Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Current Progress on Neuroinflammation-mediated Postoperative Cognitive Dysfunction: An Update

Author(s): Wenyong Peng*, Wei Lu, Xiaofeng Jiang, Chang Xiong, Hua Chai, Libin Cai and Zhijian Lan

Volume 23, Issue 10, 2023

Published on: 19 December, 2022

Page: [1077 - 1086] Pages: 10

DOI: 10.2174/1566524023666221118140523

Price: $65

conference banner
Abstract

Postoperative cognitive dysfunction (POCD) is a common complication of the central nervous system (CNS) in elderly patients after surgery, showing cognitive changes such as decreased learning and memory ability, impaired concentration, and even personality changes and decreased social behavior ability in severe cases. POCD may appear days or weeks after surgery and persist or even evolve into Alzheimer's disease (AD), exerting a significant impact on patients’ health. There are many risk factors for the occurrence of POCD, including age, surgical trauma, anesthesia, neurological diseases, etc. The level of circulating inflammatory markers increases with age, and elderly patients often have more risk factors for cardiovascular diseases, resulting in an increase in POCD incidence in elderly patients after stress responses such as surgical trauma and anesthesia. The current diagnostic rate of POCD is relatively low, which affects the prognosis and increases postoperative complications and mortality. The pathophysiological mechanism of POCD is still unclear, however, central nervous inflammation is thought to play a critical role in it. The current review summarizes the related studies on neuroinflammation-mediated POCD, such as the involvement of key central nervous cells such as microglia and astrocytes, proinflammatory cytokines such as TNF-α and IL-1β, inflammatory signaling pathways such as PI3K/Akt/mTOR and NF-κB. In addition, multiple predictive and diagnostic biomarkers for POCD, the risk factors, and the positive effects of anti-inflammatory therapy in the prevention and treatment of POCD have also been reviewed. The exploration of POCD pathogenesis is helpful for its early diagnosis and long-term treatment, and the intervention strategies targeting central nervous inflammation of POCD are of great significance for the prevention and treatment of POCD.

[1]
Belrose JC, Noppens RR. Anesthesiology and cognitive impairment: a narrative review of current clinical literature. BMC Anesthesiol 2019; 19(1): 241.
[http://dx.doi.org/10.1186/s12871-019-0903-7] [PMID: 31881996]
[2]
Lin X, Chen Y, Zhang P, Chen G, Zhou Y, Yu X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp Gerontol 2020; 130: 110791.
[http://dx.doi.org/10.1016/j.exger.2019.110791] [PMID: 31765741]
[3]
Biedler A, Juckenhöfel S, Larsen R, et al. Postoperative cognition disorders in elderly patients. The results of the “International Study of Postoperative Cognitive Dysfunction” ISPOCD 1). Anaesthesist 1999; 48(12): 884-95.
[http://dx.doi.org/10.1007/s001010050802] [PMID: 10672352]
[4]
Abildstrom H, Rasmussen LS, Rentowl P, et al. Cognitive dysfunction 1-2 years after non-cardiac surgery in the elderly. Acta Anaesthesiol Scand 2000; 44(10): 1246-51.
[http://dx.doi.org/10.1034/j.1399-6576.2000.441010.x] [PMID: 11065205]
[5]
Kotekar N, Shenkar A, Nagaraj R. Postoperative cognitive dysfunction – current preventive strategies. Clin Interv Aging 2018; 13: 2267-73.
[http://dx.doi.org/10.2147/CIA.S133896] [PMID: 30519008]
[6]
Kapila AK, Watts HR, Wang T, Ma D. The impact of surgery and anesthesia on post-operative cognitive decline and Alz-heimer’s disease development: biomarkers and preventive strategies. J Alzheimers Dis 2014; 41(1): 1-13.
[http://dx.doi.org/10.3233/JAD-132258] [PMID: 24577482]
[7]
Safavynia SA, Goldstein PA. The role of neuroinflammation in postoperative cognitive dysfunction: moving from hypothesis to treatment. Front Psychiatry 2019; 9: 752.
[http://dx.doi.org/10.3389/fpsyt.2018.00752] [PMID: 30705643]
[8]
Alam A, Hana Z, Jin Z, Suen KC, Ma D. Surgery, neuroinflammation and cognitive impairment. EBioMedicine 2018; 37: 547-56.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.021] [PMID: 30348620]
[9]
Granger KT, Barnett JH. Postoperative cognitive dysfunction: an acute approach for the development of novel treatments for neuroinflammation. Drug Discov Today 2021; 26(5): 1111-4.
[http://dx.doi.org/10.1016/j.drudis.2021.01.019] [PMID: 33497828]
[10]
Mundt S, Greter M, Flügel A, Becher B. The CNS immune landscape from the viewpoint of a T cell. Trends Neurosci 2019; 42(10): 667-79.
[http://dx.doi.org/10.1016/j.tins.2019.07.008] [PMID: 31474310]
[11]
Yang J, Dong HQ, Liu YH, et al. Laparotomy-induced peripheral inflammation activates NR2B receptors on the brain mast cells and results in neuroinflammation in a vagus nerve-dependent manner. Front Cell Neurosci 2022; 16: 771156.
[http://dx.doi.org/10.3389/fncel.2022.771156] [PMID: 35221919]
[12]
Friese MB, Nathan M, Culley DJ, Crosby G. Isoflurane anesthesia impairs the expression of immune neuromodulators in the hippocampus of aged mice. PLoS One 2018; 13(12): e0209283.
[http://dx.doi.org/10.1371/journal.pone.0209283] [PMID: 30571762]
[13]
Zhao J, Bi W, Xiao S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019; 9(1): 5790.
[http://dx.doi.org/10.1038/s41598-019-42286-8] [PMID: 30962497]
[14]
Saxena S, Maze M. Impact on the brain of the inflammatory response to surgery. Presse Med 2018; 47(4): e73-81.
[http://dx.doi.org/10.1016/j.lpm.2018.03.011] [PMID: 29656802]
[15]
Bortolotti P, Faure E, Kipnis E. Inflammasomes in tissue damages and immune disorders after trauma. Front Immunol 2018; 9: 1900.
[http://dx.doi.org/10.3389/fimmu.2018.01900] [PMID: 30166988]
[16]
Maier SF, Goehler L, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 1998; 840(1): 289-300.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09569.x] [PMID: 9629257]
[17]
Liu Y, Yin Y. Emerging roles of immune cells in postoperative cognitive dysfunction. Mediators Inflamm 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/6215350] [PMID: 29670465]
[18]
Becher B, Prat A, Antel JP. Brain-immune connection: Immuno-regulatory properties of CNS-resident cells. Glia 2000; 29(4): 293-304.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000215)29:4<293:AID-GLIA1>3.0.CO;2-A] [PMID: 10652440]
[19]
Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010; 58(3): 253-63.
[PMID: 19705460]
[20]
Lopes Pinheiro MA, Kooij G, Mizee MR, et al. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta Mol Basis Dis 2016; 1862(3): 461-71.
[http://dx.doi.org/10.1016/j.bbadis.2015.10.018] [PMID: 26527183]
[21]
Wang J, Jin Y, Li J. Protective role of fentanyl in lipopolysaccharide induced neuroinflammation in BV 2 cells. Exp Ther Med 2018; 16(4): 3740-4.
[http://dx.doi.org/10.3892/etm.2018.6590] [PMID: 30233733]
[22]
Lin F, Shan W, Zheng Y, Pan L, Zuo Z. Toll‐like receptor 2 activation and up‐regulation by high mobility group box‐1 contribute to post‐operative neuroinflammation and cognitive dysfunction in mice. J Neurochem 2021; 158(2): 328-41.
[http://dx.doi.org/10.1111/jnc.15368] [PMID: 33871050]
[23]
Wang Y, He H, Li D, et al. The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats. Mol Med Rep 2013; 7(4): 1137-42.
[http://dx.doi.org/10.3892/mmr.2013.1322] [PMID: 23426570]
[24]
Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X. Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci 2021; 15: 755955.
[http://dx.doi.org/10.3389/fncel.2021.755955] [PMID: 34867201]
[25]
Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation. Trends Immunol 2020; 41(9): 805-19.
[http://dx.doi.org/10.1016/j.it.2020.07.007] [PMID: 32800705]
[26]
Zhang X, Yao H, Qian Q, Li N, Jin W, Qian Y. Cerebral mast cells participate in postoperative cognitive dysfunction by promot-ing astrocyte activation. Cell Physiol Biochem 2016; 40(1-2): 104-16.
[http://dx.doi.org/10.1159/000452528] [PMID: 27855371]
[27]
Tan X, Qiu LL, Sun J. Research progress on the role of inflammatory mechanisms in the development of postoperative cogni-tive dysfunction. BioMed Res Int 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/3883204] [PMID: 34869762]
[28]
Osoegawa A, Yano T, Yamanaka T, et al. Plasma high-mobility group box 1 as an indicator of surgical stress. Surg Today 2011; 41(7): 903-7.
[http://dx.doi.org/10.1007/s00595-010-4371-4] [PMID: 21748604]
[29]
Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflamma-tion that drives progressive neurodegeneration. J Neurosci 2011; 31(3): 1081-92.
[http://dx.doi.org/10.1523/JNEUROSCI.3732-10.2011] [PMID: 21248133]
[30]
Lin GX, Wang T, Chen MH, Hu ZH, Ouyang W. Serum high-mobility group box 1 protein correlates with cognitive decline after gastrointestinal surgery. Acta Anaesthesiol Scand 2014; 58(6): 668-74.
[http://dx.doi.org/10.1111/aas.12320] [PMID: 24754551]
[31]
Vacas S, Degos V, Tracey KJ, Maze M. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology 2014; 120(5): 1160-7.
[http://dx.doi.org/10.1097/ALN.0000000000000045] [PMID: 24162463]
[32]
Hein AM, Stasko MR, Matousek SB, et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun 2010; 24(2): 243-53.
[http://dx.doi.org/10.1016/j.bbi.2009.10.002] [PMID: 19825412]
[33]
Terrando N, Monaco C, Ma D, Foxwell BMJ, Feldmann M, Maze M. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci 2010; 107(47): 20518-22.
[http://dx.doi.org/10.1073/pnas.1014557107] [PMID: 21041647]
[34]
Qiu LL, Pan W, Luo D, et al. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to post-operative cognitive dysfunction in aging mice. J Neuroinflammation 2020; 17(1): 23.
[http://dx.doi.org/10.1186/s12974-019-1695-x] [PMID: 31948437]
[35]
Li G, Liu S, Wang H, et al. Ligustrazine ameliorates lipopolysaccharide induced neurocognitive impairment by activating au-tophagy via the PI3K/AKT/mTOR pathway. Int J Mol Med 2020; 45(6): 1711-20.
[http://dx.doi.org/10.3892/ijmm.2020.4548] [PMID: 32236586]
[36]
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in meta-plasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49: 124-45.
[http://dx.doi.org/10.1016/j.yfrne.2018.02.003] [PMID: 29428549]
[37]
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99(4): 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[38]
Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & thera-peutic potential. Adv Exp Med Biol 2014; 817: 373-403.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_17] [PMID: 24997043]
[39]
Jiang Y, Wan Y, Li J, et al. Alterations in intestinal microbiota composition in mice treated with vitamin d3 or cathelicidin. Front Oncol 2021; 11: 700038.
[http://dx.doi.org/10.3389/fonc.2021.700038] [PMID: 35004267]
[40]
Zhan G, Hua D, Huang N, et al. Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota. Aging 2019; 11(6): 1778-90.
[http://dx.doi.org/10.18632/aging.101871] [PMID: 30904902]
[41]
Bilotta F, Qeva E, Matot I. Anesthesia and cognitive disorders: a systematic review of the clinical evidence. Expert Rev Neurother 2016; 16(11): 1311-20.
[http://dx.doi.org/10.1080/14737175.2016.1203256] [PMID: 27329271]
[42]
McDonagh DL, Mathew JP, White WD, et al. Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype, and biomarkers of brain injury. Anesthesiology 2010; 112(4): 852-9.
[http://dx.doi.org/10.1097/ALN.0b013e3181d31fd7] [PMID: 20216394]
[43]
Lv J, Chen L, Zhu N, et al. Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction. Metab Brain Dis 2020; 35(8): 1385-94.
[http://dx.doi.org/10.1007/s11011-020-00613-3] [PMID: 32860609]
[44]
Li X, Wen DX, Zhao YH, Hang YN, Mandell MS. Increase of beta-amyloid and C-reactive protein in liver transplant recipients with postoperative cognitive dysfunction. Hepatobiliary Pancreat Dis Int 2013; 12(4): 370-6.
[http://dx.doi.org/10.1016/S1499-3872(13)60058-2] [PMID: 23924494]
[45]
Xu G, Li L, Sun Z, Zhang W, Han X. Effects of dexmedetomidine on postoperative cognitive dysfunction and serum levels of b-amyloid and neuronal microtubule-associated protein in orthotopic liver transplantation patients. Ann Transplant 2016; 21: 508-15.
[http://dx.doi.org/10.12659/AOT.899340] [PMID: 27527391]
[46]
Luo X, Yang L, Chen X, Li S. Tau hyperphosphorylation: A downstream effector of isoflurane-induced neuroinflammation in aged rodents. Med Hypotheses 2014; 82(1): 94-6.
[http://dx.doi.org/10.1016/j.mehy.2013.11.015] [PMID: 24290657]
[47]
Li C, Liu S, Xing Y, Tao F. The role of hippocampal tau protein phosphorylation in isoflurane-induced cognitive dysfunction in transgenic APP695 mice. Anesth Analg 2014; 119(2): 413-9.
[http://dx.doi.org/10.1213/ANE.0000000000000315] [PMID: 24977637]
[48]
Ding D, Wang P, Jiang Y, Zhang X, Shi W, Luo Y. Effects of Apolipoprotein E ε4 allele on early postoperative cognitive dys-function after anesthesia. Anaesthesist 2021; 70(S1) (Suppl. 1): 60-7.
[http://dx.doi.org/10.1007/s00101-021-00972-1] [PMID: 34143234]
[49]
Mathew JP, Grocott HP, Phillips-Bute B, et al. Lower endotoxin immunity predicts increased cognitive dysfunction in elderly patients after cardiac surgery. Stroke 2003; 34(2): 508-13.
[http://dx.doi.org/10.1161/01.STR.0000053844.09493.58] [PMID: 12574568]
[50]
Lee G. The balance of Th17 versus treg cells in autoimmunity. Int J Mol Sci 2018; 19(3): 730.
[http://dx.doi.org/10.3390/ijms19030730] [PMID: 29510522]
[51]
Kono M, Yoshida N, Tsokos GC. Metabolic control of T cells in autoimmunity. Curr Opin Rheumatol 2020; 32(2): 192-9.
[http://dx.doi.org/10.1097/BOR.0000000000000685] [PMID: 31842032]
[52]
Tian A, Ma H, Cao X, Zhang R, Wang X, Wu B. Vitamin D improves cognitive function and modulates Th17/T reg cell balance after hepatectomy in mice. Inflammation 2015; 38(2): 500-9.
[http://dx.doi.org/10.1007/s10753-014-9956-4] [PMID: 24958015]
[53]
Komulainen P, Lakka TA, Kivipelto M, et al. Serum high sensitivity C-reactive protein and cognitive function in elderly women. Age Ageing 2007; 36(4): 443-8.
[http://dx.doi.org/10.1093/ageing/afm051] [PMID: 17537742]
[54]
Zheng F, Xie W. High-sensitivity C-reactive protein and cognitive decline: the English Longitudinal Study of Ageing. Psychol Med 2018; 48(8): 1381-9.
[http://dx.doi.org/10.1017/S0033291717003130] [PMID: 29108529]
[55]
He X, Wen LJ, Cui C, Li DR, Teng JF. The significance of S100β protein on postoperative cognitive dysfunction in patients who underwent single valve replacement surgery under general anesthesia. Eur Rev Med Pharmacol Sci 2017; 21(9): 2192-8.
[PMID: 28537663]
[56]
Wan Z, Li Y, Ye H, Zi Y, Zhang G, Wang X. Plasma S100β and neuron-specific enolase, but not neuroglobin, are associated with early cognitive dysfunction after total arch replacement surgery. Medicine 2021; 100(15): e25446.
[http://dx.doi.org/10.1097/MD.0000000000025446] [PMID: 33847649]
[57]
Wiberg S, Holmgaard F, Zetterberg H, et al. Biomarkers of cerebral injury for prediction of postoperative cognitive dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2022; 36(1): 125-32.
[http://dx.doi.org/10.1053/j.jvca.2021.05.016] [PMID: 34130895]
[58]
Rappold T, Laflam A, Hori D, et al. Evidence of an association between brain cellular injury and cognitive decline after non-cardiac surgery. Br J Anaesth 2016; 116(1): 83-9.
[http://dx.doi.org/10.1093/bja/aev415] [PMID: 26675953]
[59]
Xue Z, Shui M, Lin X, et al. Role of BDNF/ProBDNF imbalance in postoperative cognitive dysfunction by modulating synaptic plasticity in aged mice. Front Aging Neurosci 2022; 14: 780972.
[http://dx.doi.org/10.3389/fnagi.2022.780972] [PMID: 35370607]
[60]
Xie L, Fang Q, Wei X, Zhou L, Wang S. Exogenous insulin-like growth factor 1 attenuates sevoflurane anesthesia-induced cognitive dysfunction in aged rats. J Neurophysiol 2021; 125(6): 2117-24.
[http://dx.doi.org/10.1152/jn.00124.2021] [PMID: 33949883]
[61]
Jiang J, Chen Z, Liang B, Yan J, Zhang Y, Jiang H. Insulin-like growth factor-1 and insulin-like growth factor binding protein 3 and risk of postoperative cognitive dysfunction. Springerplus 2015; 4(1): 787.
[http://dx.doi.org/10.1186/s40064-015-1586-2] [PMID: 26702376]
[62]
Resmini E, Santos A, Webb SM. Cortisol excess and the brain. Front Horm Res 2016; 46: 74-86.
[http://dx.doi.org/10.1159/000443868] [PMID: 27210466]
[63]
Rasmussen LS, O’Brien JT, Silverstein JH, et al. ISPOCD2 Investigators Isperi-operative cortisol secretion related to post-operative cognitive dysfunction? Acta Anaesthesiol Scand 2005; 49(9): 1225-31.
[http://dx.doi.org/10.1111/j.1399-6576.2005.00791.x] [PMID: 16146456]
[64]
Han Y, Han L, Dong MM, et al. Preoperative salivary cortisol AM/PM ratio predicts early postoperative cognitive dysfunction after noncardiac surgery in elderly patients. Anesth Analg 2019; 128(2): 349-57.
[http://dx.doi.org/10.1213/ANE.0000000000003740] [PMID: 30169410]
[65]
Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 2018; 175(16): 3190-9.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[66]
Reiter RJ, Acuña-Castroviejo D, Tan DX, Burkhardt S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 2001; 939(1): 200-15.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03627.x] [PMID: 11462772]
[67]
Wu Y, Wang J, Wu A, Yue Y. Do fluctuations in endogenous melatonin levels predict the occurrence of Postoperative Cognitive Dysfunction (POCD)? Int J Neurosci 2014; 124(11): 787-91.
[http://dx.doi.org/10.3109/00207454.2014.882919] [PMID: 24417656]
[68]
Le Y, Liu S, Peng M, et al. Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory im-pairment at rats after surgery. PLoS One 2014; 9(9): e106837.
[http://dx.doi.org/10.1371/journal.pone.0106837] [PMID: 25198176]
[69]
Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. Age-related alterations in the dynamic behavior of mi-croglia. Aging Cell 2011; 10(2): 263-76.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00660.x] [PMID: 21108733]
[70]
Chung HY, Cesari M, Anton S, et al. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res Rev 2009; 8(1): 18-30.
[http://dx.doi.org/10.1016/j.arr.2008.07.002] [PMID: 18692159]
[71]
Feinkohl I, Winterer G, Spies CD, Pischon T. Cognitive reserve and the risk of postoperative cognitive dysfunction. Dtsch Arztebl Int 2017; 114(7): 110-7.
[http://dx.doi.org/10.3238/arztebl.2017.0110] [PMID: 28302254]
[72]
Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg 2011; 112(5): 1179-85.
[http://dx.doi.org/10.1213/ANE.0b013e318215217e] [PMID: 21474666]
[73]
Norkienė I, Samalavičius R, Misiūrienė I, Paulauskienė K, Budrys V, Ivaškevičius J. Incidence and risk factors for early postoperative cognitive decline after coronary artery bypass grafting. Medicina 2010; 46(7): 460-4.
[http://dx.doi.org/10.3390/medicina46070066] [PMID: 20966618]
[74]
Gao B, Zhu B, Wu C. Preoperative serum 25-hydroxyvitamin d level, a risk factor for postoperative cognitive dysfunction in elderly subjects undergoing total joint arthroplasty. Am J Med Sci 2019; 357(1): 37-42.
[http://dx.doi.org/10.1016/j.amjms.2018.10.012] [PMID: 30611318]
[75]
Radtke FM, Franck M, Herbig TS, et al. Incidence and risk factors for cognitive dysfunction in patients with severe systemic disease. J Int Med Res 2012; 40(2): 612-20.
[http://dx.doi.org/10.1177/147323001204000223] [PMID: 22613422]
[76]
Pappa M, Theodosiadis N, Tsounis A, Sarafis P. Pathogenesis and treatment of post-operative cognitive dysfunction. Electron Physician 2017; 9(2): 3768-75.
[http://dx.doi.org/10.19082/3768] [PMID: 28465805]
[77]
Fan L, Wang TL, Xu YC, Ma YH, Ye WG. Minocycline may be useful to prevent/treat postoperative cognitive decline in elderly patients. Med Hypotheses 2011; 76(5): 733-6.
[http://dx.doi.org/10.1016/j.mehy.2011.02.010] [PMID: 21354710]
[78]
Wang HL, Liu H, Xue ZG, Liao QW, Fang H. Minocycline attenuates post-operative cognitive impairment in aged mice by in-hibiting microglia activation. J Cell Mol Med 2016; 20(9): 1632-9.
[http://dx.doi.org/10.1111/jcmm.12854] [PMID: 27061744]
[79]
Wang YB, Chen Z, Li J, Shi J. Parecoxib improves the cognitive function of POCD rats via attenuating COX-2. Eur Rev Med Pharmacol Sci 2019; 23(11): 4971-9.
[PMID: 31210333]
[80]
Liu YF, Hu R, Zhang LF, Fan Y, Xiao JF, Liao XZ. Effects of dexmedetomidine on cognitive dysfunction and neuroinflammation via the HDAC2/HIF‐1α/PFKFB3 axis in a murine model of postoperative cognitive dysfunction. J Biochem Mol Toxicol 2022; 36(6): e23044.
[http://dx.doi.org/10.1002/jbt.23044] [PMID: 35499365]
[81]
Locatelli FM, Kawano T, Iwata H, et al. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats. J Pharmacol Sci 2018; 137(4): 395-402.
[http://dx.doi.org/10.1016/j.jphs.2018.08.006] [PMID: 30196020]
[82]
Cheon SY, Kim JM, Kam EH, et al. Cell-penetrating interactomic inhibition of nuclear factor-kappa B in a mouse model of post-operative cognitive dysfunction. Sci Rep 2017; 7(1): 13482.
[http://dx.doi.org/10.1038/s41598-017-14027-2] [PMID: 29044209]
[83]
Zheng JW, Meng B, Li XY, Lu B, Wu GR, Chen JP. NF-κB/P65 signaling pathway: a potential therapeutic target in postopera-tive cognitive dysfunction after sevoflurane anesthesia. Eur Rev Med Pharmacol Sci 2017; 21(2): 394-407.
[PMID: 28165545]
[84]
Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg 1995; 59(5): 1289-95.
[http://dx.doi.org/10.1016/0003-4975(95)00106-U] [PMID: 7733754]
[85]
Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet 1998; 351(9106): 857-61.
[http://dx.doi.org/10.1016/S0140-6736(97)07382-0] [PMID: 9525362]
[86]
Dressler I, Fritzsche T, Cortina K, Pragst F, Spies C, Rundshagen I. Psychomotor dysfunction after remifentanil/propofol anaesthesia. Eur J Anaesthesiol 2007; 24(4): 347-54.
[http://dx.doi.org/10.1017/S0265021506001530] [PMID: 17087850]
[87]
Rundshagen I. Postoperative cognitive dysfunction. Dtsch Arztebl Int 2014; 111(8): 119-25.
[PMID: 24622758]
[88]
Fang QJ, Chi BH, Lin QC, et al. Surgery-induced downregulation of hippocampal sirtuin-1 contributes to cognitive dysfunction by inhibiting autophagy and activating apoptosis in aged mice. Am J Transl Res 2020; 12(12): 8111-22.
[PMID: 33437385]
[89]
Wang B, Lin X, Zhou J, et al. Insulin-like growth factor-1 improves postoperative cognitive dysfunction following splenectomy in aged rats. Exp Ther Med 2021; 21(3): 215.
[http://dx.doi.org/10.3892/etm.2021.9647] [PMID: 33574912]
[90]
Ge X, Zuo Y, Xie J, et al. A new mechanism of POCD caused by sevoflurane in mice: cognitive impairment induced by cross-dysfunction of iron and glucose metabolism. Aging 2021; 13(18): 22375-89.
[http://dx.doi.org/10.18632/aging.203544] [PMID: 34547719]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy