Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Differential Neurobiological Markers in Phenotype-stratified Rats Modeling High or Low Vulnerability to Compulsive Behavior: A Narrative Review

Author(s): Elena Martín-González, Manuela Olmedo-Córdoba, Pilar Flores and Margarita Moreno-Montoya*

Volume 21, Issue 9, 2023

Published on: 15 May, 2023

Page: [1924 - 1933] Pages: 10

DOI: 10.2174/1570159X21666221121091454

Price: $65

Abstract

Compulsivity is a key manifestation of inhibitory control deficit and a cardinal symptom in different neuropsychopathological disorders such as obsessive-compulsive disorder, schizophrenia, addiction, and attention-deficit hyperactivity disorder. Schedule-induced polydipsia (SIP), is an animal model to study compulsivity. In this procedure, rodents develop excessive and persistent drinking behavior under different food-reinforcement schedules, that are not related to homeostatic or regulatory requirements. However, there are important individual differences that support the role of high-drinker HD rats as a compulsive phenotype, characterized in different paradigms by inhibitory response deficit, cognitive inflexibility, and resistant to extinction behavior; with significant differences in response to pharmacological challenges, and relevant neurobiological alterations in comparison with the control group, the non-compulsive low drinker LD group on SIP. The purpose of this review is to collate and update the main findings on the neurobiological bases of compulsivity using the SIP model. Specifically, we reviewed preclinical studies on SIP, that have assessed the effects of serotonergic, dopaminergic, and glutamatergic drugs; leading to the description of the neurobiological markers, such as the key role of the serotonin 5-HT2A receptor and glutamatergic signaling in a phenotype vulnerable to compulsivity as high drinker HD rats selected by SIP. The review of the main findings of HD rats on SIP helps in the characterization of the preclinical compulsive phenotype, disentangles the underlying neurobiological, and points toward genetic hallmarks concerning the vulnerability to compulsivity.

Graphical Abstract

[1]
Fineberg, N.A.; Chamberlain, S.R.; Goudriaan, A.E.; Stein, D.J.; Vanderschuren, L.J.M.J.; Gillan, C.M.; Shekar, S.; Gorwood, P.A.P.M.; Voon, V.; Morein-Zamir, S.; Denys, D.; Sahakian, B.J.; Moeller, F.G.; Robbins, T.W.; Potenza, M.N. New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr., 2014, 19(1), 69-89.
[http://dx.doi.org/10.1017/S1092852913000801] [PMID: 24512640]
[2]
Fineberg, N.A.; Menchon, J.M.; Zohar, J.; Veltman, D.J. Compulsivity—A new trans-diagnostic research domain for the Roadmap for Mental Health Research in Europe (ROAMER) and Research Domain Criteria (RDoC) initiatives. Eur. Neuropsychopharmacol., 2016, 26(5), 797-799.
[http://dx.doi.org/10.1016/j.euroneuro.2016.04.001] [PMID: 27235689]
[3]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Association: Washington, WA, USA, 2013.
[4]
WHO (2018). Global Health Observatory (GHO) Data. World Health Organization. Available from: https://www.who.int/gho/mortality_burden_disease/en/
[5]
Robbins, T.W.; Vaghi, M.M.; Banca, P. Obsessive-compulsive disorder: Puzzles and prospects. Neuron, 2019, 102(1), 27-47.
[http://dx.doi.org/10.1016/j.neuron.2019.01.046] [PMID: 30946823]
[6]
Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry, 2010, 167(7), 748-751.
[http://dx.doi.org/10.1176/appi.ajp.2010.09091379] [PMID: 20595427]
[7]
Haro, J.M.; Ayuso-Mateos, J.L.; Bitter, I.; Demotes-Mainard, J.; Leboyer, M.; Lewis, S.W.; Linszen, D.; Maj, M.; McDaid, D.; Meyer-Lindenberg, A.; Robbins, T.W.; Schumann, G.; Thornicroft, G.; Van Der Feltz-Cornelis, C.; Van Os, J.; Wahlbeck, K.; Wittchen, H.U.; Wykes, T.; Arango, C.; Bickenbach, J.; Brunn, M.; Cammarata, P.; Chevreul, K.; Evans-Lacko, S.; Finocchiaro, C.; Fiorillo, A.; Forsman, A.K.; Hazo, J.B.; Knappe, S.; Kuepper, R.; Luciano, M.; Miret, M.; Obradors-Tarragó, C.; Pagano, G.; Papp, S.; Walker-Tilley, T. ROAMER: Roadmap for mental health research in Europe. Int. J. Methods Psychiatr. Res., 2014, 23(S1), 1-14.
[http://dx.doi.org/10.1002/mpr.1406]
[8]
Falk, J.L. Production of polydipsia in normal rats by an intermittent food schedule. Science, 1961, 133(3447), 195-196.
[http://dx.doi.org/10.1126/science.133.3447.195] [PMID: 13698026]
[9]
Falk, J.L. Schedule-induced polydipsia as a function of fixed interval length. J. Exp. Anal. Behav., 1966, 9(1), 37-39.
[http://dx.doi.org/10.1901/jeab.1966.9-37] [PMID: 5903958]
[10]
Falk, J.L. The nature and determinants of adjunctive behavior. Physiol. Behav., 1971, 6(5), 577-588.
[http://dx.doi.org/10.1016/0031-9384(71)90209-5] [PMID: 5004684]
[11]
Moreno, M.; Flores, P. Schedule-induced polydipsia as a model of compulsive behavior: Neuropharmacological and neuroendocrine bases. Psychopharmacology, 2012, 219(2), 647-659.
[http://dx.doi.org/10.1007/s00213-011-2570-3] [PMID: 22113447]
[12]
de Leon, J.; Verghese, C.; Tracy, J.I.; Josiassen, R.C.; Simpson, G.M. Polydipsia and water intoxication in psychiatric patients: A review of the epidemiological literature. Biol. Psychiatry, 1994, 35(6), 408-419.
[http://dx.doi.org/10.1016/0006-3223(94)90008-6] [PMID: 8018788]
[13]
de Leon, J.; Tracy, J.; McCann, E.; McGrory, A. Polydipsia and schizophrenia in a psychiatric hospital: A replication study. Schizophr. Res., 2002, 57(2-3), 293-301.
[http://dx.doi.org/10.1016/S0920-9964(01)00292-4] [PMID: 12223261]
[14]
Dundas, B.; Harris, M.; Narasimhan, M. Psychogenic polydipsia review: Etiology, differential, and treatment. Curr. Psychiatry Rep., 2007, 9(3), 236-241.
[http://dx.doi.org/10.1007/s11920-007-0025-7] [PMID: 17521521]
[15]
Iftene, F.; Bowie, C.; Milev, R.; Hawken, E.; Talikowska-Szymczak, E.; Potopsingh, D.; Hanna, S.; Mulroy, J.; Groll, D.; Millson, R. Identification of primary polydipsia in a severe and persistent mental illness outpatient population: A prospective observational study. Psychiatry Res., 2013, 210(3), 679-683.
[http://dx.doi.org/10.1016/j.psychres.2013.04.011] [PMID: 23810384]
[16]
Devenport, L.D. Schedule-induced polydipsia in rats: Adrenocortical and hippocampal modulation. J. Comp. Physiol. Psychol., 1978, 92(4), 651-660.
[http://dx.doi.org/10.1037/h0077499] [PMID: 690288]
[17]
Mittleman, G.; Whishaw, I.Q.; Jones, G.H.; Koch, M.; Robbins, T.W. Cortical, hippocampal, and striatal mediation of schedule-induced behaviors. Behav. Neurosci., 1990, 104(3), 399-409.
[http://dx.doi.org/10.1037/0735-7044.104.3.399] [PMID: 2354035]
[18]
Mittleman, G.; Blaha, C.D.; Phillips, A.G. Pituitary-adrenal and dopaminergic modulation of schedule-induced polydipsia: Behavioral and neurochemical evidence. Behav. Neurosci., 1992, 106(2), 408-420.
[http://dx.doi.org/10.1037/0735-7044.106.2.408] [PMID: 1590958]
[19]
Robbins, T.W.; Koob, G.F. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature, 1980, 285(5764), 409-412.
[http://dx.doi.org/10.1038/285409a0] [PMID: 6104303]
[20]
Brett, L.P.; Levine, S. Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J. Comp. Physiol. Psychol., 1979, 93(5), 946-956.
[http://dx.doi.org/10.1037/h0077619] [PMID: 512102]
[21]
Jones, G.H.; Hooks, M.S.; Juncos, J.L.; Justice, J.B., Jr Effects of cocaine microinjections into the nucleus accumbens and medial prefrontal cortex on schedule-induced behaviour: Comparison with systemic cocaine administration. Psychopharmacology, 1994, 115(3), 375-382.
[http://dx.doi.org/10.1007/BF02245080] [PMID: 7871079]
[22]
López-Grancha, M.; Lopez-Crespo, G.; Sanchez-Amate, M.C.; Flores, P. Los efectos de la anfetamina administrada en el córtex prefrontal medial sobre las diferencias individuales en polidipsia inducida por programa. Rev. Int. Psicol. Ter. Psicol, 2006, 6(2), 261-272.
[23]
Moreno, M.; Cardona, D.; Gómez, M.J.; Sánchez-Santed, F.; Tobeña, A.; Fernández-Teruel, A.; Campa, L.; Suñol, C.; Escarabajal, M.D.; Torres, C.; Flores, P. Impulsivity characterization in the Roman high and low avoidance rat strains: Behavioral and neurochemical differences. Neuropsychopharmacology, 2010, 35(5), 1198-1208.
[http://dx.doi.org/10.1038/npp.2009.224] [PMID: 20090672]
[24]
Didriksen, M.; Olsen, G.M.; Christensen, A.V. Effect of clozapine upon schedule-induced polydipsia (SIP) resembles neither the actions of dopamine D1 nor D2 blockade. Psychopharmacology, 1993, 113(2), 250-256.
[http://dx.doi.org/10.1007/BF02245706] [PMID: 7855190]
[25]
Mittleman, G.; Rosner, A.L.; Schaub, C.L. Polydipsia and dopamine: Behavioral effects of dopamine D1 and D2 receptor agonists and antagonists. J. Pharmacol. Exp. Ther., 1994, 271(2), 638-650.
[PMID: 7965779]
[26]
Platt, B.; Beyer, C.E.; Schechter, L.E.; Rosenzweig-Lipson, S. Schedule-induced polydipsia: A rat model of obsessive-compulsive disorder. Curr. Protoc. Neurosci., 2008, 43(1), 27.
[http://dx.doi.org/10.1002/0471142301.ns0927s43] [PMID: 18428677]
[27]
Woods-Kettelberger, A.; Kongsamut, S.; Smith, C.P.; Winslow, J.T.; Corbett, R. Animal models with potential applications for screening compounds for the treatment of obsessive-compulsive disorder. Expert Opin. Investig. Drugs, 1997, 6(10), 1369-1381.
[http://dx.doi.org/10.1517/13543784.6.10.1369] [PMID: 15989507]
[28]
Belin-Rauscent, A.; Daniel, M-L.; Puaud, M.; Jupp, B.; Sawiak, S.; Howett, D.; McKenzie, C.; Caprioli, D.; Besson, M.; Robbins, T.W.; Everitt, B.J.; Dalley, J.W.; Belin, D. From impulses to maladaptive actions: The insula is a neurobiological gate for the development of compulsive behavior. Mol. Psychiatry, 2016, 21(4), 491-499.
[http://dx.doi.org/10.1038/mp.2015.140] [PMID: 26370145]
[29]
Escher, T.; Call, S.B.; Blaha, C.D.; Mittleman, G. Behavioral effects of aminoadamantane class NMDA receptor antagonists on schedule-induced alcohol and self-administration of water in mice. Psychopharmacology, 2006, 187(4), 424-434.
[http://dx.doi.org/10.1007/s00213-006-0465-5] [PMID: 16835770]
[30]
Escher, T.; Mittleman, G. Schedule-induced alcohol drinking: Non-selective effects of acamprosate and naltrexone. Addict. Biol., 2006, 11(1), 55-63.
[http://dx.doi.org/10.1111/j.1369-1600.2006.00004.x] [PMID: 16759337]
[31]
Fouyssac, M.; Puaud, M.; Ducret, E.; Marti-Prats, L.; Vanhille, N.; Ansquer, S.; Zhang, X.; Belin-Rauscent, A.; Giuliano, C.; Houeto, J.L.; Everitt, B.J.; Belin, D. Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur. J. Neurosci., 2021, 53(6), 1794-1808.
[http://dx.doi.org/10.1111/ejn.15087] [PMID: 33332672]
[32]
Gilpin, N.W.; Badia-Elder, N.E.; Elder, R.L.; Stewart, R.B. Schedule-induced polydipsia in lines of rats selectively bred for high and low ethanol preference. Behav. Genet., 2008, 38(5), 515-524.
[http://dx.doi.org/10.1007/s10519-008-9224-1] [PMID: 18780177]
[33]
Grant, K.A.; Leng, X.; Green, H.L.; Szeliga, K.T.; Rogers, L.S.M.; Gonzales, S.W. Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration. Alcohol. Clin. Exp. Res., 2008, 32(10), 1824-1838.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00765.x] [PMID: 18702645]
[34]
Gregory, J.G.; Hawken, E.R.; Banasikowski, T.J.; Dumont, E.C.; Beninger, R.J. A response strategy predicts acquisition of schedule-induced polydipsia in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 61, 37-43.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.012] [PMID: 25816789]
[35]
Hawken, E.R.; Beninger, R.J. The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat. Psychopharmacology, 2014, 231(9), 2001-2008.
[http://dx.doi.org/10.1007/s00213-013-3345-9] [PMID: 24241687]
[36]
Hosová, D.; Spear, L.P. Voluntary binge consumption of ethanol in a sweetened, chocolate-flavored solution by male and female adolescent sprague dawley rats. Alcohol. Clin. Exp. Res., 2017, 41(3), 541-550.
[http://dx.doi.org/10.1111/acer.13315] [PMID: 28195335]
[37]
Mittleman, G.; Brunt, C.L.; Matthews, D.B. Schedule-induced ethanol self-administration in DBA/2J and C57BL/6J mice. Alcohol. Clin. Exp. Res., 2003, 27(6), 918-925.
[http://dx.doi.org/10.1111/j.1530-0277.2003.tb04416.x] [PMID: 12824812]
[38]
Mittleman, G.; Call, S.B.; Cockroft, J.L.; Goldowitz, D.; Matthews, D.B.; Blaha, C.D. Dopamine dynamics associated with, and resulting from, schedule-induced alcohol self-administration: Analyses in dopamine transporter knockout mice. Alcohol, 2011, 45(4), 325-339.
[http://dx.doi.org/10.1016/j.alcohol.2010.12.006] [PMID: 21354763]
[39]
Navarro, S.V.; Alvarez, R.; Colomina, M.T.; Sanchez-Santed, F.; Flores, P.; Moreno, M. Behavioral biomarkers of schizophrenia in high drinker rats: A potential endophenotype of compulsive neuropsychiatric disorders. Schizophr. Bull., 2017, 43(4), 778-787.
[http://dx.doi.org/10.1093/schbul/sbw141] [PMID: 27872269]
[40]
Wayner, M.J. Craving for alcohol in the rat. Pharmacol. Biochem. Behav., 2002, 73(1), 27-43.
[http://dx.doi.org/10.1016/S0091-3057(02)00780-3] [PMID: 12076722]
[41]
Cardona, D.; López-Grancha, M.; López-Crespo, G.; Nieto-Escamez, F.; Sánchez-Santed, F.; Flores, P. Vulnerability of long-term neurotoxicity of chlorpyrifos: Effect on schedule-induced polydipsia and a delay discounting task. Psychopharmacology, 2006, 189(1), 47-57.
[http://dx.doi.org/10.1007/s00213-006-0547-4] [PMID: 17016712]
[42]
Cardona, D.; López-Crespo, G.; Sánchez-Amate, M.C.; Flores, P.; Sánchez-Santed, F. Impulsivity as long-term sequelae after chlorpyrifos intoxication: Time course and individual differences. Neurotox. Res., 2011, 19(1), 128-137.
[http://dx.doi.org/10.1007/s12640-009-9149-3] [PMID: 20087798]
[43]
Ibias, J.; Pellón, R. Schedule-induced polydipsia in the spontaneously hypertensive rat and its relation to impulsive behaviour. Behav. Brain Res., 2011, 223(1), 58-69.
[http://dx.doi.org/10.1016/j.bbr.2011.04.017] [PMID: 21540060]
[44]
Moreno, M.; Gutiérrez-Ferre, V.E.; Ruedas, L.; Campa, L.; Suñol, C.; Flores, P. Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology, 2012, 219(2), 661-672.
[http://dx.doi.org/10.1007/s00213-011-2575-y] [PMID: 22113449]
[45]
Merchán, A.; Sánchez-Kuhn, A.; Prados-Pardo, A.; Gago, B.; Sánchez-Santed, F.; Moreno, M.; Flores, P. Behavioral and biological markers for predicting compulsive-like drinking in schedule-induced polydipsia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 93, 149-160.
[http://dx.doi.org/10.1016/j.pnpbp.2019.03.016] [PMID: 30940483]
[46]
Martín-González, E. Mapping the vulnerability to compulsion by ScheduleInduced Polydipsia: neurobehavioral domains and psychopharmacological modulation. PhD Thesis, University of Almería: Almería; , 2022.
[47]
Prados-Pardo, Á.; Martín-González, E.; Mora, S.; Merchán, A.; Flores, P.; Moreno, M. Increased fear memory and glutamatergic modulation in compulsive drinker rats selected by schedule-induced polydipsia. Front. Behav. Neurosci., 2019, 13, 100.
[http://dx.doi.org/10.3389/fnbeh.2019.00100] [PMID: 31133835]
[48]
Martín-González, E.; Olmedo-Córdoba, M.; Prados-Pardo, Á.; Cruz-Garzón, D.J.; Flores, P.; Mora, S.; Moreno, M. Socioemotional deficit and HPA axis time response in high compulsive rats selected by schedule-induced polydipsia. Horm. Behav., 2022, 142, 105170.
[http://dx.doi.org/10.1016/j.yhbeh.2022.105170] [PMID: 35367739]
[49]
Woods, A.; Smith, C.; Szewczak, M.; Dunn, R.W.; Cornfeldt, M.; Corbett, R. Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: A potential model for obsessive compulsive disorder. Psychopharmacology, 1993, 112(2-3), 195-198.
[http://dx.doi.org/10.1007/BF02244910] [PMID: 7871019]
[50]
Prus, A.J.; Mooney-Leber, S.M.; Berquist, M.D., II; Pehrson, A.L.; Porter, N.P.; Porter, J.H. The antidepressant drugs fluoxetine and duloxetine produce anxiolytic-like effects in a schedule-induced polydipsia paradigm in rats. Behav. Pharmacol., 2015, 26(5), 489-494.
[http://dx.doi.org/10.1097/FBP.0000000000000159] [PMID: 26154437]
[51]
Martin, J.R.; Ballard, T.M.; Higgins, G.A. Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol. Biochem. Behav., 2002, 71(4), 615-625.
[http://dx.doi.org/10.1016/S0091-3057(01)00713-4] [PMID: 11888553]
[52]
Rodriguez, M.M.; Overshiner, C.; Leander, J.D.; Li, X.; Morrow, D.; Conway, R.G.; Nelson, D.L.; Briner, K.; Witkin, J.M. Behavioral effects of a novel benzofuranyl-piperazine serotonin-2c receptor agonist suggest a potential therapeutic application in the treatment of obsessive–compulsive disorder. Front. Psychiatry, 2017, 8, 89.
[http://dx.doi.org/10.3389/fpsyt.2017.00089] [PMID: 28588509]
[53]
Rosenzweig-Lipson, S.; Sabb, A.; Stack, G.; Mitchell, P.; Lucki, I.; Malberg, J.E.; Grauer, S.; Brennan, J.; Cryan, J.F.; Sukoff Rizzo, S.J.; Dunlop, J.; Barrett, J.E.; Marquis, K.L. Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology (Berl.), 2007, 192(2), 159-170.
[http://dx.doi.org/10.1007/s00213-007-0710-6] [PMID: 17297636]
[54]
Higgins, G.A.; Brown, M.; St John, J.; MacMillan, C.; Silenieks, L.B.; Thevarkunnel, S. Effects of 5-HT2C receptor modulation and the NA reuptake inhibitor atomoxetine in tests of compulsive and impulsive behaviour. Neuropharmacology, 2020, 170, 108064.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108064] [PMID: 32222404]
[55]
Navarro, S.V.; Gutiérrez-Ferre, V.; Flores, P.; Moreno, M. Activation of serotonin 5-HT2A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology, 2015, 232(4), 683-697.
[http://dx.doi.org/10.1007/s00213-014-3699-7] [PMID: 25155310]
[56]
Mora, S.; Merchán, A.; Vilchez, O.; Aznar, S.; Klein, A.B.; Ultved, L.; Campa, L.; Suñol, C.; Flores, P.; Moreno, M. Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology, 2018, 143, 10-19.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.004] [PMID: 30201211]
[57]
Mora, S.; Merchán, A.; Aznar, S.; Flores, P.; Moreno, M. Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav. Brain Res., 2020, 390, 112592.
[http://dx.doi.org/10.1016/j.bbr.2020.112592] [PMID: 32417273]
[58]
Prados-Pardo, Á.; Martín-González, E.; Mora, S.; Pérez-Fernández, C.; Sánchez-Salvador, L.; Martín, C.; Sánchez-Santed, F.; Moreno, M. Reduced cortical 5HTR2A gene expression in high compulsive drinker rats. Poster presented at 49th Meeting of the European Brain and Behaviour., Lausanne (Switzerland), 4-7 Sept 2021, unpublished.
[59]
Taylor, S. Molecular genetics of obsessive–compulsive disorder: A comprehensive meta-analysis of genetic association studies. Mol. Psychiatry, 2013, 18(7), 799-805.
[http://dx.doi.org/10.1038/mp.2012.76] [PMID: 22665263]
[60]
Perani, D.; Garibotto, V.; Gorini, A.; Moresco, R.M.; Henin, M.; Panzacchi, A.; Matarrese, M.; Carpinelli, A.; Bellodi, L.; Fazio, F. In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage, 2008, 42(1), 306-314.
[http://dx.doi.org/10.1016/j.neuroimage.2008.04.233] [PMID: 18511303]
[61]
Simpson, H.B.; Slifstein, M.; Bender, J., Jr; Xu, X.; Hackett, E.; Maher, M.J.; Abi-Dargham, A. Serotonin 2A receptors in obsessive-compulsive disorder: a positron emission tomography study with [11C]MDL 100907. Biol. Psychiatry, 2011, 70(9), 897-904.
[http://dx.doi.org/10.1016/j.biopsych.2011.06.023] [PMID: 21855857]
[62]
Vermeire, S.; Audenaert, K.; De Meester, R.; Vandermeulen, E.; Waelbers, T.; De Spiegeleer, B.; Eersels, J.; Dobbeleir, A.; Peremans, K. Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res. Neuroimaging, 2012, 201(1), 78-87.
[http://dx.doi.org/10.1016/j.pscychresns.2011.06.006] [PMID: 22285716]
[63]
Barlow, R.L.; Alsiö, J.; Jupp, B.; Rabinovich, R.; Shrestha, S.; Roberts, A.C.; Robbins, T.W.; Dalley, J.W. Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology, 2015, 40(7), 1619-1630.
[http://dx.doi.org/10.1038/npp.2014.335] [PMID: 25567428]
[64]
Merchán, A.; Navarro, S.V.; Klein, A.B.; Aznar, S.; Campa, L.; Suñol, C.; Moreno, M.; Flores, P. Tryptophan depletion affects compulsive behaviour in rats: Strain dependent effects and associated neuromechanisms. Psychopharmacology (Berl.), 2017, 234(8), 1223-1236.
[http://dx.doi.org/10.1007/s00213-017-4561-5] [PMID: 28280881]
[65]
O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res., 2015, 277, 32-48.
[http://dx.doi.org/10.1016/j.bbr.2014.07.027] [PMID: 25078296]
[66]
Stasi, C.; Sadalla, S.; Milani, S. The relationship between the serotonin metabolism, gut-microbiota and the gut-brain axis. Curr. Drug Metab., 2019, 20(8), 646-655.
[http://dx.doi.org/10.2174/1389200220666190725115503] [PMID: 31345143]
[67]
Merchán, A.; Pérez-Fernández, C.; López, M.J.; Moreno, J.; Moreno, M.; Sánchez-Santed, F.; Flores, P. Dietary tryptophan depletion alters the faecal bacterial community structure of compulsive drinker rats in schedule-induced polydipsia. Physiol. Behav., 2021, 233, 113356.
[http://dx.doi.org/10.1016/j.physbeh.2021.113356] [PMID: 33577871]
[68]
López-Grancha, M.; Lopez-Crespo, G.; Sanchez-Amate, M.C.; Flores, P. Individual differences in schedule-induced polydipsia and the role of gabaergic and dopaminergic systems. Psychopharmacology, 2008, 197(3), 487-498.
[http://dx.doi.org/10.1007/s00213-007-1059-6] [PMID: 18322677]
[69]
Martín-González, E.; Prados-Pardo, Á.; Mora, S.; Flores, P.; Moreno, M. Do psychoactive drugs have a therapeutic role in compulsivity? Studies on schedule-induced polydipsia. Psychopharmacology, 2018, 235(2), 419-432.
[http://dx.doi.org/10.1007/s00213-017-4819-y] [PMID: 29313138]
[70]
Íbias, J.; Miguéns, M.; Pellón, R. Effects of dopamine agents on a schedule-induced polydipsia procedure in the spontaneously hypertensive rat and in Wistar control rats. J. Psychopharmacol., 2016, 30(9), 856-866.
[http://dx.doi.org/10.1177/0269881116652598] [PMID: 27296274]
[71]
Pellón, R.; Ruíz, A.; Moreno, M.; Claro, F.; Ambrosio, E.; Flores, P. Individual differences in schedule-induced polydipsia: Neuroanatomical dopamine divergences. Behav. Brain Res., 2011, 217(1), 195-201.
[http://dx.doi.org/10.1016/j.bbr.2010.10.010] [PMID: 20974181]
[72]
Liu, Y.P.; Tung, C.S.; Lin, P.J.; Wan, F.J. Role of nitric oxide in amphetamine-induced sensitization of schedule-induced polydipsic rats. Psychopharmacology, 2011, 218(3), 599-608.
[http://dx.doi.org/10.1007/s00213-011-2354-9] [PMID: 21625906]
[73]
Sukhanov, I.; Dorotenko, A.; Dolgorukova, A.; Hoener, M.C.; Gainetdinov, R.R.; Bespalov, A.Y. Activation of trace amine-associated receptor 1 attenuates schedule-induced polydipsia in rats. Neuropharmacology, 2019, 144, 184-192.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.034] [PMID: 30366004]
[74]
Íbias, J.; Daniels, C.W.; Miguéns, M.; Pellón, R.; Sanabria, F. The effect of methylphenidate on the microstructure of schedule-induced polydipsia in an animal model of ADHD. Behav. Brain Res., 2017, 333(333), 211-217.
[http://dx.doi.org/10.1016/j.bbr.2017.06.048] [PMID: 28669538]
[75]
Marinova, Z.; Chuang, D.M.; Fineberg, N. Glutamate-modulating drugs as a potential therapeutic strategy in obsessive-compulsive disorder. Curr. Neuropharmacol., 2017, 15(7), 977-995.
[http://dx.doi.org/10.2174/1570159X15666170320104237] [PMID: 28322166]
[76]
Hawken, E.R.; Delva, N.J.; Reynolds, J.N.; Beninger, R.J. Increased schedule-induced polydipsia in the rat following subchronic treatment with MK-801. Schizophr. Res., 2011, 125(1), 93-98.
[http://dx.doi.org/10.1016/j.schres.2010.07.022] [PMID: 20719474]
[77]
Abreu, A.C.; Mora, S.; Tristán, A.I.; Martín-González, E.; Prados-Pardo, Á.; Moreno, M.; Fernández, I. NMR-based metabolomics and fatty acid profiles to unravel biomarkers in preclinical animal models of compulsive behavior. J. Proteome Res., 2022, 21(3), 612-622.
[http://dx.doi.org/10.1021/acs.jproteome.1c00857] [PMID: 35142515]
[78]
Merchán, A.; Mora, S.; Gago, B.; Rodriguez-Ortega, E.; Fernández-Teruel, A.; Puga, J.L.; Sánchez-Santed, F.; Moreno, M.; Flores, P. Excessive habit formation in schedule-induced polydipsia: Microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex. Genes Brain Behav., 2019, 18(3), e12489.
[http://dx.doi.org/10.1111/gbb.12489] [PMID: 29877027]
[79]
Íbias, J.; Soria-Molinillo, E.; Kastanauskaite, A.; Orgaz, C.; DeFelipe, J.; Pellón, R.; Miguéns, M. Schedule-induced polydipsia is associated with increased spine density in dorsolateral striatum neurons. Neuroscience, 2015, 300, 238-245.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.026] [PMID: 25988756]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy