Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review

Author(s): Wei-ting Wang, Yun Yang, Yang Zhang, Yi-ning Le, Yu-lin Wu, Yi-yi Liu and Yan-jie Tu*

Volume 24, Issue 1, 2024

Published on: 29 December, 2022

Page: [2 - 13] Pages: 12

DOI: 10.2174/1566524023666221118122005

Price: $65

conference banner
Abstract

At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.

[1]
Lieberman PM. Virology. Epstein-Barr virus turns 50. Science 2014; 343(6177): 1323-5.
[http://dx.doi.org/10.1126/science.1252786] [PMID: 24653027]
[2]
Münz C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17(11): 691-700.
[http://dx.doi.org/10.1038/s41579-019-0249-7] [PMID: 31477887]
[3]
Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer 2004; 4(10): 757-68.
[http://dx.doi.org/10.1038/nrc1452] [PMID: 15510157]
[4]
Schmidt CW, Misko IS. The ecology and pathology of Epstein-Barr virus. Immunol Cell Biol 1995; 73(6): 489-504.
[http://dx.doi.org/10.1038/icb.1995.79] [PMID: 8713470]
[5]
Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol 2019; 72(10): 651-8.
[http://dx.doi.org/10.1136/jclinpath-2019-205822] [PMID: 31315893]
[6]
McKenzie J, El-Guindy A. Epstein-barr virus lytic cycle reactivation. Curr Top Microbiol Immunol 2015; 391: 237-61.
[http://dx.doi.org/10.1007/978-3-319-22834-1_8] [PMID: 26428377]
[7]
Hammerschmidt W, Sugden B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 1988; 55(3): 427-33.
[http://dx.doi.org/10.1016/0092-8674(88)90028-1] [PMID: 2846181]
[8]
Schepers A, Pich D, Hammerschmidt W. Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 1996; 220(2): 367-76.
[http://dx.doi.org/10.1006/viro.1996.0325] [PMID: 8661388]
[9]
Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304(5671): 734-6.
[http://dx.doi.org/10.1126/science.1096781] [PMID: 15118162]
[10]
Murer A, Rühl J, Zbinden A, et al. MicroRNAs of epstein-barr virus attenuate T-cell-mediated immune control in vivo. MBio 2019; 10(1): e01941-18.
[http://dx.doi.org/10.1128/mBio.01941-18] [PMID: 30647153]
[11]
Lu TX, Rothenberg ME, Micro RNA. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202-7.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[12]
Lünemann A, Rowe M, Nadal D. Innate immune recognition of EBV. Curr Top Microbiol Immunol 2015; 391: 265-87.
[http://dx.doi.org/10.1007/978-3-319-22834-1_9] [PMID: 26428378]
[13]
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234(5): 5451-65.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[14]
Dong H, Lei J, Ding L, et al. MicroRNA: Function, detection, and bioanalysis. Chem Rev 2013; 113(8): 6207-33.
[http://dx.doi.org/10.1021/cr300362f] [PMID: 23697835]
[15]
Vargas AJ, Harris CC. Biomarker development in the precision medicine era: Lung cancer as a case study. Nat Rev Cancer 2016; 16(8): 525-37.
[http://dx.doi.org/10.1038/nrc.2016.56] [PMID: 27388699]
[16]
Biomarker Working FDA-NIHG. BEST (Biomarkers, EndpointS, and other Tools). Silver Spring, MD: Resource 2016.
[17]
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[18]
Barth S, Meister G, Grässer FA. EBV-encoded miRNAs. Biochim Biophys Acta Gene Regul Mech 2011; 1809(11-12): 631-40.
[http://dx.doi.org/10.1016/j.bbagrm.2011.05.010] [PMID: 21640213]
[19]
Klinke O, Feederle R, Delecluse HJ. Genetics of Epstein-Barr virus microRNAs. Semin Cancer Biol 2014; 26: 52-9.
[http://dx.doi.org/10.1016/j.semcancer.2014.02.002] [PMID: 24602823]
[20]
Navari M, Fuligni F, Laginestra MA, et al. Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and posttransplant lymphoproliferative disorder suggest different roles for Epstein Barr virus. Front Microbiol 2014; 5: 728.
[http://dx.doi.org/10.3389/fmicb.2014.00728] [PMID: 25566237]
[21]
Sakamoto K, Sekizuka T, Uehara T, et al. Next-generation sequencing of miRNAs in clinical samples of Epstein-Barr virus-associated B-cell lymphomas. Cancer Med 2017; 6(3): 605-18.
[http://dx.doi.org/10.1002/cam4.1006] [PMID: 28181423]
[22]
Amoroso R, Fitzsimmons L, Thomas WA, Kelly GL, Rowe M, Bell AI. Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol 2011; 85(2): 996-1010.
[http://dx.doi.org/10.1128/JVI.01528-10] [PMID: 21068248]
[23]
Kanda T. EBV-encoded latent genes. Adv Exp Med Biol 2018; 1045: 377-94.
[http://dx.doi.org/10.1007/978-981-10-7230-7_17] [PMID: 29896676]
[24]
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The function and therapeutic potential of epstein-barr virus-encoded MicroRNAs in cancer. Mol Ther Nucleic Acids 2019; 17: 657-68.
[http://dx.doi.org/10.1016/j.omtn.2019.07.002] [PMID: 31400608]
[25]
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14(5): 565-76.
[http://dx.doi.org/10.7150/ijbs.24562] [PMID: 29805308]
[26]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[27]
Chen W, Xie Y, Wang T, Wang L. New insights into Epstein Barr virus associated tumors: Exosomes (Review). Oncol Rep 2021; 47(1): 13.
[http://dx.doi.org/10.3892/or.2021.8224] [PMID: 34779497]
[28]
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 2010; 107(14): 6328-33.
[http://dx.doi.org/10.1073/pnas.0914843107] [PMID: 20304794]
[29]
De Paor M, O’Brien K, Fahey T, Smith SM. Antiviral agents for infectious mononucleosis (glandular fever). Cochrane Libr 2016; 2016(12): CD011487.
[http://dx.doi.org/10.1002/14651858.CD011487.pub2] [PMID: 27933614]
[30]
Luzuriaga K, Sullivan JL. Infectious mononucleosis. N Engl J Med 2010; 362(21): 1993-2000.
[http://dx.doi.org/10.1056/NEJMcp1001116] [PMID: 20505178]
[31]
Abusalah MAH, Gan SH, Al-Hatamleh MAI, Irekeola AA, Shueb RH, Yean Yean C. Recent advances in diagnostic approaches for epstein–barr virus. Pathogens 2020; 9(3): 226.
[http://dx.doi.org/10.3390/pathogens9030226] [PMID: 32197545]
[32]
Kimura H, Kwong YL. EBV viral loads in diagnosis, monitoring, and response assessment. Front Oncol 2019; 9: 62.
[http://dx.doi.org/10.3389/fonc.2019.00062] [PMID: 30809508]
[33]
Fugl A, Andersen CL. Epstein-Barr virus and its association with disease - a review of relevance to general practice. BMC Fam Pract 2019; 20(1): 62.
[http://dx.doi.org/10.1186/s12875-019-0954-3] [PMID: 31088382]
[34]
Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: How hot is the link? Biochem Pharmacol 2006; 72(11): 1605-21.
[http://dx.doi.org/10.1016/j.bcp.2006.06.029] [PMID: 16889756]
[35]
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[36]
Kasahara Y, Yachie A, Takei K, et al. Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood 2001; 98(6): 1882-8.
[http://dx.doi.org/10.1182/blood.V98.6.1882] [PMID: 11535525]
[37]
Bay A, Coskun E, Oztuzcu S, Ergun S, Yilmaz F, Aktekin E. Evaluation of the plasma micro RNA expression levels in secondary hemophagocytic lymphohistiocytosis. Mediterr J Hematol Infect Dis 2013; 5(1): e2013066.
[http://dx.doi.org/10.4084/mjhid.2013.066] [PMID: 24363881]
[38]
Ungerleider N, Bullard W, Kara M, et al. EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathog 2021; 17(5): e1009217.
[http://dx.doi.org/10.1371/journal.ppat.1009217] [PMID: 33956915]
[39]
Dölken L, Malterer G, Erhard F, et al. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 2010; 7(4): 324-34.
[http://dx.doi.org/10.1016/j.chom.2010.03.008] [PMID: 20413099]
[40]
Yang IV, Wade CM, Kang HM, et al. Identification of novel genes that mediate innate immunity using inbred mice. Genetics 2009; 183(4): 1535-44.
[http://dx.doi.org/10.1534/genetics.109.107540] [PMID: 19805818]
[41]
Haneklaus M, Gerlic M, Kurowska-Stolarska M, et al. Cutting Edge: MiR-223 and EBV miR-BART15 Regulate the NLRP3 Inflammasome and IL-1β Production. J Immunol 2012; 189(8): 3795-9.
[http://dx.doi.org/10.4049/jimmunol.1200312] [PMID: 22984081]
[42]
Ambrosio MR, Navari M, Di Lisio L, et al. The epstein barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 2014; 9(1): 12.
[http://dx.doi.org/10.1186/1750-9378-9-12] [PMID: 24731550]
[43]
Skinner CM, Ivanov NS, Barr SA, Chen Y, Skalsky RL. An epstein-barr virus MicroRNA blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J Virol 2017; 91(21): e00530-17.
[http://dx.doi.org/10.1128/JVI.00530-17] [PMID: 28794034]
[44]
Hooykaas MJG, van Gent M, Soppe JA, et al. EBV MicroRNA BART16 suppresses type I IFN signaling. J Immunol 2017; 198(10): 4062-73.
[http://dx.doi.org/10.4049/jimmunol.1501605] [PMID: 28416598]
[45]
Cristino AS, Nourse J, West RA, et al. EBV microRNA-BHRF1-2-5p targets the 3′UTR of immune checkpoint ligands PD-L1 and PD-L2. Blood 2019; 134(25): 2261-70.
[http://dx.doi.org/10.1182/blood.2019000889] [PMID: 31856276]
[46]
Lu Y, Qin Z, Wang J, et al. Epstein-barr virus miR-BART6-3p inhibits the RIG-I pathway. J Innate Immun 2017; 9(6): 574-86.
[http://dx.doi.org/10.1159/000479749] [PMID: 28877527]
[47]
Ghasemi F, Gameiro SF, Tessier TM, Maciver AH, Mymryk JS. High levels of class I major histocompatibility complex mRNA are present in epstein–barr virus-associated gastric adenocarcinomas. Cells 2020; 9(2): 499.
[http://dx.doi.org/10.3390/cells9020499] [PMID: 32098275]
[48]
Huang WT, Lin CW. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol 2014; 184(4): 1185-97.
[http://dx.doi.org/10.1016/j.ajpath.2013.12.024] [PMID: 24655378]
[49]
Skalsky RL, Corcoran DL, Gottwein E, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 2012; 8(1): e1002484.
[http://dx.doi.org/10.1371/journal.ppat.1002484] [PMID: 22291592]
[50]
Harding CV. Pathways of antigen processing. Curr Opin Immunol 1991; 3(1): 3-9.
[http://dx.doi.org/10.1016/0952-7915(91)90068-C] [PMID: 2054112]
[51]
Tagawa T, Albanese M, Bouvet M, et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med 2016; 213(10): 2065-80.
[http://dx.doi.org/10.1084/jem.20160248] [PMID: 27621419]
[52]
Alles J, Menegatti J, Motsch N, et al. miRNA expression profiling of Epstein-Barr virus-associated NKTL cell lines by Illumina deep sequencing. FEBS Open Bio 2016; 6(4): 251-63.
[http://dx.doi.org/10.1002/2211-5463.12027] [PMID: 27239439]
[53]
Verhoeven RJA, Tong S, Zhang G, et al. NF-κB signaling regulates expression of epstein-barr virus bart micrornas and long noncoding rnas in nasopharyngeal carcinoma. J Virol 2016; 90(14): 6475-88.
[http://dx.doi.org/10.1128/JVI.00613-16] [PMID: 27147748]
[54]
Albanese M, Tagawa T, Bouvet M, et al. Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci 2016; 113(42): E6467-75.
[http://dx.doi.org/10.1073/pnas.1605884113] [PMID: 27698133]
[55]
Xia T, O’Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res 2008; 68(5): 1436-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5126] [PMID: 18316607]
[56]
Jung YJ, Choi H, Kim H, Lee SK. MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol 2014; 88(16): 9027-37.
[http://dx.doi.org/10.1128/JVI.00721-14] [PMID: 24899173]
[57]
Qiu J, Cosmopoulos K, Pegtel M, et al. A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog 2011; 7(8): e1002193.
[http://dx.doi.org/10.1371/journal.ppat.1002193] [PMID: 21901094]
[58]
Choi H, Lee SK. TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol 2017; 162(2): 369-77.
[http://dx.doi.org/10.1007/s00705-016-3109-z] [PMID: 27757686]
[59]
Choi H, Lee H, Kim SR, Gho YS, Lee SK. Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 2013; 87(14): 8135-44.
[http://dx.doi.org/10.1128/JVI.03159-12] [PMID: 23678170]
[60]
Zuo L, Yue W, Du S, et al. An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virol Sin 2017; 32(3): 175-87.
[http://dx.doi.org/10.1007/s12250-017-3996-5] [PMID: 28669004]
[61]
Higuchi H, Yamakawa N, Imadome KI, et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood 2018; 131(23): 2552-67.
[http://dx.doi.org/10.1182/blood-2017-07-794529] [PMID: 29685921]
[62]
Song Y, Li X, Zeng Z, et al. Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget 2016; 7(24): 36783-99.
[http://dx.doi.org/10.18632/oncotarget.9170] [PMID: 27167345]
[63]
Ma J, Nie K, Redmond D, et al. EBV-miR-BHRF1-2 targets PRDM1/Blimp1: Potential role in EBV lymphomagenesis. Leukemia 2016; 30(3): 594-604.
[http://dx.doi.org/10.1038/leu.2015.285] [PMID: 26530011]
[64]
He B, Li W, Wu Y, et al. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death Dis 2016; 7(9): e2353.
[http://dx.doi.org/10.1038/cddis.2016.253] [PMID: 27584792]
[65]
Gao L, Ai J, Xie Z, et al. Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virol J 2015; 12(1): 208.
[http://dx.doi.org/10.1186/s12985-015-0441-y] [PMID: 26634702]
[66]
Zhou C, Xie Z, Gao L, et al. Profiling of EBV-encoded microRNAs in EBV-associated hemophagocytic lymphohistiocytosis. Tohoku J Exp Med 2015; 237(2): 117-26.
[http://dx.doi.org/10.1620/tjem.237.117] [PMID: 26423217]
[67]
Hartung A, Makarewicz O, Egerer R, et al. EBV miRNA expression profiles in different infection stages: A prospective cohort study. PLoS One 2019; 14(2): e0212027.
[http://dx.doi.org/10.1371/journal.pone.0212027] [PMID: 30759142]
[68]
Hassan J, Dean J, De Gascun CF, et al. Plasma EBV microRNAs in paediatric renal transplant recipients. J Nephrol 2018; 31(3): 445-51.
[http://dx.doi.org/10.1007/s40620-017-0462-2] [PMID: 29185211]
[69]
Pearson GR, Luka J, Petti L, et al. Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology 1987; 160(1): 151-61.
[http://dx.doi.org/10.1016/0042-6822(87)90055-9] [PMID: 2820125]
[70]
Kawano Y, Iwata S, Kawada J, et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis 2013; 208(5): 771-9.
[http://dx.doi.org/10.1093/infdis/jit222] [PMID: 23687223]
[71]
Seto E, Moosmann A, Grömminger S, Walz N, Grundhoff A, Hammerschmidt W. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 2010; 6(8): e1001063.
[http://dx.doi.org/10.1371/journal.ppat.1001063] [PMID: 20808852]
[72]
Shi J, Chu C, Yu M, et al. Clinical warning of hemophagocytic syndrome caused by Epstein-Barr virus. Ital J Pediatr 2021; 47(1): 3.
[http://dx.doi.org/10.1186/s13052-020-00949-7] [PMID: 33413556]
[73]
Han X, Ye Q, Zhang W, Tang Y, Xu X, Zhang T. Cytokine profiles as novel diagnostic markers of Epstein-Barr virus–associated hemophagocytic lymphohistiocytosis in children. J Crit Care 2017; 39: 72-7.
[http://dx.doi.org/10.1016/j.jcrc.2017.02.018] [PMID: 28222313]
[74]
Zhang Q, Luo D, Xie Z, He H, Duan Z. The oncogenic role of miR-BART19-3p in epstein-barr virus-associated diseases. BioMed Res Int 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/5217039] [PMID: 32714979]
[75]
Imig J, Motsch N, Zhu JY, et al. microRNA profiling in Epstein–Barr virus-associated B-cell lymphoma. Nucleic Acids Res 2011; 39(5): 1880-93.
[http://dx.doi.org/10.1093/nar/gkq1043] [PMID: 21062812]
[76]
Komabayashi Y, Kishibe K, Nagato T, Ueda S, Takahara M, Harabuchi Y. Circulating Epstein-Barr virus-encoded micro-RNAs as potential biomarkers for nasal natural killer/T-cell lymphoma. Hematol Oncol 2017; 35(4): 655-63.
[http://dx.doi.org/10.1002/hon.2360] [PMID: 27709652]
[77]
Ramakrishnan R, Donahue H, Garcia D, et al. Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS One 2011; 6(11): e27271.
[http://dx.doi.org/10.1371/journal.pone.0027271] [PMID: 22102884]
[78]
Levine AG, Mendoza A, Hemmers S, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 2017; 546(7658): 421-5.
[http://dx.doi.org/10.1038/nature22360] [PMID: 28607488]
[79]
Lin TC, Liu TY, Hsu SM, Lin CW. Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. Am J Pathol 2013; 182(5): 1865-75.
[http://dx.doi.org/10.1016/j.ajpath.2013.01.025] [PMID: 23608226]
[80]
Jun SM, Hong YS, Seo JS, Ko YH, Yang CW, Lee SK. Viral microRNA profile in Epstein-Barr virus-associated peripheral T cell lymphoma. Br J Haematol 2008; 142(2): 320-3.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07186.x] [PMID: 18503588]
[81]
Marques-Piubelli ML, Salas YI, Pachas C, Becker-Hecker R, Vega F, Miranda RN. Epstein–Barr virus-associated B-cell lymphoproliferative disorders and lymphomas: A review. Pathology 2020; 52(1): 40-52.
[http://dx.doi.org/10.1016/j.pathol.2019.09.006] [PMID: 31706670]
[82]
Fink SEK, Gandhi MK, Nourse JP, et al. A comprehensive analysis of the cellular and EBV-specific microRNAome in primary CNS PTLD identifies different patterns among EBV-associated tumors. Am J Transplant 2014; 14(11): 2577-87.
[http://dx.doi.org/10.1111/ajt.12858] [PMID: 25130212]
[83]
Unger M, Karanikas G, Kerschbaumer A, Winkler S, Aletaha D. Fever of unknown origin (FUO) revised. Wien Klin Wochenschr 2016; 128(21-22): 796-801.
[http://dx.doi.org/10.1007/s00508-016-1083-9] [PMID: 27670857]
[84]
Baer R, Bankier AT, Biggin MD, et al. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature 1984; 310(5974): 207-11.
[http://dx.doi.org/10.1038/310207a0] [PMID: 6087149]
[85]
Mundo L, Ambrosio MR, Picciolini M, et al. Unveiling another missing piece in EBV-driven lymphomagenesis: EBV-encoded MicroRNAs expression in EBER-negative burkitt lymphoma cases. Front Microbiol 2017; 8: 229.
[http://dx.doi.org/10.3389/fmicb.2017.00229] [PMID: 28298901]
[86]
Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga P. Pathobiologic roles of epstein–barr virus-encoded MicroRNAs in human lymphomas. Int J Mol Sci 2018; 19(4): 1168.
[http://dx.doi.org/10.3390/ijms19041168] [PMID: 29649101]
[87]
Ohga S, Kudo K, Ishii E, et al. Hematopoietic stem cell transplantation for familial hemophagocytic lymphohistiocytosis and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in Japan. Pediatr Blood Cancer 2010; 54(2): 299-306.
[http://dx.doi.org/10.1002/pbc.22310] [PMID: 19827139]
[88]
Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: A 28-year experience in the United States. Blood 2011; 117(22): 5835-49.
[http://dx.doi.org/10.1182/blood-2010-11-316745] [PMID: 21454450]
[89]
Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int 2014; 56(2): 159-66.
[http://dx.doi.org/10.1111/ped.12314] [PMID: 24528553]
[90]
Kaul V, Weinberg KI, Boyd SD, et al. Dynamics of viral and host immune cell MicroRNA expression during acute infectious mononucleosis. Front Microbiol 2018; 8: 2666.
[http://dx.doi.org/10.3389/fmicb.2017.02666] [PMID: 29379474]
[91]
Koppers-Lalic D, Hogenboom MM, Middeldorp JM, Pegtel DM. Virus-modified exosomes for targeted RNA delivery; A new approach in nanomedicine. Adv Drug Deliv Rev 2013; 65(3): 348-56.
[http://dx.doi.org/10.1016/j.addr.2012.07.006] [PMID: 22820525]
[92]
Kotani A. The role of tumor-derived secretary small RNAs in EBV related lymphoma. Uirusu 2014; 64(1): 43-8.
[http://dx.doi.org/10.2222/jsv.64.43] [PMID: 25765979]
[93]
Meckes DG Jr, Shair KHY, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci 2010; 107(47): 20370-5.
[http://dx.doi.org/10.1073/pnas.1014194107] [PMID: 21059916]
[94]
Cohen JI. Vaccine development for epstein-barr virus. Adv Exp Med Biol 2018; 1045: 477-93.
[http://dx.doi.org/10.1007/978-981-10-7230-7_22] [PMID: 29896681]
[95]
Atherton LJ, Jorquera PA, Bakre AA, Tripp RA. Determining immune and miRNA biomarkers related to Respiratory Syncytial Virus (RSV) vaccine types. Front Immunol 2019; 10: 2323.
[http://dx.doi.org/10.3389/fimmu.2019.02323] [PMID: 31649663]
[96]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39(16): 7223-33.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[97]
Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol 2016; 231(1): 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[98]
Chen SJ, Chen GH, Chen YH, et al. Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS One 2010; 5(9): e12745.
[http://dx.doi.org/10.1371/journal.pone.0012745] [PMID: 20862214]
[99]
Kobori T, Takahashi H. Expanding possibilities of rolling circle amplification as a biosensing platform. Anal Sci 2014; 30(1): 59-64.
[http://dx.doi.org/10.2116/analsci.30.59] [PMID: 24420245]
[100]
Alhasan AH, Kim DY, Daniel WL, et al. Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Anal Chem 2012; 84(9): 4153-60.
[http://dx.doi.org/10.1021/ac3004055] [PMID: 22489825]
[101]
Zhang S, Cheng Z, Wang Y, Han T. The risks of miRNA therapeutics: In a drug target perspective. Drug Des Devel Ther 2021; 15: 721-33.
[http://dx.doi.org/10.2147/DDDT.S288859] [PMID: 33654378]
[102]
Balfour HH Jr, Dunmire SK, Hogquist KA. Infectious mononucleosis. Clin Transl Immunology 2015; 4(2): e33.
[http://dx.doi.org/10.1038/cti.2015.1] [PMID: 25774295]
[103]
Young LS, Yap LF, Murray PG. Epstein–Barr virus: More than 50 years old and still providing surprises. Nat Rev Cancer 2016; 16(12): 789-802.
[http://dx.doi.org/10.1038/nrc.2016.92] [PMID: 27687982]
[104]
Dunmire SK, Verghese PS, Balfour HH. Primary Epstein-Barr virus infection. J Clin Virol 2018; 102: 84-92.
[105]
Kempkes B, Robertson ES. Epstein-Barr virus latency: Current and future perspectives. Curr Opin Virol 2015; 14: 138-44.
[http://dx.doi.org/10.1016/j.coviro.2015.09.007] [PMID: 26453799]
[106]
Hammerschmidt W. The epigenetic life cycle of epstein–barr virus. Curr Top Microbiol Immunol 2015; 390(Pt 1): 103-17.
[http://dx.doi.org/10.1007/978-3-319-22822-8_6] [PMID: 26424645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy