Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Irisin-pretreated BMMSCs Secrete Exosomes to Alleviate Cardiomyocytes Pyroptosis and Oxidative Stress to Hypoxia/reoxygenation Injury

Author(s): Jingyu Deng, Taoyuan Zhang, Man Li, Guangying Cao, Hanwen Wei, Zheng Zhang* and Taohong Hu*

Volume 18, Issue 6, 2023

Published on: 15 December, 2022

Page: [843 - 852] Pages: 10

DOI: 10.2174/1574888X18666221117111829

Price: $65

Abstract

Background: The cardiomyocytes pyroptosis and bone marrow-derived mesenchymal stem cells have been well considered as novel therapies to attenuate myocardial ischemia/reperfusion injury, however, the relationship has not yet been determined.

Objective: We aim to evaluate whether pre-treatment bone marrow-derived mesenchymal stem cells protect against myocardial ischemia/reperfusion injury by repressing cardiomyocytes pyroptosis, as well as to further elucidate the potential mechanisms.

Methods: Cardiomyocytes were treated with hypoxia, followed by reoxygenation to mimic myocardial ischemia/reperfusion injury. Pre-treatment bone marrow-derived mesenchymal stem cells or their exosomes were co-cultured with cardiomyocytes following hypoxia/reoxygenation. Cell Counting Kit-8 assay was used to determine cell viability. Reactive oxygen species production was determined by dihydroethidium stain. Enzyme-linked immunosorbent assays were used to detect IL-1β and IL-18.

Results: We observed that Irisin pre-treatment bone marrow-derived mesenchymal stem cells protected cardiomyocytes against hypoxia/reoxygenation-induced injuries. The underlying molecular mechanism was further identified. Irisin-BMMSCs were found to secrete exosomes, which repressed cardiomyocytes pyroptosis and oxidative stress response by suppressing NLRP3 under hypoxia/reoxygenation conditions.

Conclusion: Based on our findings, we revealed a promising target that exosomes derived from bone marrow-derived mesenchymal stem cells with Irisin treatment to elevate the therapeutic benefits for hypoxia/ reoxygenation injury.

Graphical Abstract

[1]
Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017; 376(21): 2053-64.
[http://dx.doi.org/10.1056/NEJMra1606915] [PMID: 28538121]
[2]
Liu N, Xie L, Xiao P, et al. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2022; 477(4): 1249-60.
[http://dx.doi.org/10.1007/s11010-021-04343-7] [PMID: 35119583]
[3]
Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics - 2012 update: A report from the American Heart Association. Circulation 2012; 125(1): e2-e220.
[PMID: 22179539]
[4]
Chen J, Luo Y, Wang S, Zhu H, Li D. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 134: 154-64.
[http://dx.doi.org/10.1016/j.yjmcc.2019.07.009] [PMID: 31344368]
[5]
Altamirano F, Wang ZV, Hill JA. Cardioprotection in ischaemia-reperfusion injury: Novel mechanisms and clinical translation. J Physiol 2015; 593(17): 3773-88.
[http://dx.doi.org/10.1113/JP270953] [PMID: 26173176]
[6]
Shi H, Gao Y, Dong Z, et al. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ Res 2021; 129(3): 383-96.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.318629] [PMID: 34015941]
[7]
Qiu Z, Lei S, Zhao B, et al. NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev 2017; 2017: 9743280.
[http://dx.doi.org/10.1155/2017/9743280] [PMID: 29062465]
[8]
Liu Y, Guo X, Zhang J, et al. Protective effects of the soluble receptor for advanced glycation end-products on pyroptosis during myocardial ischemia-reperfusion. Oxid Med Cell Longev 2021; 2021: 9570971.
[http://dx.doi.org/10.1155/2021/9570971] [PMID: 34912499]
[9]
Aizawa S, Brar G, Tsukamoto H. Cell death and liver disease. Gut Liver 2020; 14(1): 20-9.
[http://dx.doi.org/10.5009/gnl18486] [PMID: 30917630]
[10]
Bian Y, Li X, Pang P, et al. Kanglexin, a novel anthraquinone compound, protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis. Acta Pharmacol Sin 2020; 41(3): 319-26.
[http://dx.doi.org/10.1038/s41401-019-0307-8] [PMID: 31645662]
[11]
Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018; 315(6): H1553-68.
[http://dx.doi.org/10.1152/ajpheart.00158.2018] [PMID: 30168729]
[12]
Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 2020; 17(12): 773-89.
[http://dx.doi.org/10.1038/s41569-020-0403-y] [PMID: 32620851]
[13]
Rauf A, Shah M, Yellon DM, Davidson SM. Role of caspase 1 in ischemia/reperfusion injury of the myocardium. J Cardiovasc Pharmacol 2019; 74(3): 194-200.
[http://dx.doi.org/10.1097/FJC.0000000000000694] [PMID: 31356550]
[14]
Wei Y, Zhu M, Li S, et al. Engineered biomimetic nanoplatform protects the myocardium against ischemia/reperfusion injury by inhibiting pyroptosis. ACS Appl Mater Interfaces 2021; 13(29): 33756-66.
[http://dx.doi.org/10.1021/acsami.1c03421] [PMID: 34258997]
[15]
Davidson SM, Ferdinandy P, Andreadou I, et al. CARDIOPROTECTION COST Action (CA16225). Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol 2019; 73(1): 89-99.
[http://dx.doi.org/10.1016/j.jacc.2018.09.086] [PMID: 30621955]
[16]
Moghaddam AS, Afshari JT, Esmaeili SA, Saburi E, Joneidi Z, Momtazi-Borojeni AA. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285: 1-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.03.016] [PMID: 30939341]
[17]
Xu R, Zhang F, Chai R, et al. Exosomes derived from pro‐inflammatory bone marrow‐derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23(11): 7617-31.
[http://dx.doi.org/10.1111/jcmm.14635] [PMID: 31557396]
[18]
Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116(2): 353-67.
[http://dx.doi.org/10.1093/cvr/cvz139] [PMID: 31119268]
[19]
Domenis R, Cifù A, Quaglia S, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep 2018; 8(1): 13325.
[http://dx.doi.org/10.1038/s41598-018-31707-9] [PMID: 30190615]
[20]
Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther 2021; 12(1): 519.
[http://dx.doi.org/10.1186/s13287-021-02591-4] [PMID: 34583757]
[21]
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382): 463-8.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[22]
Yu Q, Kou W, Xu X, et al. FNDC5/Irisin inhibits pathological cardiac hypertrophy. Clin Sci (Lond) 2019; 133(5): 611-27.
[http://dx.doi.org/10.1042/CS20190016] [PMID: 30782608]
[23]
Li RL, Wu SS, Wu Y, et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol 2018; 121: 242-55.
[http://dx.doi.org/10.1016/j.yjmcc.2018.07.250] [PMID: 30053525]
[24]
Deng J, Zhang N, Chen F, et al. Irisin ameliorates high glucose‐induced cardiomyocytes injury via AMPK/mTOR signal pathway. Cell Biol Int 2020; 44(11): 2315-25.
[http://dx.doi.org/10.1002/cbin.11441] [PMID: 32770767]
[25]
Deng J, Zhang N, Wang Y, et al. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther 2020; 11(1): 228.
[http://dx.doi.org/10.1186/s13287-020-01746-z] [PMID: 32522253]
[26]
Zhang X, Hu C, Kong CY, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ 2020; 27(2): 540-55.
[http://dx.doi.org/10.1038/s41418-019-0372-z] [PMID: 31209361]
[27]
Ouyang H, Li Q, Zhong J, et al. Combination of melatonin and irisin ameliorates lipopolysaccharide‐induced cardiac dysfunction through suppressing the Mst1-JNK pathways. J Cell Physiol 2020; 235(10): 6647-59.
[http://dx.doi.org/10.1002/jcp.29561] [PMID: 31976559]
[28]
Wang C, Fei Y, Xu C, Zhao Y, Pan Y. Bone marrow mesenchymal stem cells ameliorate neurological deficits and blood-brain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats. Int J Clin Exp Pathol 2015; 8(5): 4715-24.
[PMID: 26191161]
[29]
Wang X, Morelli MB, Matarese A, Sardu C, Santulli G. Cardiomyocyte‐derived exosomal microRNA‐92a mediates post‐ischemic myofibroblast activation both in vitro and ex vivo. ESC Heart Fail 2020; 7(1): 285-9.
[http://dx.doi.org/10.1002/ehf2.12584] [PMID: 31981320]
[30]
Fan B, Li C, Szalad A, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia 2020; 63(2): 431-43.
[http://dx.doi.org/10.1007/s00125-019-05043-0] [PMID: 31740984]
[31]
Fu M, Xie D, Sun Y, et al. Exosomes derived from MSC pre‐treated with oridonin alleviates myocardial IR injury by suppressing apoptosis via regulating autophagy activation. J Cell Mol Med 2021; 25(12): 5486-96.
[http://dx.doi.org/10.1111/jcmm.16558] [PMID: 33955654]
[32]
Lin M, Liu X, Zheng H, et al. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther 2020; 11(1): 22.
[http://dx.doi.org/10.1186/s13287-019-1544-y] [PMID: 31918758]
[33]
Huang YL, Kuang J, Hu YZ, Song YB, Qiu RF, Mai WY. Bone marrow stromal cell transplantation combined with angiotensin-converting enzyme inhibitor treatment in rat with acute myocardial infarction and the role of insulin-like growth factor-1. Cytotherapy 2012; 14(5): 563-9.
[http://dx.doi.org/10.3109/14653249.2011.651531] [PMID: 22277013]
[34]
Hu M, Guo G, Huang Q, et al. The harsh microenvironment in infarcted heart accelerates transplanted bone marrow mesenchymal stem cells injury: The role of injured cardiomyocytes-derived exosomes. Cell Death Dis 2018; 9(3): 357.
[http://dx.doi.org/10.1038/s41419-018-0392-5] [PMID: 29500342]
[35]
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2019; 115(7): 1205-16.
[http://dx.doi.org/10.1093/cvr/cvz040] [PMID: 30753344]
[36]
Nong K, Wang W, Niu X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 2016; 18(12): 1548-59.
[http://dx.doi.org/10.1016/j.jcyt.2016.08.002] [PMID: 27592404]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy