Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Computational Investigation of Ligand Binding of Flavonoids in Cytochrome P450 Receptors

Author(s): Chiemela S. Odoemelam, Elena Hunter, Zeeshan Ahmad, Caroline Lynn Kamerlin, Samuel White and Philippe B. Wilson*

Volume 28, Issue 45, 2022

Published on: 14 December, 2022

Page: [3637 - 3648] Pages: 12

DOI: 10.2174/1381612829666221121151713

Price: $65

Abstract

Aim: The cytochrome P450 enzymes play a significant role in regulating cellular and physiological processes by activating endogenous compounds. They also play an essential role in the detoxification process of xenobiotics. Flavonoids belong to a class of polyphenols found in food, such as vegetables, red wine, beer, and fruits, which modulate biological functions in the body.

Methods: The inhibition of CYP1A1 and CYP1B1 using nutritional sources has been reported as a strategy for cancer prevention. This study investigated the interactions of selected flavonoids binding to the cytochrome P450 enzymes (CYP1A1 and CYP1B1) and their ADMET properties in silico. From docking studies, our findings showed flavonoids, isorhamnetin and pedalitin, to have the strongest binding energies in the crystal structures 6DWM and 6IQ5.

Results: The amino acid residues Asp 313 and Phe 224 in 6DWM interacted with all the ligands investigated, and Ala 330 in 6IQ5 interacted with all the ligands examined. The ligands did not violate any drug-likeness parameters.

Conclusion: These data suggest roles for isorhamnetin and pedalitin as potential precursors for natural product- derived therapies.

« Previous
[1]
Urban P, Lautier T, Pompon D, Truan G. Ligand access channels in cytochrome P450 enzymes: A review. Int J Mol Sci 2018; 19(6): 1617.
[http://dx.doi.org/10.3390/ijms19061617] [PMID: 29848998]
[2]
Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: A review. Curr Drug Targets 2018; 19(1): 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[3]
Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem 2011; 19(9): 2842-9.
[http://dx.doi.org/10.1016/j.bmc.2011.03.042] [PMID: 21482471]
[4]
Zhang H, Li L, Xu Y. CYP1B1 polymorphisms and susceptibility to prostate cancer: A meta-analysis. PLoS One 2013; 8(7): e68634.
[http://dx.doi.org/10.1371/journal.pone.0068634] [PMID: 23861929]
[5]
Min L, Tang J, Tong A, et al. Cytochrome P450 1B1 Leu432val gene polymorphisms in the risks of benign uterine diseases: A systemic review and meta-analysis. Int J Clin Exp Med 2017; 10: 8780-7.
[6]
Wongpratate M, Ishida W, Phuthong S, Natphopsuk S, Ishida T. Genetic polymorphisms of the human cytochrome P450 1A1 (CYP1A1) and cervical cancer susceptibility among Northeast Thai women. Asian Pac J Cancer Prev 2020; 21(1): 243-8.
[http://dx.doi.org/10.31557/APJCP.2020.21.1.243] [PMID: 31983191]
[7]
Santes-Palacios R, Marroquín-Pérez AL, Hernández-Ojeda SL, Camacho-Carranza R, Govezensky T, Espinosa-Aguirre JJ. Human CYP1A1 inhibition by flavonoids. Toxicol In Vitro 2020; 62: 104681.
[http://dx.doi.org/10.1016/j.tiv.2019.104681] [PMID: 31655123]
[8]
Zhai S, Dai R, Friedman FK, Vestal RE. Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab Dispos 1998; 26(10): 989-92.
[PMID: 9763404]
[9]
Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: Wider roles in cancer progression and prevention. BMC Cancer 2009; 9(1): 187.
[http://dx.doi.org/10.1186/1471-2407-9-187] [PMID: 19531241]
[10]
Dong J, Wang NN, Yao ZJ, et al. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 2018; 10(1): 29-9.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[11]
van de Waterbeemd H, Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat Rev Drug Discov 2003; 2(3): 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[12]
Bart AG, Scott EE. Structures of human cytochrome P450 1A1 with bergamottin and erlotinib reveal active-site modifications for binding of diverse ligands. J Biol Chem 2018; 293(50): 19201-10.
[http://dx.doi.org/10.1074/jbc.RA118.005588] [PMID: 30254074]
[13]
Kubo M, Yamamoto K, Itoh T. Design and synthesis of selective CYP1B1 inhibitor via dearomatization of α-naphthoflavone. Bioorg Med Chem 2019; 27(2): 285-304.
[http://dx.doi.org/10.1016/j.bmc.2018.11.045] [PMID: 30553624]
[14]
Briguglio M, Hrelia S, Malaguti M, et al. Food bioactive compounds and their interference in drug pharmacokinetic/pharmacodynamic profiles. Pharmaceutics 2018; 10(4): 277.
[http://dx.doi.org/10.3390/pharmaceutics10040277] [PMID: 30558213]
[15]
Sergent T, Dupont I, Van Der Heiden E, et al. CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal caco-2 cells. Toxicol Lett 2009; 191(2-3): 216-22.
[http://dx.doi.org/10.1016/j.toxlet.2009.09.002] [PMID: 19766177]
[16]
Takemura H, Itoh T, Yamamoto K, Sakakibara H, Shimoi K. Selective inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorg Med Chem 2010; 18(17): 6310-5.
[http://dx.doi.org/10.1016/j.bmc.2010.07.020] [PMID: 20696580]
[17]
Androutsopoulos V, Arroo RRJ, Hall JF, Surichan S, Potter GA. Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Res 2008; 10(3): R39.
[http://dx.doi.org/10.1186/bcr2090] [PMID: 18454852]
[18]
Patel DK. Biological potential and therapeutic benefit of chrysosplenetin: An applications of polymethoxylated flavonoid in medicine from natural sources. Pharmacol Res Mod Chin Med 2022; 4: 100155.
[http://dx.doi.org/10.1016/j.prmcm.2022.100155]
[19]
Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG. Lead finder: An approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J Chem Inf Model 2008; 48(12): 2371-85.
[http://dx.doi.org/10.1021/ci800166p] [PMID: 19007114]
[20]
Novikov FN, Stroylov VS, Zeifman AA, Stroganov OV, Kulkov V, Chilov GG. Lead Finder docking and virtual screening evaluation with Astex and DUD test sets. J Comput Aided Mol Des 2012; 26(6): 725-35.
[http://dx.doi.org/10.1007/s10822-012-9549-y] [PMID: 22569592]
[21]
Walsh AA, Szklarz GD, Scott EE. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J Biol Chem 2013; 288(18): 12932-43.
[http://dx.doi.org/10.1074/jbc.M113.452953] [PMID: 23508959]
[22]
Dutkiewicz Z, Mikstacka R. Structure-based drug design for cytochrome P450 family 1 inhibitors. Bioinorg Chem Appl 2018; 2018: 1-21.
[http://dx.doi.org/10.1155/2018/3924608] [PMID: 30147715]
[23]
Mikstacka R, Dutkiewicz Z. New perspectives of CYP1B1 inhibitors in the light of molecular studies. Processes 2021; 9(5): 817.
[http://dx.doi.org/10.3390/pr9050817]
[24]
Juvonen RO, Ahinko M, Jokinen EM, Huuskonen J, Raunio H, Pentikäinen OT. Substrate selectivity of coumarin derivatives by human CYP1 enzymes: In vitro enzyme kinetics and in silico modeling. ACS Omega 2021; 6(17): 11286-96.
[http://dx.doi.org/10.1021/acsomega.1c00123] [PMID: 34056284]
[25]
Lee JY, Cho H, Thangapandian S, et al. Adaptable small ligand of CYP1 enzymes for use in understanding the structural features determining isoform selectivity. ACS Med Chem Lett 2018; 9(12): 1247-52.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00409] [PMID: 30613334]
[26]
Raju B, Narendra G, Verma H, et al. Machine learning enabled structure-based drug repurposing approach to identify potential CYP1B1 inhibitors. ACS Omega 2022; 7(36): 31999-2013.
[http://dx.doi.org/10.1021/acsomega.2c02983] [PMID: 36120033]
[27]
McGraw J. CYP450 and Ethnicity. In: Padmanabhan S, Ed. Handbook of Pharmacogenomics and Stratified Medicine. San Diego: Academic Press 2014; pp. 323-40.
[http://dx.doi.org/10.1016/B978-0-12-386882-4.00016-5]
[28]
Vishwanath Gaitonde PKAT, Ed. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. Drug Discovery and Development - New Advances IntechOpen. 2019.
[29]
Cresset® Flare, 2.0. Litlington, Cambridgeshire 2019.
[30]
Sehgal S, Tahir A, Shafique S, Hassan M, Rashid S. Molecular modeling and docking analysis of CYP1A1 associated with head and neck cancer to explore its binding regions. Theor Comput Sci 2014; 1
[31]
Santes-Palacios R, Ornelas-Ayala D, Cabañas N, et al. Regulation of human cytochrome P4501A1 (hCYP1A1): A plausible target for chemoprevention? BioMed Res Int 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/5341081] [PMID: 28105425]
[32]
Scotti L, Bezerra Mendonça Junior FJ, Magalhaes Moreira DR, da Silva MS, Pitta IR, Scotti MT. SAR, QSAR and docking of anticancer flavonoids and variants: a review. Curr Top Med Chem 2012; 12(24): 2785-809.
[http://dx.doi.org/10.2174/1568026611212240007] [PMID: 23368103]
[33]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[34]
Teague SJ, Davis AM, Leeson PD, Oprea T. The design of leadlike combinatorial libraries. Angew Chem Int Ed 1999; 38(24): 3743-8.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U] [PMID: 10649345]
[35]
Guan L, Yang H, Cai Y, et al. ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm 2019; 10(1): 148-57.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[36]
Kumar SA, Bhaskar BL. Computational and spectral studies of 3,3′-(propane-1,3-diyl)bis(7,8-dimethoxy-1,3,4,5-tetrahydro-2H- benzo[d]azepin-2-one). Heliyon 2019; 5(9): e02420.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02420] [PMID: 31687545]
[37]
Cournia Z, Allen B, Sherman W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J Chem Inf Model 2017; 57(12): 2911-37.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy