Abstract
Background: It has been shown in numerous recent studies that long non-coding RNAs (lncRNAs) play a vital role in the regulation of various biological processes, as well as serve as a basis for understanding the causes of human illnesses. Thus, many researchers have developed matrix completion approaches to infer lncRNA–disease connections and enhance prediction performance by using similarity information.
Objective: Most matrix completion approaches are solely based on the first-order or second-order similarity between nodes, and higher-order similarity is rarely considered. In view of this, we developed a computational method to incorporate higher-order similarity information into the similarity network with different weights using a decay function designed by a random walk with restart (DHOSGR).
Methods: First, considering that the information will decay as the distance increases during network propagation, we defined a novel decay high-order similarity by combining the similarity matrix and its high-order similarity information through a decay function to construct a similarity network. Then, we applied the similarity network to the objective function as a graph regularization term. Finally, a proximal splitting algorithm was used to perform matrix completion to infer relationships between diseases and lncRNAs.
Results: In the experiment, DHOSGR achieves a superior performance in leave-one-out cross validation (LOOCV) and 100 times 5-fold cross validation (5-fold-CV), with AUC values of 0.9459 and 0.9334 ± 0.0016, respectively, which are better than other five previous models. Moreover, case studies of three diseases (leukemia, lymphoma, and squamous cell carcinoma) demonstrated that DHOSGR can reliably predict associated lncRNAs.
Conclusion: DHOSGR can serve as a high efficiency calculation model for predicting lncRNAdisease associations.
Graphical Abstract
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[http://dx.doi.org/10.1038/nrm3679] [PMID: 24105322]
[http://dx.doi.org/10.1016/j.jtbi.2010.11.002] [PMID: 21056578]
[http://dx.doi.org/10.1093/bfgp/ely031] [PMID: 30247501]
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[http://dx.doi.org/10.1093/hmg/ddt281] [PMID: 23771028]
[PMID: 23175614]
[http://dx.doi.org/10.1093/nar/gkv1094] [PMID: 26481356]
[PMID: 27345524]
[http://dx.doi.org/10.1093/bioinformatics/btv148] [PMID: 25777523]
[http://dx.doi.org/10.3389/fgene.2019.00476] [PMID: 31191605]
[http://dx.doi.org/10.1016/j.omtn.2018.10.005] [PMID: 30439645]
[http://dx.doi.org/10.1038/srep13186] [PMID: 26278472]
[http://dx.doi.org/10.1038/srep16840] [PMID: 26577439]
[http://dx.doi.org/10.1109/ACCESS.2019.2912945]
[http://dx.doi.org/10.1016/j.ygeno.2020.08.024] [PMID: 33348478]
[http://dx.doi.org/10.1007/s12539-021-00458-z] [PMID: 34232474]
[http://dx.doi.org/10.1371/journal.pcbi.1006865] [PMID: 30917115]
[http://dx.doi.org/10.1371/journal.pcbi.1007209] [PMID: 31329575]
[http://dx.doi.org/10.1093/bib/bbac021] [PMID: 35176761]
[http://dx.doi.org/10.1109/TCBB.2020.3034910] [PMID: 33125333]
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[http://dx.doi.org/10.3389/fgene.2019.00769] [PMID: 31572428]
[http://dx.doi.org/10.1109/JBHI.2019.2958389] [PMID: 31825885]
[http://dx.doi.org/10.1109/JBHI.2020.2988720] [PMID: 32324583]
[http://dx.doi.org/10.1039/D1MO00138H] [PMID: 34251001]
[http://dx.doi.org/10.1093/nar/gky905] [PMID: 30285109]
[http://dx.doi.org/10.1093/nar/gkaa1006] [PMID: 33219685]
[http://dx.doi.org/10.1093/nar/gkr972] [PMID: 22080554]
[http://dx.doi.org/10.1093/bioinformatics/btq241] [PMID: 20439255]
[http://dx.doi.org/10.3389/fgene.2018.00324] [PMID: 30186308]
[http://dx.doi.org/10.1093/nar/gkg091] [PMID: 12519949]
[PMID: 28172495]
[http://dx.doi.org/10.1093/bioinformatics/btr500] [PMID: 21893517]
[http://dx.doi.org/10.1371/journal.pcbi.1005455] [PMID: 28339468]
[http://dx.doi.org/10.1145/3219819.3219969]
[http://dx.doi.org/10.1145/2806416.2806512]
[http://dx.doi.org/10.1007/s10115-007-0094-2]
[http://dx.doi.org/10.1093/bioinformatics/btv696] [PMID: 26614125]
[http://dx.doi.org/10.1371/journal.pcbi.1005912] [PMID: 29253885]
[http://dx.doi.org/10.1007/978-1-4419-9569-8_10]
[http://dx.doi.org/10.1021/acs.jproteome.1c00848] [PMID: 34812044]
[http://dx.doi.org/10.1016/j.ymeth.2021.12.004] [PMID: 34915158]
[http://dx.doi.org/10.1002/minf.202100264] [PMID: 34989149]
[http://dx.doi.org/10.1016/j.omtn.2019.07.022] [PMID: 31514111]
[http://dx.doi.org/10.1039/C3MB70608G] [PMID: 24850297]
[http://dx.doi.org/10.18632/oncotarget.19588] [PMID: 28947982]
[http://dx.doi.org/10.1186/s12859-020-03868-w] [PMID: 33980147]
[http://dx.doi.org/10.1186/s12967-016-1100-9] [PMID: 27998273]
[PMID: 32572888]
[http://dx.doi.org/10.1111/jcmm.14601] [PMID: 31483572]
[http://dx.doi.org/10.1073/pnas.1505753112] [PMID: 26351698]
[PMID: 32432757]
[http://dx.doi.org/10.1016/j.ejphar.2018.11.036] [PMID: 30502345]
[http://dx.doi.org/10.1111/ijlh.13225] [PMID: 32359033]
[http://dx.doi.org/10.1016/j.leukres.2019.106265] [PMID: 31698307]
[http://dx.doi.org/10.1002/jcb.27673] [PMID: 30304557]
[PMID: 30915750]
[http://dx.doi.org/10.1186/s13046-019-1473-8] [PMID: 31775815]