Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Benzothiazole Clubbed Imidazolone Derivatives: Synthesis, Molecular Docking, DFT Studies, and Antimicrobial Studies

Author(s): Nisheeth Desai*, Abhay Maheta, Aratiba Jethawa, Iqrar Ahmad, Harun Patel and Bharti Dave

Volume 19, Issue 2, 2023

Published on: 06 January, 2023

Page: [123 - 136] Pages: 14

DOI: 10.2174/1573409919666221121115556

Price: $65

Abstract

Aim: This study aims to synthesize antimicrobial agents and their molecular docking, and DFT studies of benzothiazole-imidazolone scaffolds.

Background: Benzothiazole and imidazolone analogues are of interest due to their potential activity against microbial infections. In search of suitable antimicrobial compounds, we report here the synthesis, characterization, and biological activities of benzothiazole and imidazolone analogues (4a-l).

Objective: The benzothiazole clubbed imidazolone motifs were synthesized, characterized, and screened for their antimicrobial activity. Molecular docking was carried out for the development of antimicrobial agents based on the results of biological activity obtained.

Methods: We have synthesized a new series of benzothiazole-clubbed imidazolone hybrids by using multi-step reactions in the search for antimicrobial agents (4a-l). The structures were determined by 1H NMR, 13C NMR, IR, and mass spectroscopy techniques. Moreover, synthesized compounds were evaluated for their antimicrobial activity by using a Serial Broth Dilution method. In addition, molecular electrostatic potential, geometric optimization, and molecular reactivity analyses (HOMO-LUMO) of 4c, which is one of the compounds with the highest antibacterial activity, were performed.

Results: The in vitro antimicrobial activity was evaluated against pathogenic strains. Among them, compounds 4c showed the most potent biological activity against Gram-negative bacteria, E. coli with MIC values of 50 μg/mL, and compound 4c active against A. clavatus with MIC values of 100 μg/mL. Active compound 4c HUMO-LUMO energies, molecular electrostatic potential analysis, and geometric optimization parameters were calculated with a 6-31G ** base set using DFT/B3LYP theory, and the results were displayed. Molecular docking studies were performed on E. coli DNA Gyrase B to understand the binding interaction of compound 4c, and it was observed that compound 4c interacted with Arg76 amino acid of the active site through hydrophobic interaction.

Conclusion: Benzothiazole-clubbed imidazolone hybrids (4a-l) indicated promising antimicrobial activity. Among them, compounds 4b (MIC=50 μg/mL C. albicans), 4c (MIC=50 μg/mL, E. coli), 4e (MIC= 100 μg/mL, A. niger), and 4g (MIC= 50 μg/mL, S. pyogenes) with electronwithdrawing bromo, chloro, and fluoro group at the para position of the phenyl ring on benzothiazole-imidazolone hybrids indicated remarkable potency compared to the standard drug. The geometric optimization, molecular reactivity, and MESP analyses of 4c were calculated with the B3LYP/6-31G ** base set and ΔE = ELUMO-EHOMO, which was found to be - 0.12096 eV. In addition, the binding affinity scores correlated well with the in vitro antimicrobial activity (4c), while their binding modes proposed the involvement of steric, electrostatic, and hydrogen- bonding interactions with the active site.

Graphical Abstract

[1]
Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature, 2004, 430(6996), 242-249.
[http://dx.doi.org/10.1038/nature02759] [PMID: 15241422]
[2]
Trapani, A.; Catalano, A.; Carocci, A.; Carrieri, A.; Mercurio, A.; Rosato, A.; Mandracchia, D.; Tripodo, G.; Schiavone, B.I.P.; Franchini, C.; Mesto, E.; Schingaro, E.; Corbo, F. Effect of methyl-β-cyclodextrin on the antimicrobial activity of a new series of poorly water-soluble benzothiazoles. Carbohydr. Polym., 2019, 207, 720-728.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.016] [PMID: 30600058]
[3]
Lin, S.; Koh, J.J.; Aung, T.T.; Sin, W.L.W.; Lim, F.; Wang, L.; Lakshminarayanan, R.; Zhou, L.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Semisynthetic flavone-derived antimicrobials with therapeutic potential against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Chem., 2017, 60(14), 6152-6165.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00380] [PMID: 28636355]
[4]
Cui, S.F.; Addla, D.; Zhou, C.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J. Med. Chem., 2016, 59(10), 4488-4510.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01678] [PMID: 27115717]
[5]
Doshi, H.; Thakkar, S.; Khirsariya, P.; Thakur, M.C.; Ray, A. 6-Tosyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide analogues: synthesis, characterization, MO calculation, and antibacterial activity. Appl. Biochem. Biotechnol., 2015, 175(3), 1700-1709.
[http://dx.doi.org/10.1007/s12010-014-1399-8] [PMID: 25422060]
[6]
Chugunova, E.; Boga, C.; Sazykin, I.; Cino, S.; Micheletti, G.; Mazzanti, A.; Sazykina, M.; Burilov, A.; Khmelevtsova, L.; Kostina, N. Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 93, 349-359.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.023] [PMID: 25707015]
[7]
Aouad, M.R.; Almehmadi, M.A.; Rezki, N.; Al-blewi, F.F.; Messali, M.; Ali, I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct., 2019, 1188, 153-164.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.005]
[8]
Tariq, S.; Kamboj, P.; Amir, M. Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch. Pharm., 2018, 352(1), 1800170.
[http://dx.doi.org/10.1002/ardp.201800170] [PMID: 30488989]
[9]
Shafi, S.; Mahboob Alam, M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bisheterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 2012, 49, 324-333.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[10]
Özkay, Ü.D.; Can, Ö.D.; Özkay, Y.; Öztürk, Y. Effect of benzothiazole/piperazine derivatives on intracerebroventricular streptozotocin-induced cognitive deficits. Pharmacol. Rep., 2012, 64(4), 834-847.
[http://dx.doi.org/10.1016/S1734-1140(12)70878-2] [PMID: 23087135]
[11]
Maddili, S.K.; Li, Z.Z.; Kannekanti, V.K.; Bheemanaboina, R.R.Y.; Tuniki, B.; Tangadanchu, V.K.R.; Zhou, C.H. Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg. Med. Chem. Lett., 2018, 28(14), 2426-2431.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.016] [PMID: 29929884]
[12]
Mariappan, G.; Prabhat, P.; Sutharson, L.; Banerjee, J.; Patangia, U.; Nath, S. Synthesis and antidiabetic evaluation of benzothiazole derivatives. J. Korean Chem. Soc., 2012, 56(2), 251-256.
[http://dx.doi.org/10.5012/jkcs.2012.56.2.251]
[13]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[14]
Iaroshenko, V.O.; Gevorgyan, A.; Mkrtchyan, S.; Arakelyan, K.; Grigoryan, T.; Yedoyan, J.; Villinger, A.; Langer, P. Transition-metal-catalyzed arylation of nitroimidazoles and further transformations of manipulable nitro group. J. Org. Chem., 2015, 80(4), 2103-2119.
[http://dx.doi.org/10.1021/jo5025927] [PMID: 25614963]
[15]
Li, Z.Z.; Maddili, S.K.; Tangadanchu, V.K.R.; Bheemanaboina, R.R.Y.; Lin, J.M.; Yang, R.G. Progress in medicinal chemistry of nitroimidazole heterocycle. Sci. China Chem., 2019, 49(2), 230-255.
[http://dx.doi.org/10.1360/N032018-00098]
[16]
Farag, A.M.; Mayhoub, A.S.; Barakat, S.E.; Bayomi, A.H. Synthesis of new N-phenylpyrazole derivatives with potent antimicrobial activity. Bioorg. Med. Chem., 2008, 16(8), 4569-4578.
[http://dx.doi.org/10.1016/j.bmc.2008.02.043] [PMID: 18313934]
[17]
Desai, N.C.; Wadekar, K.R.; Pandit, U.P.; Mehta, H.K.; Jadeja, D.J.; Pandya, M. Design, synthesis, biological evaluation and in silico docking studies of some novel imidazolone derivatives as potent antimicrobial containing fluorine agents. Anal. Chem. Lett., 2021, 11(4), 469-496.
[http://dx.doi.org/10.1080/22297928.2021.1944310]
[18]
Pandey, J.; Tiwari, V.K.; Verma, S.S.; Chaturvedi, V.; Bhatnagar, S.; Sinha, S.; Gaikwad, A.N.; Tripathi, R.P. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem., 2009, 44(8), 3350-3355.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.013] [PMID: 19272678]
[19]
Ganguly, S.; Vithlani, V.V.; Kumar Kesharwani, A.N.U.P.; Kuhu, R.; Baskar, L.; Mitramazumder, P.; Sharon, A.; Dev, A. Sinteza, antibakterijsko i potencijalno anti-HIV djelovanje nekoliko novih analoga imidazola. Acta Pharm., 2011, 61(2), 187-201.
[http://dx.doi.org/10.2478/v10007-011-0018-2] [PMID: 21684846]
[20]
Meenakshisundaram, S.; Manickam, M.; Pillaiyar, T. Exploration of imidazole and imidazopyridine dimers as anticancer agents: Design, synthesis, and structure–activity relationship study. Arch. Pharm., 2019, 352(12), 1900011.
[http://dx.doi.org/10.1002/ardp.201900011] [PMID: 31596021]
[21]
Steel, H.C.; Tintinger, G.R.; Anderson, R. Comparison of the anti-inflammatory activities of imidazole antimycotics in relation to molecular structure. Chem. Biol. Drug Des., 2008, 72(3), 225-228.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00694.x] [PMID: 18924285]
[22]
Wen, S.Q.; Jeyakkumar, P.; Avula, S.R.; Zhang, L.; Zhou, C.H. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg. Med. Chem. Lett., 2016, 26(12), 2768-2773.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.070] [PMID: 27156777]
[23]
Desai, N.C.; Vaghani, H.V.; Jethawa, A.M.; Khedkar, V.M. In silico molecular docking studies of oxadiazole and pyrimidine bearing heterocyclic compounds as potential antimicrobial agents. Arch. Pharm., 2021, 354(10), 2100134.
[http://dx.doi.org/10.1002/ardp.202100134] [PMID: 34169569]
[24]
Siddiqui, S.A.; Bhusare, S.R.; Jarikote, D.V.; Pawar, R.P.; Vibhute, Y.B. New novel synthesis and antibacterial activity of 1-(substituted phenyl)-2-phenyl-4-(3′-halo, 4′-hydroxy 5′-methoxy benzylidene)-imidazole-5-ones. Bull. Korean Chem. Soc., 2001, 22(9), 1033-1036.
[25]
Chowdhury, S.; Bhattacharyya, K.G. Use of Cu(II)-incorporated zeolite Y for decolourization of dyes in water: A case study with aqueous methylene blue and Congo red. SN Applied Sciences, 2019, 1(1), 87.
[http://dx.doi.org/10.1007/s42452-018-0094-8]
[26]
Bharadwaj, K.K.; Ahmad, I.; Pati, S.; Ghosh, A.; Sarkar, T.; Rabha, B.; Patel, H.; Baishya, D.; Edinur, H.A.; Abdul Kari, Z.; Ahmad Mohd Zain, M.R.; Wan Rosli, W.I. Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation. Front. Nutr., 2022, 9, 889276.
[http://dx.doi.org/10.3389/fnut.2022.889276] [PMID: 35529456]
[27]
Chaudhari, B.; Patel, H.; Thakar, S.; Ahmad, I.; Bansode, D. Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacol., 2022, 10(1), 10.
[http://dx.doi.org/10.1007/s40203-022-00125-1] [PMID: 35791431]
[28]
Ahmad, I.; Pawara, R.H.; Girase, R.T.; Pathan, A.Y.; Jagatap, V.R.; Desai, N.; Ayipo, Y.O.; Surana, S.J.; Patel, H. Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega, 2022, 7(25), 21820-21844.
[http://dx.doi.org/10.1021/acsomega.2c01981] [PMID: 35785272]
[29]
Haroun, M.; Tratrat, C.; Kositzi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[30]
Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem., 2020, 63(15), 7923-7956.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[31]
Abdelgawad, M.A.; Oh, J.M.; Parambi, D.G.T.; Kumar, S.; Musa, A.; Ghoneim, M.M.; Nayl, A.A.; El-Ghorab, A.H.; Ahmad, I.; Patel, H.; Kim, H.; Mathew, B. Development of bromo and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson’s disease. J. Mol. Struct., 2022, 1266, 133545.
[http://dx.doi.org/10.1016/j.molstruc.2022.133545]
[32]
Farhan, M.M.; Guma, M.A.; Rabeea, M.A.; Ahmad, I.; Patel, H. Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. J. Mol. Struct., 2022, 1269, 133781.
[http://dx.doi.org/10.1016/j.molstruc.2022.133781]
[33]
Ayipo, Y.O.; Alananzeh, W.A.; Ahmad, I.; Patel, H.; Mordi, M.N. Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. J. Biomol. Struct. Dyn., 2022, 1-17.
[http://dx.doi.org/10.1080/07391102.2022.2104376] [PMID: 35881145]
[34]
Ahmad, I.; Pawara, R.; Patel, H. In silico toxicity investigation of Methaqualone’s conjunctival, retinal, and gastrointestinal hemorrhage by molecular modelling approach. Mol. Simul., 2022, 1-11.
[http://dx.doi.org/10.1080/08927022.2022.2113412]
[35]
Tople, M.S.; Patel, N.B.; Patel, P.P.; Purohit, A.C.; Ahmad, I.; Patel, H. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-Chloroquinoline based Schiff-bases. J. Mol. Struct., 2022, 134016.
[http://dx.doi.org/10.1016/j.molstruc.2022.134016]
[36]
Girase, R.; Ahmad, I.; Pawara, R.; Patel, H. Optimizing cardio, hepato and phospholipidosis toxicity of the Bedaquiline by chemoinformatics and molecular modelling approach. SAR QSAR Environ. Res., 2022, 33(3), 215-235.
[http://dx.doi.org/10.1080/1062936X.2022.2041724] [PMID: 35225110]
[37]
Ayipo, Y.O.; Ahmad, I.; Najib, Y.S.; Sheu, S.K.; Patel, H.; Mordi, M.N. Molecular modelling and structure-activity relationship of a natural derivative of o -hydroxybenzoate as a potent inhibitor of dual NSP3 and NSP12 of SARS-CoV-2: in silico study. J. Biomol. Struct. Dyn., 2022, 1-19.
[http://dx.doi.org/10.1080/07391102.2022.2026818] [PMID: 35037841]
[38]
Desai, N.C.; Maheta, A.S.; Jethawa, A.M.; Pandit, U.P.; Ahmad, I.; Patel, H. Zeolite (Y‐H)‐based green synthesis, antimicrobial activity, and molecular docking studies of imidazole bearing oxydibenzene hybrid molecules. J. Heterocycl. Chem., 2022, 59(5), 879-889.
[http://dx.doi.org/10.1002/jhet.4427]
[39]
Patel, H.; Ugale, V.; Ingale, A.; Bari, S. Synthesis and antimicrobial evaluation of pyrazo-thiazoles. Lett. Drug Des. Discov., 2012, 9(9), 840-847.
[http://dx.doi.org/10.2174/157018012803307950]
[40]
Zrieq, R.; Ahmad, I.; Snoussi, M.; Noumi, E.; Iriti, M.; Algahtani, F.D.; Patel, H.; Saeed, M.; Tasleem, M.; Sulaiman, S.; Aouadi, K.; Kadri, A. Tomatidine and Patchouli alcohol as inhibitors of SARS-CoV-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations. Int. J. Mol. Sci., 2021, 22(19), 10693.
[http://dx.doi.org/10.3390/ijms221910693] [PMID: 34639036]
[41]
Ghosh, S.; Das, S.; Ahmad, I.; Patel, H. In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 Mpro. J. Indian Chem. Soc., 2021, 98(12), 100272.
[http://dx.doi.org/10.1016/j.jics.2021.100272]
[42]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Sen Gupta, P.S.; Yadav, M.; Singh, V.K.; Singh, A.; Rana, M.K.; Gupta, S.K.; Schols, D.; Singh, R.K. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput. Biol. Chem., 2020, 89, 107400.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107400] [PMID: 33068917]
[43]
Milanović, Ž.B.; Marković, Z.S.; Dimić, D.S.; Klisurić, O.R.; Radojević, I.D.; Šeklić, D.S.; Živanović, M.N.; Marković, J.D.; Radulović, M.; Avdović, E.H. Synthesis, structural characterization, biological activity and molecular docking study of 4,7-dihydroxycoumarin modified by aminophenol derivatives. C. R. Chim., 2021, 24(2), 215-232.
[http://dx.doi.org/10.5802/crchim.68]
[44]
Milanović, Ž.B.; Dimić, D.S.; Avdović, E.H.; Milenković, D.A.; Marković, J.D.; Klisurić, O.R.; Trifunović, S.R.; Marković, Z.S. Synthesis and comprehensive spectroscopic (X-ray, NMR, FTIR, UV–Vis), quantum chemical and molecular docking investigation of 3-acetyl-4 hydroxy 2-oxo-2H-chromen-7-yl acetate. J. Mol. Struct., 2021, 1225, 129256.
[http://dx.doi.org/10.1016/j.molstruc.2020.129256]
[45]
Mary, Y.S.; Yalcin, G.; Mary, Y.S.; Resmi, K.S.; Thomas, R.; Önkol, T.; Kasap, E.N.; Yildiz, I. Spectroscopic, quantum mechanical studies, ligand protein interactions and photovoltaic efficiency modeling of some bioactive benzothiazolinone acetamide analogs. Chem. Pap., 2020, 74(6), 1957-1964.
[http://dx.doi.org/10.1007/s11696-019-01047-7]
[46]
Pawara, R.; Ahmad, I.; Nayak, D.; Belamkar, S.; Surana, S.; Kundu, C.N.; Patil, C.; Patel, H. Design and synthesis of the novel, selective WZ4002 analogue as EGFR-L858R/T790M tyrosine kinase inhibitors for targeted drug therapy in non-small-cell lung cancer (NSCLC). J. Mol. Struct., 2022, 1254, 132313.
[http://dx.doi.org/10.1016/j.molstruc.2021.132313]
[47]
Acar Çevik, U.; Celik, I.; Işık, A.; Ahmad, I.; Patel, H.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. J. Biomol. Struct. Dyn., 2022, 1-15.
[http://dx.doi.org/10.1080/07391102.2022.2025906] [PMID: 35037830]
[48]
Ruiz, J. Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother., 2003, 51(5), 1109-1117.
[http://dx.doi.org/10.1093/jac/dkg222] [PMID: 12697644]
[49]
Gellert, M.; Mizuuchi, K.; O’Dea, M.H.; Itoh, T.; Tomizawa, J.I. Nalidixic acid resistance: A second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. U.S.A., 1977, 74(11), 4772-4776.
[http://dx.doi.org/10.1073/pnas.74.11.4772] [PMID: 337300]
[50]
Sugino, A.; Peebles, C.L.; Kreuzer, K.N.; Cozzarelli, N.R. Mechanism of action of nalidixic acid: Purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. U.S.A., 1977, 74(11), 4767-4771.
[http://dx.doi.org/10.1073/pnas.74.11.4767] [PMID: 200930]
[51]
Chen, M.; Beck, W.T. DNA topoisomerase II expression, stability, and phosphorylation in two VM-26-resistant human leukemic CEM sublines. Oncol. Res., 1995, 7(2), 103-111.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 7579726]
[52]
Sugino, A. Mechanism of action of nalidixic acid: Purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci., 1977, 74, 4767-4771.
[http://dx.doi.org/10.1073/pnas.74.11.4767] [PMID: 200930]
[53]
Ehmann, D.E.; Lahiri, S.D. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr. Opin. Pharmacol., 2014, 18, 76-83.
[http://dx.doi.org/10.1016/j.coph.2014.09.007] [PMID: 25271174]
[54]
Halford, J.C.; Cooper, G.D.; Dovey, T.M.; Ishii, Y.; Rodgers, J.; Blundell, J.E. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr. Top. Med. Chem., 2003, 3(4), 283-310.
[http://dx.doi.org/10.2174/1568026033452500]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy