Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Ragweed is in the Air: Ambrosia L. (Asteraceae) and Pollen Allergens in a Changing World

Author(s): Chiara Montagnani*, Rodolfo Gentili and Sandra Citterio

Volume 24, Issue 1, 2023

Published on: 21 December, 2022

Page: [98 - 111] Pages: 14

DOI: 10.2174/1389203724666221121163327

Price: $65

Abstract

Globally Ambrosia species (Asteraceae), commonly called ragweed, are recognized to be one of the most problematic groups of invasive weeds and one of the main allergenic genus. Climate and land-use change and air pollution are expected to promote ragweed spread, increase airborne ragweed pollen concentrations (the source of allergens), extend the pollen season, and promote longdistance transport of pollen or sub-pollen particles containing allergens. The allergenicity of pollen itself is going to increase. Likely, all these factors will have meaningful effects in the exacerbation of the sensitization to ragweed pollen and the severity of allergy symptoms. Globally the major health concern regards A. artemisiifolia, because of its very wide global distribution and highly invasive behavior. Together with A. artemisiifolia, also A. trifida and A. psilostachya are species of health concern distributed across different continents, widespread and invasive in several regions. The present review summarizes the characteristics of these species and gives an overview of factors contributing to their allergenicity.

Graphical Abstract

[1]
Montagnani, C.; Gentili, R.; Smith, M.; Guarino, M.F.; Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant Sci., 2017, 36(3), 139-178.
[http://dx.doi.org/10.1080/07352689.2017.1360112]
[2]
Matyasovszky, I.; Makra, L.; Tusnády, G.; Csépe, Z.; Nyúl, L.G.; Chapman, D.S.; Sümeghy, Z.; Szűcs, G.; Páldy, A.; Magyar, D.; Mányo-ki, G.; Erostyák, J.; Bodnár, K.; Bergmann, K.C.; Deák, Á.J.; Thibaudon, M.; Albertini, R.; Bonini, M.; Šikoparija, B.; Radišić, P.; Gehrig, R.; Rybníček, O.; Severova, E.; Rodinkova, V.; Prikhodko, A.; Maleeva, A.; Stjepanović, B.; Ianovici, N.; Berger, U.; Seliger, A.K. Wer-yszko-Chmielewska, E.; Šaulienė, I.; Shalaboda, V.; Yankova, R.; Peternel, R.; Ščevková, J.; Bullock, J.M. Biogeographical drivers of rag-weed pollen concentrations in Europe. Theor. Appl. Climatol., 2018, 133(1-2), 277-295.
[http://dx.doi.org/10.1007/s00704-017-2184-8]
[3]
Würtzen, P.A.; Hoof, I.; Christensen, L.H.; Váczy, Z.; Henmar, H.; Salamanca, G.; Lundegaard, C.; Lund, L.; Kráľova, T.; Brooks, E.G.; Andersen, P.S. Diverse and highly cross‐reactive T‐cell responses in ragweed allergic patients independent of geographical region. Allergy, 2020, 75(1), 137-147.
[http://dx.doi.org/10.1111/all.13992] [PMID: 31325327]
[4]
Wopfner, N.; Gadermaier, G.; Egger, M.; Asero, R.; Ebner, C.; Jahn-Schmid, B.; Ferreira, F. The spectrum of allergens in ragweed and mugwort pollen. Int. Arch. Allergy Immunol., 2005, 138(4), 337-346.
[http://dx.doi.org/10.1159/000089188] [PMID: 16254437]
[5]
Bonini, M.; Ceriotti, V. Ragweed story: From the plant to the patient. Aerobiologia, 2020, 36(1), 45-48.
[http://dx.doi.org/10.1007/s10453-019-09571-5]
[6]
Li, Y.; An, Y.; Hao, Y.; Zhang, L.; Ouyang, Y. Prevalence of sensitization to specific allergens in allergic patients in Beijing, China: A 7-year retrospective study. Asian Pac. J. Allergy Immunol., 2021. Online ahead of print
[http://dx.doi.org/10.12932/AP-210621-1162] [PMID: 34717525]
[7]
Jeong, K.Y.; Park, J.W. Allergens of regional importance in Korea. Frontiers in Allergy, 2021, 2, 652275.
[http://dx.doi.org/10.3389/falgy.2021.652275] [PMID: 35386990]
[8]
Makra, L.; Matyasovszky, I.; Hufnagel, L.; Tusnády, G. The history of ragweed in the world. Appl. Ecol. Environ. Res., 2015, 13(2)
[http://dx.doi.org/10.15666/aeer/1302_489512]
[9]
Hamaoui-Laguel, L.; Vautard, R.; Liu, L.; Solmon, F.; Viovy, N.; Khvorostyanov, D.; Essl, F.; Chuine, I.; Colette, A.; Semenov, M.A.; Schaffhauser, A.; Storkey, J.; Thibaudon, M.; Epstein, M.M. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat. Clim. Chang., 2015, 5(8), 766-771.
[http://dx.doi.org/10.1038/nclimate2652]
[10]
Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R.; Epstein, M.M. Climate change and future pollen allergy in Europe. Environ. Health Perspect., 2017, 125(3), 385-391.
[http://dx.doi.org/10.1289/EHP173] [PMID: 27557093]
[11]
Katelaris, C.H.; Beggs, P. J. Climate change: Allergens and allergic diseases. Intern. Med. J., 2018, 48(2), 129-134.
[http://dx.doi.org/10.1111/imj.13699] [PMID: 29415354]
[12]
Ziska, L.; Knowlton, K.; Rogers, C.; Dalan, D.; Tierney, N.; Elder, M.A.; Filley, W.; Shropshire, J.; Ford, L.B.; Hedberg, C.; Fleetwood, P.; Hovanky, K.T.; Kavanaugh, T.; Fulford, G.; Vrtis, R.F.; Patz, J.A.; Portnoy, J.; Coates, F.; Bielory, L.; Frenz, D. Recent warming by lati-tude associated with increased length of ragweed pollen season in central North America. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4248-4251.
[http://dx.doi.org/10.1073/pnas.1014107108] [PMID: 21368130]
[13]
Grewling, Ł.; Bogawski, P.; Kryza, M.; Magyar, D.; Šikoparija, B.; Skjøth, C.A.; Udvardy, O.; Werner, M.; Smith, M. Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environ. Pollut., 2019, 254(Pt A), 112948.
[http://dx.doi.org/10.1016/j.envpol.2019.07.116] [PMID: 31377333]
[14]
Ghiani, A.; Aina, R.; Asero, R.; Bellotto, E.; Citterio, S. Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy, 2012, 67(7), 887-894.
[http://dx.doi.org/10.1111/j.1398-9995.2012.02846.x] [PMID: 22582710]
[15]
El Kelish, A.; Zhao, F.; Heller, W.; Durner, J.; Winkler, J.B.; Behrendt, H.; Traidl-Hoffmann, C.; Horres, R.; Pfeifer, M.; Frank, U.; Ernst, D. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biol., 2014, 14(1), 176.
[http://dx.doi.org/10.1186/1471-2229-14-176] [PMID: 24972689]
[16]
Essl, F.; Biró, K.; Brandes, D.; Broennimann, O.; Bullock, J.M.; Chapman, D.S.; Chauvel, B.; Dullinger, S.; Fumanal, B.; Guisan, A.; Kar-rer, G.; Kazinczi, G.; Kueffer, C.; Laitung, B.; Lavoie, C.; Leitner, M.; Mang, T.; Moser, D.; Müller-Schärer, H.; Petitpierre, B.; Richter, R.; Schaffner, U.; Smith, M.; Starfinger, U.; Vautard, R.; Vogl, G.; von der Lippe, M.; Follak, S. Biological flora of the british isles: Ambrosia artemisiifolia. J. Ecol., 2015, 103(4), 1069-1098.
[http://dx.doi.org/10.1111/1365-2745.12424]
[17]
Smith, M.; Cecchi, L.; Skjøth, C.A.; Karrer, G.; Šikoparija, B. Common ragweed: A threat to environmental health in Europe. Environ. Int., 2013, 61, 115-126.
[http://dx.doi.org/10.1016/j.envint.2013.08.005] [PMID: 24140540]
[18]
Chauvel, B.; Fried, G.; Follak, S.; Chapman, D.; Kulakova, Y.; Le Bourgeois, T.; Marisavljevic, D.; Monty, A.; Rossi, J.P.; Starfinger, U.; Tanner, R.; Tassus, X.; Van Valkenburg, J.; Regnier, E. Monographs on invasive plants in Europe N° 5: Ambrosia trifida L. Bot. Lett., 2021, 168(2), 167-190.
[http://dx.doi.org/10.1080/23818107.2021.1879674]
[19]
Strother, J.L. Flora of North America, North of Mexico. In: Magnoliophyta: Asteridae; Oxford University Press: New York, NY, 2006; 21, p. 10-18.
[20]
Wagner, W.H., Jr The hybrid ragweed, Ambrosia artemisiifolia ⨯ trifida. Rhodora, 1958, 60(720), 309-316.
[21]
Wagner, W.H.J.; Beals, T.F. Perennial ragweeds (Ambrosia) in Michigan, with the description of a new, intermediate Taxon. Rhodora, 1958, 60(715), 177-204.
[22]
Bassett, I.J.; Crompton, C.W. The biology of canadian weeds.: 55.: Ambrosia trifida L. Can. J. Plant Sci., 1982, 62(4), 1003-1010.
[http://dx.doi.org/10.4141/cjps82-148]
[23]
Payne, W.W. Preliminary reports on the flora of wisconsin. No. 62 Compositae VI. (Composite Family VI). The genus Ambrosia-The ragweeds. Trans. Wis. Acad. Sci. Arts Lett., 1964, 58, 353-371.
[24]
Mcandrews, J.H. Human disturbance of North American forests and grasslands: The fossil pollen record. Vegetation history; Springer Netherlands: Dordrecht, 1988, pp. 673-697.
[http://dx.doi.org/10.1007/978-94-009-3081-0_18]
[25]
Abul-Fatih, H.A.; Bazzaz, F.A. The biology of ambrosia trifida L. II. Germination, emergence, growth and survival. New Phytol., 1979, 83(3), 817-827.
[http://dx.doi.org/10.1111/j.1469-8137.1979.tb02313.x]
[26]
Bovey, R.W.; McCarty, M.K.; Davis, F.S. Control of perennial ragweed on western nebraska rangeland. J. Range Manage., 1966, 19(4), 220.
[http://dx.doi.org/10.2307/3895652]
[27]
Genton, B.J.; Shykoff, J.A.; Giraud, T. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol., 2005, 14(14), 4275-4285.
[http://dx.doi.org/10.1111/j.1365-294X.2005.02750.x] [PMID: 16313592]
[28]
Brandes, D. Biology, introduction, dispersal, and distribution of common ragweed (Ambrosia artemisiifolia L.) with special regard to Ger-many. Nachrichtenblatt des dtsch. Pflanzenschutzdienstes, 2006, 58(11), 286-291.
[29]
Vitalos, M.; Karrer, G. Distribution of Ambrosia artemisiifolia L. Is birdseed a relevant vector? J. Plant Dis. Proctection Spec. Issue, 2008, 21, 345-348.
[30]
Frick, G.; Boschung, H.; Schulz-schroeder, G.; Russ, G.; Ujčičvrhovnik, I.; Jakovac-strajn, B.; Angetter, D.; John, I.; Jørgensen, J.S. Rag-weed (Ambrosia Sp.) Seeds in bird feed. Biotechnol. Agron. Soc. Environ., 2011, 15, 39-44.
[31]
Ardenghi, N.M.G.; Polani, F. La flora della provincia di Pavia (Lombardia, Italia settentrionale). 1. L’Oltrepò Pavese. Nat. Hist. Sci., 2016, 3(2), 51.
[http://dx.doi.org/10.4081/nhs.2016.269]
[32]
Parsons, W.T.; Cuthbertson, E.G. Noxious weeds of Australia, 2nd ed; CSIRO Publishing: Collingwood, 2011.
[33]
Ciappetta, S.; Ghiani, A.; Gilardelli, F.; Bonini, M.; Citterio, S.; Gentili, R. Invasion of Ambrosia artemisiifolia in Italy: Assessment via analysis of genetic variability and herbarium data. Flora (Jena), 2016, 223, 106-113.
[http://dx.doi.org/10.1016/j.flora.2016.05.002]
[34]
Li, F.; van Kleunen, M.; Li, J.; Liu, X.; Gao, K.; Zhu, J.; Zhao, X.; Zhao, C.; Li, J. Patterns of genetic variation reflect multiple introduc-tions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biol. Invasions, 2019, 21(6), 2191-2209.
[http://dx.doi.org/10.1007/s10530-019-01966-2]
[35]
Lemke, A.; Kowarik, I.; Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol., 2019, 56(2), 413-422.
[http://dx.doi.org/10.1111/1365-2664.13287]
[36]
Kröel-Dulay, G.; Csecserits, A.; Szitár, K.; Molnár, E.; Szabó, R.; Ónodi, G.; Botta-Dukát, Z. The potential of common ragweed for further spread: Invasibility of different habitats and the role of disturbances and propagule pressure. Biol. Invasions, 2019, 21(1), 137-149.
[http://dx.doi.org/10.1007/s10530-018-1811-3]
[37]
Lavoie, C.; Jodoin, Y.; De Merlis, A.G. How did common ragweed (Ambrosia artemisiifolia L.) spread in Québec? A historical analysis using herbarium records. J. Biogeogr., 2007, 34(10), 1751-1761.
[http://dx.doi.org/10.1111/j.1365-2699.2007.01730.x]
[38]
Chauvel, B.; Rodriguez, A.; Moreau, C.; Martinez, Q.; Bilon, R.; Fried, G. Développement d’Ambrosia trifida L. En France: Historical and ecological knowledge for the eradication of the species. J. Bot. Soc. Bot. Fr, 2015, 71, 25-38.
[39]
Chauvel, B.; Dessaint, F.; Cardinal-Legrand, C.; Bretagnolle, F. The historical spread of Ambrosia artemisiifolia L. in France from herbari-um records. J. Biogeogr., 2006, 33(4), 665-673.
[http://dx.doi.org/10.1111/j.1365-2699.2005.01401.x]
[40]
Șușnia, I.; Oprea, A.; Samuil, C.; Huțanu, M.; Sîrbu, C. Invasion of Ambrosia artemisiifolia L. in the lower course of the siret river. Rom. J. Grassl. Forage Crops, 2020, 22, 33-54.
[41]
Stromberg, J.C. Root patterns and hydrogeomorphic niches of riparian plants in the American Southwest. J. Arid Environ., 2013, 94, 1-9.
[http://dx.doi.org/10.1016/j.jaridenv.2013.02.004]
[42]
Flores-Olvera, H.; Czaja, A.; Estrada-Rodríguez, J.L.; Méndez, U.R. Floristic diversity of halophytic plants of Mexico. Sabkha Ecosystems; Springer: Cham, 2016, pp. 299-327.
[http://dx.doi.org/10.1007/978-3-319-27093-7_17]
[43]
Vecchio, S.D.; Pizzo, L.; Buffa, G. The response of plant community diversity to alien invasion: Evidence from a sand dune time series. Biodivers. Conserv., 2015, 24(2), 371-392.
[http://dx.doi.org/10.1007/s10531-014-0814-3]
[44]
Barton, J.S.; Schomacker, R. Comparative protein profiles of the Ambrosia plants. Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(6), 633-639.
[http://dx.doi.org/10.1016/j.bbapap.2017.03.005] [PMID: 28315734]
[45]
Gadermaier, G.; Hauser, M.; Ferreira, F. Allergens of weed pollen: An overview on recombinant and natural molecules. Methods, 2014, 66(1), 55-66.
[http://dx.doi.org/10.1016/j.ymeth.2013.06.014] [PMID: 23806644]
[46]
Bordas-Le Floch, V.; Le Mignon, M.; Bouley, J.; Groeme, R.; Jain, K.; Baron-Bodo, V.; Nony, E.; Mascarell, L.; Moingeon, P. Identifica-tion of novel short ragweed pollen allergens using combined transcriptomic and immunoproteomic approaches. PLoS One, 2015, 10(8), e0136258.
[http://dx.doi.org/10.1371/journal.pone.0136258] [PMID: 26317427]
[47]
Chen, K.W.; Marusciac, L.; Tamas, P.T.; Valenta, R.; Panaitescu, C. Ragweed pollen allergy: Burden, characteristics, and management of an imported allergen source in Europe. Int. Arch. Allergy Immunol., 2018, 176(3-4), 163-180.
[http://dx.doi.org/10.1159/000487997] [PMID: 29788026]
[48]
Bacsi, A.; Choudhury, B.; Dharajiya, N.; Sur, S.; Boldogh, I. Subpollen particles: Carriers of allergenic proteins and oxidases. J. Allergy Clin. Immunol., 2006, 118(4), 844-850.
[http://dx.doi.org/10.1016/j.jaci.2006.07.006] [PMID: 17030236]
[49]
Howlett, B.J.; Knox, R.B.; Heslop-Harrison, J. Pollen-wall proteins: Release of the allergen Antigen E from intine and exine sites in pollen grains of ragweed and Cosmos. J. Cell Sci., 1973, 13(2), 603-619.
[http://dx.doi.org/10.1242/jcs.13.2.603] [PMID: 4128249]
[50]
Asero, R.; Bellotto, E.; Ghiani, A.; Aina, R.; Villalta, D.; Citterio, S. Concomitant sensitization to ragweed and mugwort pollen: Who is who in clinical allergy? Ann. Allergy Asthma Immunol., 2014, 113(3), 307-313.
[http://dx.doi.org/10.1016/j.anai.2014.06.009] [PMID: 25053399]
[51]
Metzler, W.J.; Valentine, K.; Roebber, M.; Friedrichs, M.S.; Marsh, D.G.; Mueller, L. Determination of the three-dimensional solution structure of ragweed allergen Amb t V by nuclear magnetic resonance spectroscopy. Biochemistry, 1992, 31(22), 5117-5127.
[http://dx.doi.org/10.1021/bi00137a005] [PMID: 1606135]
[52]
Ghosh, B.; Rafnar, T.; Perry, M.P.; Bassolino-Klimas, D.; Metzler, W.J.; Klapper, D.G.; Marsh, D.G. Immunologic and molecular charac-terization of Amb p V allergens from Ambrosia psilostachya (western Ragweed) pollen. J. Immunol., 1994, 152(6), 2882-2889.
[PMID: 7511632]
[53]
Boldogh, I.; Bacsi, A.; Choudhury, B.K.; Dharajiya, N.; Alam, R.; Hazra, T.K.; Mitra, S.; Goldblum, R.M.; Sur, S. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest., 2005, 115(8), 2169-2179.
[http://dx.doi.org/10.1172/JCI24422] [PMID: 16075057]
[54]
Gunawan, H.; Takai, T.; Ikeda, S.; Okumura, K.; Ogawa, H. Protease activity of allergenic pollen of cedar, cypress, juniper, birch and ragweed. Allergol. Int., 2008, 57(1), 83-91.
[http://dx.doi.org/10.2332/allergolint.O-07-507] [PMID: 18209508]
[55]
Sun, Y.; Roderick, G.K. Rapid evolution of invasive traits facilitates the invasion of common ragweed, Ambrosia artemisiifolia. J. Ecol., 2019, 107(6), 2673-2687.
[http://dx.doi.org/10.1111/1365-2745.13198]
[56]
Rasmussen, K.; Thyrring, J.; Muscarella, R.; Borchsenius, F. Climate-change-induced range shifts of three allergenic ragweeds (Ambrosia L.) in Europe and their potential impact on human health. PeerJ, 2017, 5, e3104.
[http://dx.doi.org/10.7717/peerj.3104] [PMID: 28321366]
[57]
Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.; Guisan, A. Climatic niche shifts are rare among terrestrial plant in-vaders. Science, 2012, 335(6074), 1344-1348.
[http://dx.doi.org/10.1126/science.1215933] [PMID: 22422981]
[58]
Tu, W.; Xiong, Q.; Qiu, X.; Zhang, Y. Dynamics of invasive alien plant species in China under climate change scenarios. Ecol. Indic., 2021, 129, 107919.
[http://dx.doi.org/10.1016/j.ecolind.2021.107919]
[59]
Gentili, R.; Ambrosini, R.; Augustinus, B.A.; Caronni, S.; Cardarelli, E.; Montagnani, C.; Müller-Schärer, H.; Schaffner, U.; Citterio, S. High phenotypic plasticity in a prominent plant invader along altitudinal and temperature gradients. Plants, 2021, 10(10), 2144.
[http://dx.doi.org/10.3390/plants10102144] [PMID: 34685954]
[60]
Gentili, R.; Asero, R.; Caronni, S.; Guarino, M.; Montagnani, C.; Mistrello, G.; Citterio, S. Ambrosia artemisiifolia L. temperature-responsive traits influencing the prevalence and severity of pollinosis: A study in controlled conditions. BMC Plant Biol., 2019, 19(1), 155.
[http://dx.doi.org/10.1186/s12870-019-1762-6] [PMID: 31023241]
[61]
Boheemen, L.A.; Atwater, D.Z.; Hodgins, K.A. Rapid and repeated local adaptation to climate in an invasive plant. New Phytol., 2019, 222(1), 614-627.
[http://dx.doi.org/10.1111/nph.15564] [PMID: 30367474]
[62]
Qin, Z.; DiTommaso, A.; Wu, R.S.; Huang, H.Y. Potential distribution of two Ambrosia species in China under projected climate change. Weed Res., 2014, 54(5), 520-531.
[http://dx.doi.org/10.1111/wre.12100]
[63]
Chapman, D.S.; Makra, L.; Albertini, R.; Bonini, M.; Páldy, A.; Rodinkova, V.; Šikoparija, B.; Weryszko-Chmielewska, E.; Bullock, J.M. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Change Biol., 2016, 22(9), 3067-3079.
[http://dx.doi.org/10.1111/gcb.13220] [PMID: 26748862]
[64]
Šikoparija, B.; Skjøth, C.A.; Alm Kübler, K.; Dahl, A.; Sommer, J.; Grewling, Ł.; Radišić, P.; Smith, M. A mechanism for long distance transport of Ambrosia pollen from the Pannonian Plain. Agric. For. Meteorol., 2013, 180, 112-117.
[http://dx.doi.org/10.1016/j.agrformet.2013.05.014]
[65]
Makra, L.; Matyasovszky, I.; Tusnády, G.; Wang, Y.; Csépe, Z.; Bozóki, Z.; Nyúl, L.G.; Erostyák, J.; Bodnár, K.; Sümeghy, Z.; Vogel, H.; Pauling, A.; Páldy, A.; Magyar, D.; Mányoki, G.; Bergmann, K.C.; Bonini, M.; Šikoparija, B.; Radišić, P.; Gehrig, R.; Seliger, A.K.; Stjepa-nović, B.; Rodinkova, V.; Prikhodko, A.; Maleeva, A.; Severova, E.; Ščevková, J.; Ianovici, N.; Peternel, R.; Thibaudon, M. Biogeograph-ical estimates of allergenic pollen transport over regional scales: Common ragweed and Szeged, Hungary as a test case. Agric. For. Meteorol., 2016, 221, 94-110.
[http://dx.doi.org/10.1016/j.agrformet.2016.02.006]
[66]
Alan, Ş.; Sarışahin, T.; Acar Şahin, A.; Kaplan, A.; Pınar, N.M. An assessment of ragweed pollen and allergen loads in an uninvaded area in the Western Black Sea region of Turkey. Aerobiologia, 2020, 36(2), 183-195.
[http://dx.doi.org/10.1007/s10453-019-09620-z]
[67]
Ziska, L.H.; Makra, L.; Harry, S.K.; Bruffaerts, N.; Hendrickx, M.; Coates, F.; Saarto, A.; Thibaudon, M.; Oliver, G.; Damialis, A.; Char-alampopoulos, A.; Vokou, D.; Heiđmarsson, S.; Guđjohnsen, E.; Bonini, M.; Oh, J.W.; Sullivan, K.; Ford, L.; Brooks, G.D.; Myszkowska, D.; Severova, E.; Gehrig, R.; Ramón, G.D.; Beggs, P.J.; Knowlton, K.; Crimmins, A.R. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet. Health, 2019, 3(3), e124-e131.
[http://dx.doi.org/10.1016/S2542-5196(19)30015-4] [PMID: 30904111]
[68]
Stinson, K.A.; Wheeler, J.A.; Record, S.; Jennings, J.L. Regional variation in timing, duration, and production of flowers by allergenic ragweed. Plant Ecol., 2018, 219(9), 1081-1092.
[http://dx.doi.org/10.1007/s11258-018-0860-0]
[69]
Wan, S.; Yuan, T.; Bowdish, S.; Wallace, L.; Russell, S.D.; Luo, Y. Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: Implications for public health. Am. J. Bot., 2002, 89(11), 1843-1846.
[http://dx.doi.org/10.3732/ajb.89.11.1843] [PMID: 21665612]
[70]
Ziska, L.H.; Gebhard, D.E.; Frenz, D.A.; Faulkner, S.; Singer, B.D.; Straka, J.G. Cities as harbingers of climate change: Common ragweed, urbanization, and public health. J. Allergy Clin. Immunol., 2003, 111(2), 290-295.
[http://dx.doi.org/10.1067/mai.2003.53] [PMID: 12589347]
[71]
Ziska, L.H.; George, K.; Frenz, D.A. Establishment and persistence of common ragweed (Ambrosia artemisiifolia L.) in disturbed soil as a function of an urban?rural macro-environment. Glob. Change Biol., 2007, 13(1), 266-274.
[http://dx.doi.org/10.1111/j.1365-2486.2006.01264.x]
[72]
Gorton, A.J.; Moeller, D.A.; Tiffin, P. Little plant, big city: A test of adaptation to urban environments in common ragweed (Ambrosia artemisiifolia). Proc. Biol. Sci., 2018, 285(1881), 20180968.
[http://dx.doi.org/10.1098/rspb.2018.0968] [PMID: 30051853]
[73]
Katz, D.S.W.; Carey, T.S. Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales. Sci. Total Environ., 2014, 485-486, 435-440.
[http://dx.doi.org/10.1016/j.scitotenv.2014.03.099] [PMID: 24742553]
[74]
Rauer, D.; Gilles, S.; Wimmer, M.; Frank, U.; Mueller, C.; Musiol, S.; Vafadari, B.; Aglas, L.; Ferreira, F.; Schmitt-Kopplin, P.; Durner, J.; Winkler, J.B.; Ernst, D.; Behrendt, H.; Schmidt-Weber, C.B.; Traidl-Hoffmann, C.; Alessandrini, F. Ragweed plants grown under elevated CO2 levels produce pollen which elicit stronger allergic lung inflammation. Allergy, 2021, 76(6), 1718-1730.
[http://dx.doi.org/10.1111/all.14618] [PMID: 33037672]
[75]
D’Amato, G.; Chong-Neto, H.J.; Monge Ortega, O.P.; Vitale, C.; Ansotegui, I.; Rosario, N.; Haahtela, T.; Galan, C.; Pawankar, R.; Murrieta-Aguttes, M.; Cecchi, L.; Bergmann, C.; Ridolo, E.; Ramon, G.; Gonzalez Diaz, S.; D’Amato, M.; Annesi-Maesano, I. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy, 2020, 75(9), 2219-2228.
[http://dx.doi.org/10.1111/all.14476] [PMID: 32589303]
[76]
Wayne, P.; Foster, S.; Connolly, J.; Bazzaz, F.; Epstein, P. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is in-creased in CO2-enriched atmospheres. Ann. Allergy Asthma Immunol., 2002, 88(3), 279-282.
[http://dx.doi.org/10.1016/S1081-1206(10)62009-1] [PMID: 11926621]
[77]
Yoon, M.G.; Kim, M.A.; Jin, H.J.; Shin, Y.S.; Park, H.S. Identification of IgE binding components of two major weed pollens, ragweed and mugwort. Allergy Asthma Respir. Dis., 2014, 2(5), 337.
[http://dx.doi.org/10.4168/aard.2014.2.5.337]
[78]
Hong, C.S. Pollen allergy plants in Korea. Allergy Asthma Respir. Dis., 2015, 3(4), 239.
[http://dx.doi.org/10.4168/aard.2015.3.4.239]
[79]
Oh, J-W. Pollen Allergy in a Changing World; Springer: Singapore, 2018.
[http://dx.doi.org/10.1007/978-981-10-5499-0]
[80]
Wang, Z.; Hui, Q.; Ruiqi, W.; Haijuan, H.; Kai, G.; Jie, L.; Daowen, L. Investigation and analysis of airborne ragweed pollen in qingdao and beijing areas from 2010 to 2015. Shandong Daxue Er-Bi-Hou-Yan Xuebao, 2019, 33(1), 73-76.
[http://dx.doi.org/10.6040/j.issn.1673-3770.1.2018.035]
[81]
Ma, L.; Li, H.; Li, B.; Meng, L. Mitochondrial DNA Polymorphism in the Leaf Beetle Ophraella communa, an Introduced Biocontrol Agent of the Common Ragweed Ambrosia artemisiifolia (Asteraceae) Invading East Asia. Entomol. News, 2020, 129(3), 286-295.
[http://dx.doi.org/10.3157/021.129.0306]
[82]
Park, J.W. Revised pollen calendar in Korea. Allergy Asthma Immunol. Res., 2020, 12(2), 171-172.
[http://dx.doi.org/10.4168/aair.2020.12.2.171] [PMID: 32009317]
[83]
Xu, X.; Qin, L.; Ren, L.; Wang, C.; Zhang, Y.; Zhang, L. Comparative analysis of chronic rhinitis patient profiles during autumn pollen season between grassland and non-grassland cities in North China. Allergy Asthma Clin. Immunol., 2021, 17(1), 106.
[http://dx.doi.org/10.1186/s13223-021-00591-w] [PMID: 34635159]
[84]
Park, H.J.; Lee, J.H.; Park, K.H.; Kim, K.R.; Han, M.J.; Choe, H.; Oh, J.W.; Hong, C.S. A six-year study on the changes in airborne pollen counts and skin positivity rates in Korea: 2008–2013. Yonsei Med. J., 2016, 57(3), 714-720.
[http://dx.doi.org/10.3349/ymj.2016.57.3.714] [PMID: 26996572]
[85]
Shin, J.Y.; Han, M.J.; Cho, C.; Kim, K.R.; Ha, J.C.; Oh, J.W. Allergenic pollen calendar in korea based on probability distribution models and up-to-date observations. Allergy Asthma Immunol. Res., 2020, 12(2), 259-273.
[http://dx.doi.org/10.4168/aair.2020.12.2.259] [PMID: 32009321]
[86]
Kim, J.H.; Oh, J.W.; Lee, H.B.; Kim, S.W.; Kang, I.J.; Kook, M.H.; Kim, B.S.; Park, K.S.; Baek, H.S.; Kim, K.R.; Choi, Y.J. Changes in sensitization rate to weed allergens in children with increased weeds pollen counts in Seoul metropolitan area. J. Korean Med. Sci., 2012, 27(4), 350-355.
[http://dx.doi.org/10.3346/jkms.2012.27.4.350] [PMID: 22468096]
[87]
Zemmer, F.; Cenk, E.; Dahl, A.; Galán, C.; Ozkaragoz, F. A multidisciplinary approach of outdoor aeroallergen selection for skin prick testing in the geographical area of Greater Istanbul. Eur. Ann. Allergy Clin. Immunol., 2022, 54(1), 34-42.
[http://dx.doi.org/10.23822/EurAnnACI.1764-1489.188] [PMID: 33415962]
[88]
Zemmer, F.; Karaca, F.; Ozkaragoz, F. Ragweed pollen observed in Turkey: Detection of sources using back trajectory models. Sci. Total Environ., 2012, 430, 101-108.
[http://dx.doi.org/10.1016/j.scitotenv.2012.04.067] [PMID: 22634556]
[89]
Celenk, S. Detection of reactive allergens in long-distance transported pollen grains: Evidence from Ambrosia. Atmos. Environ., 2019, 209, 212-219.
[http://dx.doi.org/10.1016/j.atmosenv.2019.04.040]
[90]
Reznik, S.Y. Common Ragweed (Ambrosia artemisiifolia L.). In: Russia: Spread, distribution, abundance, harmfulness and control measures; Ambroisie First Int. Ragweed Rev, 2009; p. 26.
[91]
Abramidze, T.; Gotua, M.; Chikhelidze, N.; Cheishvili, T.; Gamkrelidze, A. Plant aeroallergens in two major cities of georgia-tbilisi and kutaisi. Georgian Med. News, 2017, 264(264), 75-80.
[PMID: 28480855]
[92]
Yair, Y.; Sibony, M.; Goldberg, A.; Confino-Cohen, R.; Rubin, B.; Shahar, E. Ragweed species (Ambrosia spp.) in Israel: Distribution and allergenicity. Aerobiologia, 2019, 35(1), 85-95.
[http://dx.doi.org/10.1007/s10453-018-9542-6]
[93]
Yair, Y.; Yair, Y.; Rubin, B.; Confino-Cohen, R.; Rosman, Y.; Shachar, E.; Rottem, M. First reported case of thunderstorm asthma in Isra-el. Nat. Hazards Earth Syst. Sci., 2019, 19(12), 2715-2725.
[http://dx.doi.org/10.5194/nhess-19-2715-2019]
[94]
Tong, S.; Bambrick, H.; Beggs, P.J.; Chen, L.; Hu, Y.; Ma, W.; Steffen, W.; Tan, J. Current and future threats to human health in the an-thropocene. Environ. Int., 2022, 158, 106892.
[http://dx.doi.org/10.1016/j.envint.2021.106892] [PMID: 34583096]
[95]
Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; Valdes Ortega, N.; Osorio Garcia, S.; Pascal, M.; Stafoggia, M.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Díaz, M.; Cruz, J.; Nunes, B.; Teixeira, J.P.; Kim, H.; Tobias, A.; Íñiguez, C.; Forsberg, B.; Åström, C.; Ragettli, M.S.; Guo, Y.L.; Chen, B.Y.; Bell, M.L.; Wright, C.Y.; Scovronick, N.; Garland, R.M.; Milojevic, A.; Kyselý, J.; Urban, A.; Orru, H.; Indermitte, E.; Jaakkola, J.J.K.; Ryti, N.R.I.; Katsouyanni, K.; Analitis, A.; Zanobetti, A.; Schwartz, J.; Chen, J.; Wu, T.; Cohen, A.; Gasparrini, A.; Kan, H. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med., 2019, 381(8), 705-715.
[http://dx.doi.org/10.1056/NEJMoa1817364] [PMID: 31433918]
[96]
Pawankar, R.; Wang, J.Y.; Wang, I.J.; Thien, F.; Chang, Y.S.; Latiff, A.H.A.; Fujisawa, T.; Zhang, L.; Thong, B.Y.H.; Chatchatee, P.; Leung, T.F.; Kamchaisatian, W.; Rengganis, I.; Yoon, H.J.; Munkhbayarlakh, S.; Recto, M.T.; Neo, A.G.E.; Le Pham, D.; Lan, L.T.T.; Davies, J.M.; Oh, J.W. Asia pacific association of allergy asthma and clinical immunology white paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac. Allergy, 2020, 10(1), e11.
[http://dx.doi.org/10.5415/apallergy.2020.10.e11] [PMID: 32099833]
[97]
Xing, Y.; Wong, G.W.K. Environmental influences and allergic diseases in the asia-pacific region: What will happen in next 30 years? Allergy Asthma Immunol. Res., 2022, 14(1), 21-39.
[http://dx.doi.org/10.4168/aair.2022.14.1.21] [PMID: 34983105]
[98]
Pawankar, R. Climate change, air pollution, and biodiversity in Asia Pacific: Impact on allergic diseases. Asia Pac. Allergy, 2019, 9(2), e11.
[http://dx.doi.org/10.5415/apallergy.2019.9.e11] [PMID: 31089453]
[99]
Haahtela, T. A biodiversity hypothesis. Allergy, 2019, 13763.
[http://dx.doi.org/10.1111/all.13763]
[100]
IPPC ISPM 41 international movement of used vehicles, machinery and equipment. Secretariat of the International Plant Protection Convention, Available from: https://www.ippc.int/en/publications/84343/ (Accessed on: 31 January 2022).
[101]
Montagnani, C.; Gentili, R.; Brundu, G.; Caronni, S.; Citterio, S. Accidental introduction and spread of top invasive alien plants in the eu-ropean union through human-mediated agricultural pathways: What should we expect? Agronomy (Basel), 2022, 12(2), 423.
[http://dx.doi.org/10.3390/agronomy12020423]
[102]
Gentili, R.; Montagnani, C.; Gilardelli, F.; Guarino, M.F.; Citterio, S. Let native species take their course: Ambrosia artemisiifolia replace-ment during natural or “artificial” succession. Acta Oecol., 2017, 82, 32-40.
[http://dx.doi.org/10.1016/j.actao.2017.05.007]
[103]
Cardarelli, E.; Musacchio, A.; Montagnani, C.; Bogliani, G.; Citterio, S.; Gentili, R. Ambrosia artemisiifolia control in agricultural areas: Effect of grassland seeding and herbivory by the exotic leaf beetle Ophraella communa. NeoBiota, 2018, 38, 1-22.
[http://dx.doi.org/10.3897/neobiota.38.23562]
[104]
Cardarelli, E.; Gentili, R.; Della Rocca, F.; Zanella, M.; Caronni, S.; Bogliani, G.; Citterio, S. Seeding and overseeding native hayseed sup-port plant and soil arthropod communities in agriculture areas. Life (Basel), 2020, 10(4), 38.
[http://dx.doi.org/10.3390/life10040038] [PMID: 32290501]
[105]
Müller-Schärer, H.; Lommen, S.T.E.; Rossinelli, M.; Bonini, M.; Boriani, M.; Bosio, G.; Schaffner, U. Ophraella communa, the ragweed leaf beetle, has successfully landed in Europe: Fortunate coincidence or threat? Weed Res., 2014, 54(2), 109-119.
[http://dx.doi.org/10.1111/wre.12072]
[106]
Fukano, Y.; Nakayama, S. An experimental test of trade-offs associated with the adaptation to alternate host plants in the introduced her-bivorous beetle, Ophraella communa. J. Insect Behav., 2018, 31(5), 490-502.
[http://dx.doi.org/10.1007/s10905-018-9692-y]
[107]
Zhou, Z.S.; Chen, H.S.; Zheng, X.W.; Guo, J.Y.; Guo, W.; Li, M.; Luo, M.; Wan, F.H. Control of the invasive weed Ambrosia artemisiifolia with Ophraella communa and Epiblema strenuana. Biocontrol Sci. Technol., 2014, 24(8), 950-964.
[http://dx.doi.org/10.1080/09583157.2014.897305]
[108]
Bonini, M.; Šikoparija, B.; Prentović, M.; Cislaghi, G.; Colombo, P.; Testoni, C.; Grewling, L.; Lommen, S.T.E.; Müller-Schärer, H.; Smith, M. Is the recent decrease in airborne Ambrosia pollen in the Milan area due to the accidental introduction of the ragweed leaf beetle Ophraella communa? Aerobiologia, 2015, 31(4), 499-513.
[http://dx.doi.org/10.1007/s10453-015-9380-8]
[109]
Schaffner, U.; Steinbach, S.; Sun, Y.; Skjøth, C.A.; de Weger, L.A.; Lommen, S.T.; Augustinus, B.A.; Bonini, M.; Karrer, G.; Šikoparija, B.; Thibaudon, M.; Müller-Schärer, H. Biological weed control to relieve millions from Ambrosia allergies in Europe. Nat. Commun., 2020, 11(1), 1745.
[http://dx.doi.org/10.1038/s41467-020-15586-1] [PMID: 32317698]
[110]
Augustinus, B.A.; Gentili, R.; Horvath, D.; Naderi, R.; Sun, Y.; Tournet, A.M.T.E.; Schaffner, U.; Müller-Schärer, H. Assessing the risks of non-target feeding by the accidentally introduced ragweed leaf beetle, Ophraella communa, to native European plant species. Biol. Control, 2020, 150, 104356.
[http://dx.doi.org/10.1016/j.biocontrol.2020.104356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy