeser, C.; Ladhani, S. An update on zika virus and congenital zika syndrome. Paediatr. Child Health (Oxford), 2019, 29(1), 34-37.
[http://dx.doi.org/10.1016/j.paed.2018.10.010]
[54]
Kurscheidt, F.A.; Mesquita, C.S.S.; Damke, G.M.Z.F.; Damke, E.; Carvalho, A.R.B.A.; Suehiro, T.T.; Teixeira, J.J.V.; da Silva, V.R.S.; Souza, R.P.; Consolaro, M.E.L. Persistence and clinical relevance of Zika virus in the male genital tract. Nat. Rev. Urol., 2019, 16(4), 211-230.
[http://dx.doi.org/10.1038/s41585-019-0149-7] [PMID: 30696994]
[55]
Xu, B.; Lee, E.M.; Medina, A.; Sun, X.; Wang, D.; Tang, H.; Zhou, G.C. Inhibition of Zika virus infection by fused tricyclic derivatives of 1,2,4,5-tetrahydroimidazo[1,5-a]quinolin-3(3aH)-one. Bioorg. Chem., 2020, 104, 104205.
[http://dx.doi.org/10.1016/j.bioorg.2020.104205] [PMID: 32916389]
[56]
Maucourant, C.; Queiroz, G.A.N.; Samri, A.; Grassi, M.F.R.; Yssel, H.; Vieillard, V. Zika virus in the eye of the cytokine storm. Eur. Cytokine Netw., 2019, 30(3), 74-81.
[PMID: 31957701]
[57]
Lu, G.; Gong, P. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus. Virus Res., 2017, 234, 34-43.
[http://dx.doi.org/10.1016/j.virusres.2017.01.020] [PMID: 28131854]
[58]
Salazar, M.I.; del Angel, R.M.; Lanz-Mendoza, H.; Ludert, J.E.; Pando-Robles, V. The role of cell proteins in dengue virus infection. J. Proteomics, 2014, 111, 6-15.
[http://dx.doi.org/10.1016/j.jprot.2014.06.002] [PMID: 24930603]
[59]
Noble, C.G.; Shi, P.Y. Structural biology of dengue virus enzymes: Towards rational design of therapeutics. Antiviral Res., 2012, 96(2), 115-126.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.007] [PMID: 22995600]
[60]
Verma, M.; Bhatnagar, S.; Kumari, K.; Mittal, N.; Sukhralia, S.; Gopirajan, AT, S.; Dhanaraj, P.S.; Lal, R. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene, 2019, 695, 18-25.
[http://dx.doi.org/10.1016/j.gene.2019.02.001] [PMID: 30738967]
[61]
Dhal, A.; Kalyani, T.; Ghorai, S.; Sahu, N.K.; Jana, S.K. Recent development of electrochemical immunosensor for the diagnosis of dengue virus NSI protein: A review. Sens. Int., 2020, 1, 100030.
[http://dx.doi.org/10.1016/j.sintl.2020.100030]
[62]
Klein, D.E.; Choi, J.L.; Harrison, S.C. Structure of a dengue virus envelope protein late-stage fusion intermediate. J. Virol., 2013, 87(4), 2287-2293.
[http://dx.doi.org/10.1128/JVI.02957-12] [PMID: 23236058]
[63]
Chen, Y.; Maguire, T.; Marks, R.M. Demonstration of binding of dengue virus envelope protein to target cells. J. Virol., 1996, 70(12), 8765-8772.
[http://dx.doi.org/10.1128/jvi.70.12.8765-8772.1996] [PMID: 8971005]
[64]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[65]
Messer, W.B.; de Alwis, R.; Yount, B.L.; Royal, S.R.; Huynh, J.P.; Smith, S.A.; Crowe, J.E., Jr; Doranz, B.J.; Kahle, K.M.; Pfaff, J.M.; White, L.J.; Sariol, C.A.; de Silva, A.M.; Baric, R.S. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1939-1944.
[http://dx.doi.org/10.1073/pnas.1317350111] [PMID: 24385585]
[66]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature, 2004, 427(6972), 313-319.
[http://dx.doi.org/10.1038/nature02165] [PMID: 14737159]
[67]
Tan, T.Y.; Fibriansah, G.; Kostyuchenko, V.A.; Ng, T.S.; Lim, X.X.; Zhang, S.; Lim, X.N.; Wang, J.; Shi, J.; Morais, M.C.; Corti, D.; Lok, S.M. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat. Commun., 2020, 11(1), 895.
[http://dx.doi.org/10.1038/s41467-020-14647-9] [PMID: 32060358]
[68]
Samsa, M.M.; Mondotte, J.A.; Iglesias, N.G.; Assunção-Miranda, I.; Barbosa-Lima, G.; Da Poian, A.T.; Bozza, P.T.; Gamarnik, A.V. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog., 2009, 5(10), e1000632.
[http://dx.doi.org/10.1371/journal.ppat.1000632] [PMID: 19851456]
[69]
Byrd, C.M.; Dai, D.; Grosenbach, D.W.; Berhanu, A.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Wineinger, K.A.; Page, J.M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M.A.; Bartenschlager, R.; Scaturro, P.; Hruby, D.E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12] [PMID: 23070172]
[70]
Shang, Z.; Song, H.; Shi, Y.; Qi, J.; Gao, G.F. Crystal Structure of the Capsid Protein from Zika Virus. J. Mol. Biol., 2018, 430(7), 948-962.
[http://dx.doi.org/10.1016/j.jmb.2018.02.006] [PMID: 29454707]
[71]
Faustino; Martins; Karguth; Artilheiro; Enguita; Ricardo; Santos; Martins, Structural and functional properties of the capsid protein of dengue and related flavivirus. Int. J. Mol. Sci., 2019, 20(16), 3870.
[http://dx.doi.org/10.3390/ijms20163870]
[72]
Xia, H.; Xie, X.; Zou, J.; Noble, C.G.; Russell, W.K.; Holthauzen, L.M.F.; Choi, K.H.; White, M.A.; Shi, P.Y. A cocrystal structure of dengue capsid protein in complex of inhibitor. Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17992-18001.
[http://dx.doi.org/10.1073/pnas.2003056117] [PMID: 32669438]
[73]
Catteau, A.; Kalinina, O.; Wagner, M.C.; Deubel, V.; Courageot, M.P.; Desprès, P. Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J. Gen. Virol., 2003, 84(10), 2781-2793.
[http://dx.doi.org/10.1099/vir.0.19163-0] [PMID: 13679613]
[74]
Pan, P.; Zhang, Q.; Liu, W.; Wang, W.; Lao, Z.; Zhang, W.; Shen, M.; Wan, P.; Xiao, F.; Liu, F.; Zhang, W.; Tan, Q.; Liu, X.; Wu, K.; Liu, Y.; Li, G.; Wu, J. Dengue Virus M protein promotes NLRP3 inflammasome activation to induce vascular leakage in mice. J. Virol., 2019, 93(21), e00996-e009919.
[http://dx.doi.org/10.1128/JVI.00996-19] [PMID: 31413130]
[75]
Shi, Y.; Gao, G.F. Structural biology of the Zika virus. Trends Biochem. Sci., 2017, 42(6), 443-456.
[http://dx.doi.org/10.1016/j.tibs.2017.02.009] [PMID: 28318966]
[76]
Premkumar, A.; Horan, C.R.; Gage, P.W. Dengue virus M protein C-terminal peptide (DVM-C) forms ion channels. J. Membr. Biol., 2005, 204(1), 33-38.
[http://dx.doi.org/10.1007/s00232-005-0744-9] [PMID: 16007501]
[77]
Katzelnick, L.C.; Bos, S.; Harris, E. Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. Curr. Opin. Virol., 2020, 43, 59-70.
[http://dx.doi.org/10.1016/j.coviro.2020.08.006] [PMID: 32979816]
[78]
Nambala, P.; Yu, W.Y.; Lo, Y.C.; Lin, C.W.; Su, W.C. Ubiquitination of Zika virus precursor membrane protein promotes the release of viral proteins. Virus Res., 2020, 286, 198065.
[http://dx.doi.org/10.1016/j.virusres.2020.198065] [PMID: 32574678]
[79]
Zhang, W.; Chipman, P.R.; Corver, J.; Johnson, P.R.; Zhang, Y.; Mukhopadhyay, S.; Baker, T.S.; Strauss, J.H.; Rossmann, M.G.; Kuhn, R.J. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Mol. Biol., 2003, 10(11), 907-912.
[http://dx.doi.org/10.1038/nsb990] [PMID: 14528291]
[80]
Reyes-Sandoval, A.; Ludert, J.E. The dual role of the antibody response against the flavivirus non-structural protein 1 (NS1) in protection and immuno-pathogenesis. Front. Immunol., 2019, 10, 1651.
[http://dx.doi.org/10.3389/fimmu.2019.01651] [PMID: 31379848]
[81]
Qadir, A.; Riaz, M.; Saeed, M.; Shahzad-ul-Hussan, S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur. J. Med. Chem., 2018, 156, 444-460.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.014] [PMID: 30015077]
[82]
Bhakat, S.; Karubiu, W.; Jayaprakash, V.; Soliman, M.E.S. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses. Eur. J. Med. Chem., 2014, 87, 677-702.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.010] [PMID: 25305334]
[83]
da Fonseca, N.J., Jr; Lima Afonso, M.Q.; Pedersolli, N.G.; de Oliveira, L.C.; Andrade, D.S.; Bleicher, L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem. Biophys. Res. Commun., 2017, 492(4), 565-571.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.041] [PMID: 28087275]
[84]
Falconar, A.K.I.; Young, P.R. Immunoaffinity purification of native dimer forms of the flavivirus non-structural glycoprotein, NS1. J. Virol. Methods, 1990, 30(3), 323-332.
[http://dx.doi.org/10.1016/0166-0934(90)90075-Q] [PMID: 2150838]
[85]
Rastogi, M.; Sharma, N.; Singh, S.K. Flavivirus NS1: A multifaceted enigmatic viral protein. Virol. J., 2016, 13(1), 131.
[http://dx.doi.org/10.1186/s12985-016-0590-7] [PMID: 27473856]
[86]
Watterson, D.; Modhiran, N.; Young, P.R. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res., 2016, 130, 7-18.
[http://dx.doi.org/10.1016/j.antiviral.2016.02.014] [PMID: 26944216]
[87]
Akey, D.L.; Brown, W.C.; Jose, J.; Kuhn, R.J.; Smith, J.L. Structure-guided insights on the role of NS1 in flavivirus infection. BioEssays, 2015, 37(5), 489-494.
[http://dx.doi.org/10.1002/bies.201400182] [PMID: 25761098]
[88]
Chen, S.; Wu, Z.; Wang, M.; Cheng, A. Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses, 2017, 9(10), 291.
[http://dx.doi.org/10.3390/v9100291] [PMID: 28991176]
[89]
Zou, G.; Puig-Basagoiti, F.; Zhang, B.; Qing, M.; Chen, L.; Pankiewicz, K.W.; Felczak, K.; Yuan, Z.; Shi, P.Y. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384(1), 242-252.
[http://dx.doi.org/10.1016/j.virol.2008.11.003] [PMID: 19062063]
[90]
Sampath, A.; Padmanabhan, R. Molecular targets for flavivirus drug discovery. Antiviral Res., 2009, 81(1), 6-15.
[http://dx.doi.org/10.1016/j.antiviral.2008.08.004] [PMID: 18796313]
[91]
Xie, X.; Wang, Q.Y.; Xu, H.Y.; Qing, M.; Kramer, L.; Yuan, Z.; Shi, P.Y. Inhibition of dengue virus by targeting viral NS4B protein. J. Virol., 2011, 85(21), 11183-11195.
[http://dx.doi.org/10.1128/JVI.05468-11] [PMID: 21865382]
[92]
Nemésio, H.; Palomares-Jerez, F.; Villalaín, J. NS4A and NS4B proteins from dengue virus: Membranotropic regions. Biochim. Biophys. Acta Biomembr., 2012, 1818(11), 2818-2830.
[http://dx.doi.org/10.1016/j.bbamem.2012.06.022] [PMID: 22772157]
[93]
Xie, X.; Zou, J.; Wang, Q.Y.; Shi, P.Y. Targeting dengue virus NS4B protein for drug discovery. Antiviral Res., 2015, 118, 39-45.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.007] [PMID: 25796970]
[94]
Bollati, M.; Alvarez, K.; Assenberg, R.; Baronti, C.; Canard, B.; Cook, S.; Coutard, B.; Decroly, E.; de Lamballerie, X.; Gould, E.A.; Grard, G.; Grimes, J.M.; Hilgenfeld, R.; Jansson, A.M.; Malet, H.; Mancini, E.J.; Mastrangelo, E.; Mattevi, A.; Milani, M.; Moureau, G.; Neyts, J.; Owens, R.J.; Ren, J.; Selisko, B.; Speroni, S.; Steuber, H.; Stuart, D.I.; Unge, T.; Bolognesi, M. Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Res., 2010, 87(2), 125-148.
[http://dx.doi.org/10.1016/j.antiviral.2009.11.009] [PMID: 19945487]
[95]
Wang, Q.Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K.F.; Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K.L.; Xu, H.; Ding, M.; Chan, W.L.; Gu, F.; Seah, P.G.; Liu, W.; Lakshminarayana, S.B.; Kang, C.; Lescar, J.; Blasco, F.; Smith, P.W.; Shi, P.Y. Discovery of dengue virus NS4B inhibitors. J. Virol., 2015, 89(16), 8233-8244.
[http://dx.doi.org/10.1128/JVI.00855-15] [PMID: 26018165]
[96]
Liang, Q.; Luo, Z.; Zeng, J.; Chen, W.; Foo, S.S.; Lee, S.A.; Ge, J.; Wang, S.; Goldman, S.A.; Zlokovic, B.V.; Zhao, Z.; Jung, J.U. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell, 2016, 19(5), 663-671.
[http://dx.doi.org/10.1016/j.stem.2016.07.019] [PMID: 27524440]
[97]
Wang, B.; Thurmond, S.; Hai, R.; Song, J. Structure and function of Zika virus NS5 protein: Perspectives for drug design. Cell. Mol. Life Sci., 2018, 75(10), 1723-1736.
[http://dx.doi.org/10.1007/s00018-018-2751-x] [PMID: 29423529]
[98]
Bussetta, C.; Choi, K.H. Dengue virus nonstructural protein 5 adopts multiple conformations in solution. Biochemistry, 2012, 51(30), 5921-5931.
[http://dx.doi.org/10.1021/bi300406n] [PMID: 22757685]
[99]
Ramharack, P.; Soliman, M.E.S. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. J. Biomol. Struct. Dyn., 2018, 36(5), 1118-1133.
[http://dx.doi.org/10.1080/07391102.2017.1313175] [PMID: 28351337]
[100]
Lim, S.P.; Noble, C.G.; Shi, P.Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res., 2015, 119, 57-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.010] [PMID: 25912817]
[101]
Zhang, C.; Feng, T.; Cheng, J.; Li, Y.; Yin, X.; Zeng, W.; Jin, X.; Li, Y.; Guo, F.; Jin, T. Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design. Biochem. Biophys. Res. Commun., 2017, 492(4), 624-630.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.098] [PMID: 27866982]
[102]
Kamkaew, M.; Chimnaronk, S. Characterization of soluble RNA-dependent RNA polymerase from dengue virus serotype 2: The polyhistidine tag compromises the polymerase activity. Protein Expr. Purif., 2015, 112, 43-49.
[http://dx.doi.org/10.1016/j.pep.2015.04.008] [PMID: 25921066]
[103]
Leung, J.Y.; Pijlman, G.P.; Kondratieva, N.; Hyde, J.; Mackenzie, J.M.; Khromykh, A.A. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol., 2008, 82(10), 4731-4741.
[http://dx.doi.org/10.1128/JVI.00002-08] [PMID: 18337583]
[104]
Zhang, X.; Xie, X.; Xia, H.; Zou, J.; Huang, L.; Popov, V.L.; Chen, X.; Shi, P.Y. Zika Virus NS2A-mediated virion assembly. MBio, 2019, 10(5), e02375-19.
[http://dx.doi.org/10.1128/mBio.02375-19] [PMID: 31662457]
[105]
Barnard, T.R.; Abram, Q.H.; Lin, Q.F.; Wang, A.B.; Sagan, S.M. Molecular determinants of flavivirus virion assembly. Trends Biochem. Sci., 2021, 46(5), 378-390.
[http://dx.doi.org/10.1016/j.tibs.2020.12.007] [PMID: 33423940]
[106]
Speight, G.; Coia, G.; Parker, M.D.; Westaway, E.G. Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. J. Gen. Virol., 1988, 69(1), 23-34.
[http://dx.doi.org/10.1099/0022-1317-69-1-23] [PMID: 2826667]
[107]
Wu, R.H.; Tsai, M.H.; Tsai, K.N.; Tian, J.N.; Wu, J.S.; Wu, S.Y.; Chern, J.H.; Chen, C.H.; Yueh, A. Mutagenesis of dengue virus protein NS2A revealed a novel domain responsible for virus-induced cytopathic effect and interactions between NS2A and NS2B transmembrane segments. J. Virol., 2017, 91(12), e01836-16.
[http://dx.doi.org/10.1128/JVI.01836-16] [PMID: 28381578]
[108]
Liu, W.J.; Chen, H.B.; Wang, X.J.; Huang, H.; Khromykh, A.A. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J. Virol., 2004, 78(22), 12225-12235.
[http://dx.doi.org/10.1128/JVI.78.22.12225-12235.2004] [PMID: 15507609]
[109]
Preugschat, F.; Yao, C.W.; Strauss, J.H. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J. Virol., 1990, 64(9), 4364-4374.
[http://dx.doi.org/10.1128/jvi.64.9.4364-4374.1990] [PMID: 2143543]
[110]
Murray, C.L.; Jones, C.T.; Rice, C.M. Architects of assembly: Roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat. Rev. Microbiol., 2008, 6(9), 699-708.
[http://dx.doi.org/10.1038/nrmicro1928] [PMID: 18587411]
[111]
Gopala Reddy, S.B.; Chin, W.X.; Shivananju, N.S. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem. Pharmacol., 2018, 154, 54-63.
[http://dx.doi.org/10.1016/j.bcp.2018.04.008] [PMID: 29674002]
[112]
Brinkworth, R.I.; Fairlie, D.P.; Leung, D.; Young, P.R. Homology model of the dengue 2 virus NS3 protease: Putative interactions with both substrate and NS2B cofactor. J. Gen. Virol., 1999, 80(5), 1167-1177.
[http://dx.doi.org/10.1099/0022-1317-80-5-1167] [PMID: 10355763]
[113]
Falgout, B.; Miller, R.H.; Lai, C.J. Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J. Virol., 1993, 67(4), 2034-2042.
[http://dx.doi.org/10.1128/jvi.67.4.2034-2042.1993] [PMID: 8383225]
[114]
Luo, D.; Vasudevan, S.G.; Lescar, J. The flavivirus NS2B–NS3 protease–helicase as a target for antiviral drug development. Antiviral Res., 2015, 118, 148-158.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.014] [PMID: 25842996]
[115]
Jain, R.; Coloma, J.; García-Sastre, A.; Aggarwal, A.K. Structure of the NS3 helicase from Zika virus. Nat. Struct. Mol. Biol., 2016, 23(8), 752-754.
[http://dx.doi.org/10.1038/nsmb.3258] [PMID: 27399257]
[116]
Le Breton, M.; Meyniel-Schicklin, L.; Deloire, A.; Coutard, B.; Canard, B.; de Lamballerie, X.; Andre, P.; Rabourdin-Combe, C.; Lotteau, V.; Davoust, N. Flavivirus NS3 and NS5 proteins interaction network: A high-throughput yeast two-hybrid screen. BMC Microbiol., 2011, 11(1), 234.
[http://dx.doi.org/10.1186/1471-2180-11-234] [PMID: 22014111]
[117]
Bera, A.K.; Kuhn, R.J.; Smith, J.L. Functional characterization of cis and trans activity of the Flavivirus NS2B-NS3 protease. J. Biol. Chem., 2007, 282(17), 12883-12892.
[http://dx.doi.org/10.1074/jbc.M611318200] [PMID: 17337448]
[118]
Mastrangelo, E.; Pezzullo, M.; De Burghgraeve, T.; Kaptein, S.; Pastorino, B.; Dallmeier, K.; de Lamballerie, X.; Neyts, J.; Hanson, A.M.; Frick, D.N.; Bolognesi, M.; Milani, M. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: New prospects for an old drug. J. Antimicrob. Chemother., 2012, 67(8), 1884-1894.
[http://dx.doi.org/10.1093/jac/dks147] [PMID: 22535622]
[119]
Kang, C.; Keller, T.H.; Luo, D. Zika virus protease: an antiviral drug target. Trends Microbiol., 2017, 25(10), 797-808.
[http://dx.doi.org/10.1016/j.tim.2017.07.001] [PMID: 28789826]
[120]
Assenberg, R.; Mastrangelo, E.; Walter, T.S.; Verma, A.; Milani, M.; Owens, R.J.; Stuart, D.I.; Grimes, J.M.; Mancini, E.J. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. J. Virol., 2009, 83(24), 12895-12906.
[http://dx.doi.org/10.1128/JVI.00942-09] [PMID: 19793813]
[121]
Lescar, J.; Luo, D.; Xu, T.; Sampath, A.; Lim, S.; Canard, B.; Vasudevan, S. Towards the design of antiviral inhibitors against flaviviruses: The case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res., 2008, 80(2), 94-101.
[http://dx.doi.org/10.1016/j.antiviral.2008.07.001] [PMID: 18674567]
[122]
Li, Z.; Sakamuru, S.; Huang, R.; Brecher, M.; Koetzner, C.A.; Zhang, J.; Chen, H.; Qin, C.; Zhang, Q.Y.; Zhou, J.; Kramer, L.D.; Xia, M.; Li, H.; Erythrosin, B. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Res., 2018, 150, 217-225.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.018] [PMID: 29288700]
[123]
dos Santos Nascimento, I.J.; da Silva Santos-Júnior, P.F.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.F. Strategies in medicinal chemistry to discovery new hits compounds against ebola virus: Challenges and perspectives in drug discovery. Mini Rev. Med. Chem., 2022, 22(22), 2896-2924.
[124]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Cruzain and Rhodesain Inhibitors: Last Decade of advances in seeking for new compounds against American and African Trypanosomiases. Curr. Top. Med. Chem., 2021, 21(21), 1871-1899.
[http://dx.doi.org/10.2174/1568026621666210331152702] [PMID: 33797369]
[125]
Wichapong, K.; Pianwanit, S.; Sippl, W.; Kokpol, S. Homology modeling and molecular dynamics simulations of dengue virus ns2b/ns3 protease: insight into molecular interaction. J. Mol. Recognit., 2010, 23(3), 283-300.
[126]
Yotmanee, P.; Rungrotmongkol, T.; Wichapong, K.; Choi, S.B.; Wahab, H.A.; Kungwan, N.; Hannongbua, S. Binding specificity of polypeptide substrates in NS2B/NS3pro serine protease of dengue virus type 2: A molecular dynamics Study. J. Mol. Graph. Model., 2015, 60, 24-33.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.008] [PMID: 26086900]
[127]
Nutho, B.; Rungrotmongkol, T. Binding recognition of substrates in NS2B/NS3 serine protease of Zika virus revealed by molecular dynamics simulations. J. Mol. Graph. Model., 2019, 92, 227-235.
[http://dx.doi.org/10.1016/j.jmgm.2019.08.001] [PMID: 31401441]
[128]
Lavanya, P.; Ramaiah, S.; Anbarasu, A. Ethyl 4-(4-methylphenyl)-4-pentenoate from Vetiveria zizanioides Inhibits Dengue NS2B–NS3 protease and prevents viral assembly: A computational molecular dynamics and docking study. Cell Biochem. Biophys., 2016, 74(3), 337-351.
[http://dx.doi.org/10.1007/s12013-016-0741-x] [PMID: 27324039]
[129]
Timiri, A.K.; Selvarasu, S.; Kesherwani, M.; Vijayan, V.; Sinha, B.N.; Devadasan, V.; Jayaprakash, V. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors. Bioorg. Chem., 2015, 62, 74-82.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.005] [PMID: 26247308]
[130]
Mirza, S.B.; Salmas, R.E.; Fatmi, M.Q.; Durdagi, S. Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study. J. Mol. Graph. Model., 2016, 66, 99-107.
[http://dx.doi.org/10.1016/j.jmgm.2016.03.008] [PMID: 27054972]
[131]
Coronado, M.A.; Eberle, R.J.; Bleffert, N.; Feuerstein, S.; Olivier, D.S.; de Moraes, F.R.; Willbold, D.; Arni, R.K. Zika virus NS2B/NS3 proteinase: A new target for an old drug - Suramin a lead compound for NS2B/NS3 proteinase inhibition-. Antiviral Res., 2018, 160, 118-125.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.019] [PMID: 30393012]
[132]
Lin, X.; Cheng, J.; Wu, Y.; Zhang, Y.; Jiang, H.; Wang, J.; Wang, X.; Cheng, M. Identification and in silico binding study of a highly potent DENV NS2B-NS3 covalent inhibitor. ACS Med. Chem. Lett., 2022, 13(4), 599-607.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00653] [PMID: 35450371]
[133]
Ren, J.; Lee, H.; Kotak, A.; Johnson, M.E. MD simulations reveal alternate conformations of the oxyanion hole in the Zika virus NS2B/NS3 protease. Proteins, 2020, 88(2), 345-354.
[http://dx.doi.org/10.1002/prot.25809] [PMID: 31461176]
[134]
Behnam, M.A.M.; Klein, C.D.P. Conformational selection in the flaviviral NS2B-NS3 protease. Biochimie, 2020, 174, 117-125.
[http://dx.doi.org/10.1016/j.biochi.2020.04.014] [PMID: 32335227]
[135]
Kronenberger, T.; Sá Magalhães Serafim, M.; Kumar Tonduru, A.; Gonçalves Maltarollo, V.; Poso, A. Ligand accessibility insights to the dengue virus NS3‐NS2B protease assessed by long‐timescale molecular dynamics simulations. ChemMedChem, 2021, 16(16), 2524-2534.
[http://dx.doi.org/10.1002/cmdc.202100246] [PMID: 33899341]
[136]
Kumar, A.; Kumar, P.; Aarthy, M.; Singh, S.K.; Giri, R. Experiments and simulation on ZIKV NS2B-NS3 protease reveal its complex folding. Virology, 2021, 556, 110-123.
[http://dx.doi.org/10.1016/j.virol.2021.01.014] [PMID: 33561698]
[137]
Mukhametov, A.; Newhouse, E.I.; Aziz, N.A.; Saito, J.A.; Alam, M. Allosteric pocket of the dengue virus (serotype 2) NS2B/NS3 protease: In silico ligand screening and molecular dynamics studies of inhibition. J. Mol. Graph. Model., 2014, 52, 103-113.
[http://dx.doi.org/10.1016/j.jmgm.2014.06.008] [PMID: 25023665]
[138]
Aguilera-Pesantes, D.; Robayo, L.E.; Méndez, P.E.; Mollocana, D.; Marrero-Ponce, Y.; Torres, F.J.; Méndez, M.A. Discovering key residues of dengue virus NS2b-NS3-protease: New binding sites for antiviral inhibitors design. Biochem. Biophys. Res. Commun., 2017, 492(4), 631-642.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.107] [PMID: 28343993]
[139]
Lim, L.; Dang, M.; Roy, A.; Kang, J.; Song, J. Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation. ACS Omega, 2020, 5(40), 25677-25686.
[http://dx.doi.org/10.1021/acsomega.0c00039] [PMID: 33073093]
[140]
Santos, N.P.; Santos, L.H.; Torquato Quezado de Magalhães, M.; Lei, J.; Hilgenfeld, R.; Salgado Ferreira, R.; Bleicher, L. Characterization of an allosteric pocket in zika virus NS2B-NS3 protease. J. Chem. Inf. Model., 2022, 62(4), 945-957.
[http://dx.doi.org/10.1021/acs.jcim.1c01326] [PMID: 35128923]
[141]
Bharadwaj, S.; Lee, K.E.; Dwivedi, V.D.; Yadava, U.; Panwar, A.; Lucas, S.J.; Pandey, A.; Kang, S.G. Discovery of ganoderma lucidum triterpenoids as potential inhibitors against dengue virus NS2B-NS3 protease. Sci. Rep., 2019, 9(1), 19059.
[http://dx.doi.org/10.1038/s41598-019-55723-5] [PMID: 31836806]
[142]
Kumar, S.; El-Kafrawy, S.A.; Bharadwaj, S.; Maitra, S.S.; Alandijany, T.A.; Faizo, A.A.; Khateb, A.M.; Dwivedi, V.D.; Azhar, E.I. Discovery of bispecific lead compounds from Azadirachta indica against ZIKA NS2B-NS3 protease and NS5 RNA dependent RNA polymerase using molecular simulations. Molecules, 2022, 27(8), 2562.
[http://dx.doi.org/10.3390/molecules27082562] [PMID: 35458761]
[143]
Lima, C.S.; Mottin, M.; de Assis, L.R.; Mesquita, N.C.M.R.; Sousa, B.K.P.; Coimbra, L.D.; Santos, K.B.; Zorn, K.M.; Guido, R.V.C.; Ekins, S.; Marques, R.E.; Proença-Modena, J.L.; Oliva, G.; Andrade, C.H.; Regasini, L.O. Flavonoids from pterogyne nitens as zika virus NS2B-NS3 protease inhibitors. Bioorg. Chem., 2021, 109, 104719.
[http://dx.doi.org/10.1016/j.bioorg.2021.104719] [PMID: 33636437]
[144]
Shimu, M.S.S.; Mahmud, S.; Tallei, T.E.; Sami, S.A.; Adam, A.A.; Acharjee, U.K.; Paul, G.K.; Emran, T.B.; Zaman, S.; Uddin, M.S.; Saleh, M.A.; Alshehri, S.; Ghoneim, M.M.; Alruwali, M.; Obaidullah, A.J.; Jui, N.R.; Kim, J.; Kim, B. Phytochemical compound screening to identify novel small molecules against dengue virus: A docking and dynamics study. Molecules, 2022, 27(3), 653.
[http://dx.doi.org/10.3390/molecules27030653] [PMID: 35163918]
[145]
Hasan, M.; Mia, M.M.; Munna, S.U.; Talha, M.M.H.; Das, K. Seawater fungi-derived compound screening to identify novel small molecules against dengue virus NS5 methyltransferase and NS2B/NS3 protease. Inform. Med. Unlocked, 2022, 30, 100932.
[http://dx.doi.org/10.1016/j.imu.2022.100932] [PMID: 35372666]
[146]
Brecher, M.; Li, Z.; Liu, B.; Zhang, J.; Koetzner, C.A.; Alifarag, A.; Jones, S.A.; Lin, Q.; Kramer, L.D.; Li, H. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog., 2017, 13(5), e1006411.
[http://dx.doi.org/10.1371/journal.ppat.1006411] [PMID: 28542603]
[147]
Lee, H.; Ren, J.; Nocadello, S.; Rice, A.J.; Ojeda, I.; Light, S.; Minasov, G.; Vargas, J.; Nagarathnam, D.; Anderson, W.F.; Johnson, M.E. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res., 2017, 139, 49-58.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.016] [PMID: 28034741]
[148]
Chan, J.F.W.; Chik, K.K.H.; Yuan, S.; Yip, C.C.Y.; Zhu, Z.; Tee, K.M.; Tsang, J.O.L.; Chan, C.C.S.; Poon, V.K.M.; Lu, G.; Zhang, A.J.; Lai, K.K.; Chan, K.H.; Kao, R.Y.T.; Yuen, K.Y. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res., 2017, 141, 29-37.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.002] [PMID: 28185815]
[149]
Shiryaev, S.A.; Farhy, C.; Pinto, A.; Huang, C.T.; Simonetti, N.; Ngono, A.E.; Dewing, A.; Shresta, S.; Pinkerton, A.B.; Cieplak, P.; Strongin, A.Y.; Terskikh, A.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res., 2017, 143, 218-229.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.015] [PMID: 28461069]
[150]
Kumar, A.; Liang, B.; Aarthy, M.; Singh, S.K.; Garg, N.; Mysorekar, I.U.; Giri, R. Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. ACS Omega, 2018, 3(12), 18132-18141.
[http://dx.doi.org/10.1021/acsomega.8b01002] [PMID: 30613818]
[151]
Zhu, S.; Zhang, C.; Huang, L.S.; Zhang, X.Q.; Xu, Y.; Fang, X.; Zhou, J.; Wu, M.; Schooley, R.T.; Huang, Z.; An, J. Discovery and computational analyses of novel small molecule Zika Virus Inhibitors. Molecules, 2019, 24(8), 1465.
[http://dx.doi.org/10.3390/molecules24081465] [PMID: 31013906]
[152]
Coluccia, A.; Puxeddu, M.; Nalli, M.; Wei, C.K.; Wu, Y.H.; Mastrangelo, E.; Elamin, T.; Tarantino, D.; Bugert, J.J.; Schreiner, B.; Nolte, J.; Schwarze, F.; La Regina, G.; Lee, J.C.; Silvestri, R. Discovery of Zika Virus NS2B/NS3 inhibitors that prevent mice from life-threatening infection and brain damage. ACS Med. Chem. Lett., 2020, 11(10), 1869-1874.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00405] [PMID: 33062166]
[153]
Santos, F.R.S.; Nunes, D.A.F.; Lima, W.G.; Davyt, D.; Santos, L.L.; Taranto, A.G.; M S, Ferreira J. Identification of zika virus NS2B-NS3 protease inhibitors by structure-based virtual screening and drug repurposing approaches. J. Chem. Inf. Model., 2020, 60(2), 731-737.
[http://dx.doi.org/10.1021/acs.jcim.9b00933] [PMID: 31850756]
[154]
Shin, H.J.; Kim, M.H.; Lee, J.Y.; Hwang, I.; Yoon, G.Y.; Kim, H.S.; Kwon, Y.C.; Ahn, D.G.; Kim, K.D.; Kim, B.T.; Kim, S.J.; Kim, C. Structure-based virtual screening: Identification of a Novel NS2B-NS3 Protease inhibitor with potent antiviral activity against zika and dengue viruses. Microorganisms, 2021, 9(3), 545.
[http://dx.doi.org/10.3390/microorganisms9030545] [PMID: 33800763]
[155]
Quek, J.P.; Liu, S.; Zhang, Z.; Li, Y.; Ng, E.Y.; Loh, Y.R.; Hung, A.W.; Luo, D.; Kang, C. Identification and structural characterization of small molecule fragments targeting Zika virus NS2B-NS3 protease. Antiviral Res., 2020, 175, 104707.
[http://dx.doi.org/10.1016/j.antiviral.2020.104707] [PMID: 31953156]
[156]
Rohini, K.; Agarwal, P.; Preethi, B.; Shanthi, V.; Ramanathan, K. Exploring the lead compounds for Zika virus NS2B-NS3 protein: an e-pharmacophore-based approach. Appl. Biochem. Biotechnol., 2019, 187(1), 194-210.
[http://dx.doi.org/10.1007/s12010-018-2814-3] [PMID: 29911269]
[157]
Pach, S.; Sarter, T.M.; Yousef, R.; Schaller, D.; Bergemann, S.; Arkona, C.; Rademann, J.; Nitsche, C.; Wolber, G. Catching a moving target: comparative modeling of flaviviral NS2B-NS3 reveals small molecule Zika protease inhibitors. ACS Med. Chem. Lett., 2020, 11(4), 514-520.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00629] [PMID: 32292558]
[158]
Frecer, V.; Miertus, S. Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of dengue virus NS2B-NS3 protease. J. Comput. Aided Mol. Des., 2010, 24(3), 195-212.
[http://dx.doi.org/10.1007/s10822-010-9326-8] [PMID: 20306283]
[159]
Nutho, B.; Mulholland, A.J.; Rungrotmongkol, T. Quantum mechanics/molecular mechanics (QM/MM) calculations support a concerted reaction mechanism for the zika virus NS2B/NS3 serine protease with its substrate. J. Phys. Chem. B, 2019, 123(13), 2889-2903.
[http://dx.doi.org/10.1021/acs.jpcb.9b02157] [PMID: 30845796]
[160]
Lim, S.P. Dengue drug discovery: Progress, challenges and outlook. Antiviral Res., 2019, 163, 156-178.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.016] [PMID: 30597183]
[161]
Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology, 2020, 543, 34-42.
[http://dx.doi.org/10.1016/j.virol.2020.01.015] [PMID: 32056845]
[162]
Idris, F.; Ting, D.H.R.; Alonso, S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin. Drug Discov., 2021, 16(1), 47-58.
[http://dx.doi.org/10.1080/17460441.2020.1811675] [PMID: 32838577]
[163]
Gupta, B.; Reddy, B.P.N. Fight against dengue in India: Progresses and challenges. Parasitol. Res., 2013, 112(4), 1367-1378.
[http://dx.doi.org/10.1007/s00436-013-3342-2] [PMID: 23455936]
[164]
Mardekian, S.K.; Roberts, A.L. Diagnostic options and challenges for dengue and chikungunya viruses. BioMed Res. Int., 2015, 2015, 834371.
[http://dx.doi.org/10.1155/2015/834371] [PMID: 26509163]
[165]
Lim, S.P.; Wang, Q.Y.; Noble, C.G.; Chen, Y.L.; Dong, H.; Zou, B.; Yokokawa, F.; Nilar, S.; Smith, P.; Beer, D.; Lescar, J.; Shi, P.Y. Ten years of dengue drug discovery: Progress and prospects. Antiviral Res., 2013, 100(2), 500-519.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.013] [PMID: 24076358]
[166]
Cross, J.B.; Thompson, D.C.; Rai, B.K.; Baber, J.C.; Fan, K.Y.; Hu, Y.; Humblet, C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model., 2009, 49(6), 1455-1474.
[http://dx.doi.org/10.1021/ci900056c] [PMID: 19476350]
[167]
McGaughey, G.B.; Sheridan, R.P.; Bayly, C.I.; Culberson, J.C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J.F.; Cornell, W.D. Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model., 2007, 47(4), 1504-1519.
[http://dx.doi.org/10.1021/ci700052x] [PMID: 17591764]
[168]
Voss, S.; Nitsche, C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg. Med. Chem. Lett., 2020, 30(5), 126965.
[http://dx.doi.org/10.1016/j.bmcl.2020.126965] [PMID: 31980339]
[169]
Baell, J.B.; Nissink, J.W.M. Seven year itch: pan-assay interference compounds (PAINS) in 2017-utility and limitations. ACS Chem. Biol., 2018, 13(1), 36-44.
[http://dx.doi.org/10.1021/acschembio.7b00903] [PMID: 29202222]
[170]
Wang, Y.; Wang, G.; Moitessier, N.; Mittermaier, A.K. Enzyme kinetics by isothermal titration calorimetry: Allostery, inhibition, and dynamics. Front. Mol. Biosci., 2020, 7, 583826.
[http://dx.doi.org/10.3389/fmolb.2020.583826] [PMID: 33195429]
[171]
Paketurytė, V.; Zubrienė, A.; Ladbury, J.E.; Matulis, D. Intrinsic thermodynamics of protein-ligand binding by isothermal titration calorimetry as aid to drug design. Methods Mol. Biol., 2019, 1964, 61-74.
[http://dx.doi.org/10.1007/978-1-4939-9179-2_5]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy