Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Perspective

The Anti-Viral Activity of Stem Cells: A Rational Explanation for their Use in Clinical Application

Author(s): Mario Giosuè Balzanelli, Pietro Distratis, Rita Lazzaro, Van Hung Pham, Toai Cong Tran, Gianna Dipalma, Francesco Inchingolo, Emilio Maria Serlenga, Sergey Khachatur Aityan, Andrea Ballini*, Kieu Cao Diem Nguyen and Ciro Gargiulo Isacco

Volume 23, Issue 6, 2023

Published on: 18 January, 2023

Page: [739 - 747] Pages: 9

DOI: 10.2174/1871530323666221117094330

Price: $65

Abstract

It is well established the importance of stem cells (SCs) in tissue growth, regeneration and repair, given their ability to self-renew and differentiate into mature cells. Stem cells are present in all individuals and are potentially active to the end of life. However, less is known about their unique function within the immune system as immune regulators and their important task in viral protection. Antiviral resistance is a common mechanism in all cells though stem cells utilize an antiviral RNA interference (RNAi) mechanism, while adult cells react by using the interferondependent repression pathway via interferon-associated protein-based response to induce an antiviral response. Therefore, the idea behind this review is to highlight the mechanisms of viral evasion of host defense, which would then allow us to highlight the rationale use of autologous stem cells and their biochemical and immunological ability to reset the subverted immune responses. Recently, scientists have highlighted their use in the field of immune-therapy, establishing the possibilities of using them outside the conventional protocol with the advancement in manipulating these cells in such a way that specific body activity can be restored. This paper describes the remarkable SCs profile and discusses some ideas regarding their promising use in vivo.

Next »
Graphical Abstract

[1]
Bindu A, H.; Srilatha, B. Potency of various types of stem cells and their transplantation. J. Stem Cell Res. Ther., 2011, 1(3), 115.
[http://dx.doi.org/10.4172/2157-7633.1000115]
[2]
Charitos, I.A.; Ballini, A.; Cantore, S.; Boccellino, M.; Di Domenico, M.; Borsani, E.; Nocini, R.; Di Cosola, M.; Santacroce, L.; Bottalico, L. Stem cells: A historical review about biological, religious, and ethical issues. Stem Cells Int., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/9978837] [PMID: 34012469]
[3]
Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391), 1145-1147.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[4]
Ballini, A.; De Frenza, G.; Cantore, S.; Papa, F.; Grano, M.; Mastrangelo, F.; Tetè, S.; Grassi, F.R. In vitro stem cell cultures from human dental pulp and periodontal ligament: New prospects in dentistry. Int. J. Immunopathol. Pharmacol., 2007, 20(1), 9-16.
[http://dx.doi.org/10.1177/039463200702000102] [PMID: 17346423]
[5]
Ghaneialvar, H.; Soltani, L.; Rahmani, H.R.; Lotfi, A.S.; Soleimani, M. Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J. Clin. Biochem., 2018, 33(1), 46-52.
[http://dx.doi.org/10.1007/s12291-017-0641-x] [PMID: 29371769]
[6]
Verginelli, F.; Pisacane, A.; Gambardella, G.; D’Ambrosio, A.; Candiello, E.; Ferrio, M.; Panero, M.; Casorzo, L.; Benvenuti, S.; Cascardi, E.; Senetta, R.; Geuna, E.; Ballabio, A.; Montemurro, F.; Sapino, A.; Comoglio, P.M.; Boccaccio, C. Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nat. Commun., 2021, 12(1), 2498.
[http://dx.doi.org/10.1038/s41467-021-22643-w] [PMID: 33941777]
[7]
Carter, C.C.; Onafuwa-Nuga, A.; McNamara, L.A.; Riddell, J., IV; Bixby, D.; Savona, M.R.; Collins, K.L. HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat. Med., 2010, 16(4), 446-451.
[http://dx.doi.org/10.1038/nm.2109] [PMID: 20208541]
[8]
Mata-Miranda, M.M.; Sanchez-Brito, M.; Vazquez-Zapien, G.J. Different kinds of stem cells in the development of SARS-CoV-2 treatments. World J. Stem Cells, 2021, 13(5), 439-451.
[http://dx.doi.org/10.4252/wjsc.v13.i5.439] [PMID: 34136074]
[9]
Zanirati, G.; Provenzi, L.; Libermann, L.L.; Bizotto, S.C.; Ghilardi, I.M.; Marinowic, D.R.; Shetty, A.K.; Da Costa, J.C. Stem cell-based therapy for COVID-19 and ARDS: A systematic review. NPJ Regen. Med., 2021, 6(1), 73.
[http://dx.doi.org/10.1038/s41536-021-00181-9] [PMID: 34750382]
[10]
Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; D’Ettorre, E.; Nico, A.; Inchingolo, F.; Dipalma, G.; Tomassone, D.; Serlenga, E.M.; Dalagni, G.; Ballini, A.; Nguyen, K.C.D.; Isacco, C.G. New translational trends in personalized medicine: Autologous peripheral blood stem cells and plasma for COVID-19 patient. J. Pers. Med., 2022, 12(1), 85.
[http://dx.doi.org/10.3390/jpm12010085] [PMID: 35055400]
[11]
Li, S.; Zhu, H.; Zhao, M.; Liu, W.; Wang, L.; Zhu, B.; Xie, W.; Zhao, C.; Zhou, Y.; Ren, C.; Liu, H.; Jiang, X. When stem cells meet COVID-19: Recent advances, challenges and future perspectives. Stem Cell Res. Ther., 2022, 13(1), 9.
[http://dx.doi.org/10.1186/s13287-021-02683-1] [PMID: 35012650]
[12]
Krishnan, A. Stem cell transplantation in HIV-infected patients. Curr. Opin. HIV AIDS, 2009, 4(1), 11-15.
[http://dx.doi.org/10.1097/COH.0b013e32831a6fc9] [PMID: 19339935]
[13]
Gargiulo, C; Pham, HV; Thuy Hai, N; Nguyen, CDK; Duong Kim, N; Nguyen Van, T; Tuan, A; Abe, K; Flores, V; Shiffman, M Autologous peripheral blood stem cells and γ/δ T cells may improve immunity in treating secondary bacteremic infection in HIV infected patient. Stem Cell Disco., 2015, 5(4), 48-61.
[http://dx.doi.org/10.4236/scd.2015.54006]
[14]
Krampera, M.; Glennie, S.; Dyson, J.; Scott, D.; Laylor, R.; Simpson, E.; Dazzi, F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003, 101(9), 3722-3729.
[http://dx.doi.org/10.1182/blood-2002-07-2104] [PMID: 12506037]
[15]
Wakim, L.M.; Gupta, N.; Mintern, J.D.; Villadangos, J.A. Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol., 2013, 14(3), 238-245.
[http://dx.doi.org/10.1038/ni.2525] [PMID: 23354485]
[16]
Tassetto, M.; Kunitomi, M.; Andino, R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in drosophila. Cell, 2017, 169(2), 314-325.e13.
[http://dx.doi.org/10.1016/j.cell.2017.03.033] [PMID: 28388413]
[17]
Li, Y.; Lu, J.; Han, Y.; Fan, X.; Ding, S.W. RNA interference functions as an antiviral immunity mechanism in mammals. Science, 2013, 342(6155), 231-234.
[http://dx.doi.org/10.1126/science.1241911] [PMID: 24115437]
[18]
Watanabe, T.; Totoki, Y.; Toyoda, A.; Kaneda, M.; Kuramochi-Miyagawa, S.; Obata, Y.; Chiba, H.; Kohara, Y.; Kono, T.; Nakano, T.; Surani, M.A.; Sakaki, Y.; Sasaki, H. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008, 453(7194), 539-543.
[http://dx.doi.org/10.1038/nature06908] [PMID: 18404146]
[19]
Maillard, P.V.; Ciaudo, C.; Marchais, A.; Li, Y.; Jay, F.; Ding, S.W.; Voinnet, O. Antiviral RNA interference in mammalian cells. Science, 2013, 342(6155), 235-238.
[http://dx.doi.org/10.1126/science.1241930] [PMID: 24115438]
[20]
Wu, X.; Kwong, A.C.; Rice, C.M. Antiviral resistance of stem cells. Curr. Opin. Immunol., 2019, 56, 50-59.
[http://dx.doi.org/10.1016/j.coi.2018.10.004] [PMID: 30352329]
[21]
Luna, J.M.; Wu, X.; Rice, C.M. Present and not reporting for duty: ds RNA i in mammalian cells. EMBO J., 2016, 35(23), 2499-2501.
[http://dx.doi.org/10.15252/embj.201695933] [PMID: 27834221]
[22]
Li, Y.; Basavappa, M.; Lu, J.; Dong, S.; Cronkite, D.A.; Prior, J.T.; Reinecker, H.C.; Hertzog, P.; Han, Y.; Li, W.X.; Cheloufi, S.; Karginov, F.V.; Ding, S.W.; Jeffrey, K.L. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat. Microbiol., 2017, 2(3), 16250.
[http://dx.doi.org/10.1038/nmicrobiol.2016.250] [PMID: 27918527]
[23]
Wu, X.; Dao Thi, V.L.; Huang, Y.; Billerbeck, E.; Saha, D.; Hoffmann, H.H.; Wang, Y.; Silva, L.A.V.; Sarbanes, S.; Sun, T.; Andrus, L.; Yu, Y.; Quirk, C.; Li, M.; MacDonald, M.R.; Schneider, W.M.; An, X.; Rosenberg, B.R.; Rice, C.M. Intrinsic immunity shapes viral resistance of stem cells. Cell, 2018, 172(3), 423-438.e25.
[http://dx.doi.org/10.1016/j.cell.2017.11.018] [PMID: 29249360]
[24]
Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol., 2014, 32(1), 513-545.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120231] [PMID: 24555472]
[25]
Silvin, A.; Yu, C.I.; Lahaye, X.; Imperatore, F.; Brault, J.B.; Cardinaud, S.; Becker, C.; Kwan, W.H.; Conrad, C.; Maurin, M.; Goudot, C.; Marques-Ladeira, S.; Wang, Y.; Pascual, V.; Anguiano, E.; Albrecht, R.A.; Iannacone, M.; García-Sastre, A.; Goud, B.; Dalod, M.; Moris, A.; Merad, M.; Palucka, A.K.; Manel, N. Constitutive resistance to viral infection in human CD141+ dendritic cells. Sci. Immunol., 2017, 2(13), eaai8071.
[http://dx.doi.org/10.1126/sciimmunol.aai8071]
[26]
Grzywacz, B.; Kataria, N.; Kataria, N.; Blazar, B.R.; Miller, J.S.; Verneris, M.R. Natural killer–cell differentiation by myeloid progenitors. Blood, 2011, 117(13), 3548-3558.
[http://dx.doi.org/10.1182/blood-2010-04-281394] [PMID: 21173117]
[27]
Kuss-Duerkop, S.; Westrich, J.; Pyeon, D. DNA tumor virus regulation of host DNA methylation and its implications for immune evasion and oncogenesis. Viruses, 2018, 10(2), 82.
[http://dx.doi.org/10.3390/v10020082] [PMID: 29438328]
[28]
Curradi, M.; Izzo, A.; Badaracco, G.; Landsberger, N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol., 2002, 22(9), 3157-3173.
[http://dx.doi.org/10.1128/MCB.22.9.3157-3173.2002] [PMID: 11940673]
[29]
Kass, S.U.; Landsberger, N.; Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol., 1997, 7(3), 157-165.
[http://dx.doi.org/10.1016/S0960-9822(97)70086-1] [PMID: 9395433]
[30]
Cicchini, L.; Blumhagen, R.Z.; Westrich, J.A.; Myers, M.E.; Warren, C.J.; Siska, C.; Raben, D.; Kechris, K.J.; Pyeon, D. High-risk human papillomavirus E7 alters host DNA methylome and represses HLA-E expression in human keratinocytes. Sci. Rep., 2017, 7(1), 3633.
[http://dx.doi.org/10.1038/s41598-017-03295-7] [PMID: 28623356]
[31]
Hattori, N.; Ushijima, T. Epigenetic impact of infection on carcinogenesis: Mechanisms and applications. Genome Med., 2016, 8(1), 10.
[http://dx.doi.org/10.1186/s13073-016-0267-2] [PMID: 26823082]
[32]
Anderson, D.; Neri, J.I.C.F.; Souza, C.R.M.; Valverde, J.G.; De Araújo, J.M.G.; Nascimento, M.D.S.B.; Branco, R.C.C.; Arrais, N.M.R.; Lassmann, T.; Blackwell, J.M.; Jeronimo, S.M.B. Zika virus changes methylation of genes involved in immune response and neural development in Brazilian babies born with congenital microcephaly. J. Infect. Dis., 2021, 223(3), 435-440.
[http://dx.doi.org/10.1093/infdis/jiaa383] [PMID: 32614431]
[33]
Jamieson, S.E.; de Roubaix, L.A.; Cortina-Borja, M.; Tan, H.K.; Mui, E.J.; Cordell, H.J.; Kirisits, M.J.; Miller, E.N.; Peacock, C.S.; Hargrave, A.C.; Coyne, J.J.; Boyer, K.; Bessieres, M.H.; Buffolano, W.; Ferret, N.; Franck, J.; Kieffer, F.; Meier, P.; Nowakowska, D.E.; Paul, M.; Peyron, F.; Stray-Pedersen, B.; Prusa, A.R.; Thulliez, P.; Wallon, M.; Petersen, E.; McLeod, R.; Gilbert, R.E.; Blackwell, J.M. Genetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis. PLoS One, 2008, 3(6), e2285.
[http://dx.doi.org/10.1371/journal.pone.0002285] [PMID: 18523590]
[34]
Janssens, S.; Schotsaert, M.; Karnik, R.; Balasubramaniam, V.; Dejosez, M.; Meissner, A.; García-Sastre, A.; Zwaka, T.P. Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain. mSystems, 2018, 3(1), e00219-17.
[http://dx.doi.org/10.1128/mSystems.00219-17] [PMID: 29435496]
[35]
Pruimboom, L. Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. Front Cell Infect Microbiol., 2020, 10, 290.
[http://dx.doi.org/10.3389/fcimb.2020.00290]
[36]
Matoušková, M.; Blažková, J.; Pajer, P.; Pavlíček, A.; Hejnar, J. CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Exp. Cell Res., 2006, 312(7), 1011-1020.
[http://dx.doi.org/10.1016/j.yexcr.2005.12.010] [PMID: 16427621]
[37]
Sawalha, A.H.; Zhao, M.; Coit, P.; Lu, Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin. Immunol., 2020, 215, 108410.
[http://dx.doi.org/10.1016/j.clim.2020.108410] [PMID: 32276140]
[38]
Balzanelli, M.G.; Distratis, P.; Dipalma, G.; Vimercati, L.; Inchingolo, A.D.; Lazzaro, R.; Aityan, S.K.; Maggiore, M.E.; Mancini, A.; Laforgia, R.; Pezzolla, A.; Tomassone, D.; Pham, V.H.; Iacobone, D.; Castrignano, A.; Scarano, A.; Lorusso, F.; Tafuri, S.; Migliore, G.; Inchingolo, A.M.; Nguyen, K.C.D.; Toai, T.C.; Inchingolo, F.; Isacco, C.G. Sars-CoV-2 virus infection may interfere CD34+ hematopoietic stem cells and megakaryocyte–erythroid progenitors differentiation contributing to platelet defection towards insurgence of thrombocytopenia and thrombophilia. Microorganisms, 2021, 9(8), 1632.
[http://dx.doi.org/10.3390/microorganisms9081632] [PMID: 34442710]
[39]
Bellocchio, L.; Bordea, I.R.; Ballini, A.; Lorusso, F.; Hazballa, D.; Isacco, C.G.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Inchingolo, F.; Piscitelli, P.; Logroscino, G.; Miani, A. Environmental issues and neurological manifestations associated with COVID-19 pandemic: New aspects of the disease? Int. J. Environ. Res. Public Health, 2020, 17(21), 8049.
[http://dx.doi.org/10.3390/ijerph17218049] [PMID: 33139595]
[40]
Losikoff, P.T.; Self, A.A.; Gregory, S.H. Dendritic cells, regulatory T cells and the pathogenesis of chronic hepatitis C. Virulence, 2012, 3(7), 610-620.
[http://dx.doi.org/10.4161/viru.21823] [PMID: 23076334]
[41]
Oldstone, M.B.A. Molecular mimicry, microbial infection, and autoimmune disease: Evolution of the concept. Curr. Top. Microbiol. Immunol., 2005, 296, 1-17.
[http://dx.doi.org/10.1007/3-540-30791-5_1] [PMID: 16329189]
[42]
Lucas, M.; Karrer, U.R.S.; Lucas, A.; Klenerman, P. Viral escape mechanisms - Escapology taught by viruses. Int. J. Exp. Pathol., 2001, 82(5), 269-286.
[http://dx.doi.org/10.1046/j.1365-2613.2001.00204.x] [PMID: 11703537]
[43]
Charitos, I.A.; Ballini, A.; Lovero, R.; Castellaneta, F.; Colella, M.; Scacco, S.; Cantore, S.; Arrigoni, R.; Mastrangelo, F.; Dioguardi, M. Update on COVID-19 and effectiveness of a vaccination campaign in a global context. Int. J. Environ. Res. Public Health, 2022, 19(17), 10712.
[http://dx.doi.org/10.3390/ijerph191710712] [PMID: 36078427]
[44]
Jawa, V.; Cousens, L.P.; Awwad, M.; Wakshull, E.; Kropshofer, H.; De Groot, A.S. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin. Immunol., 2013, 149(3), 534-555.
[http://dx.doi.org/10.1016/j.clim.2013.09.006] [PMID: 24263283]
[45]
Balzanelli, M.G.; Distratis, P.; Dipalma, G.; Vimercati, L.; Catucci, O.; Amatulli, F.; Cefalo, A.; Lazzaro, R.; Palazzo, D.; Aityan, S.K.; Pricolo, G.; Prudenzano, A.; D’Errico, P.; Laforgia, R.; Pezzolla, A.; Tomassone, D.; Inchingolo, A.D.; Pham, V.H.; Iacobone, D.; Materi, G.M.; Scarano, A.; Lorusso, F.; Inchingolo, F.; Nguyen, K.C.D.; Isacco, C.G. Immunity profiling of COVID-19 infection, dynamic variations of lymphocyte subsets, a comparative analysis on four different groups. Microorganisms, 2021, 9(10), 2036.
[http://dx.doi.org/10.3390/microorganisms9102036] [PMID: 34683357]
[46]
Gallo, A.; Bulati, M.; Miceli, V.; Amodio, N.; Conaldi, P.G. Non-Coding RNAs: Strategy for viruses' offensive. Noncoding RNA, 2020, 6(3), 38.
[http://dx.doi.org/10.3390/ncrna6030038]
[47]
Phan, D.Q.; Nguyen, L.D.N.; Pham, S.T.; Nguyen, T.; Pham, P.T.T.; Nguyen, S.T.H.; Pham, D.T.; Pham, H.T.; Tran, D.K.; Le, S.H.; Pham, T.T.; Nguyen, K.C.D.; Dipalma, G.; Inchingolo, A.D.; Piscitelli, P.; Miani, A.; Salvatore, S.; Cantore, S.; Aityan, S.K.; Ballini, A.; Inchingolo, F.; Gargiulo Isacco, C.; Pham, V.H. The distribution of dengue virus serotype in Quang Nam Province (Vietnam) during the outbreak in 2018. Int. J. Environ. Res. Public Health, 2022, 19(3), 1285.
[http://dx.doi.org/10.3390/ijerph19031285] [PMID: 35162303]
[48]
Dellino, M.; Cascardi, E.; Vinciguerra, M.; Lamanna, B.; Malvasi, A.; Scacco, S.; Acquaviva, S.; Pinto, V.; Di Vagno, G.; Cormio, G.; De Luca, R.; Lafranceschina, M.; Cazzato, G.; Ingravallo, G.; Maiorano, E.; Resta, L.; Daniele, A.; La Forgia, D. Nutrition as personalized medicine against SARS-CoV-2 infections: Clinical and oncological options with a specific female groups overview. Int. J. Mol. Sci., 2022, 23(16), 9136.
[http://dx.doi.org/10.3390/ijms23169136] [PMID: 36012402]
[49]
Plowman, T.; Lagos, D. Non-coding RNAs in COVID-19: Emerging insights and current questions. Noncoding RNA, 2021, 7(3), 54.
[http://dx.doi.org/10.3390/ncrna7030054] [PMID: 34564316]
[50]
Guo, Y.L. Utilization of different anti‐viral mechanisms by mammalian embryonic stem cells and differentiated cells. Immunol. Cell Biol., 2017, 95(1), 17-23.
[http://dx.doi.org/10.1038/icb.2016.70] [PMID: 27485807]
[51]
Selmani, Z.; Naji, A.; Zidi, I.; Favier, B.; Gaiffe, E.; Obert, L.; Borg, C.; Saas, P.; Tiberghien, P.; Rouas-Freiss, N.; Carosella, E.D.; Deschaseaux, F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells, 2008, 26(1), 212-222.
[http://dx.doi.org/10.1634/stemcells.2007-0554] [PMID: 17932417]
[52]
Gargiulo, C.; Pham, V.H.; Nguyen, K.C.D.; Kim, N.D.; Van, T.N.; Tuan, A.L.; Abe, K.; Shiffman, M. Toxoplasmosis gondii infection and diabetes mellitus type 2 treated by using autologous peripheral blood stem cells a unique case report of a caucasian 83 year old lady. Biomed. Res. Ther., 2015, 2(8), 19.
[http://dx.doi.org/10.7603/s40730-015-0019-8]
[53]
Tamma, R.; Limongelli, L.; Maiorano, E.; Pastore, D.; Cascardi, E.; Tempesta, A.; Carluccio, P.; Mastropasqua, M.G.; Capodiferro, S.; Covelli, C.; Pentenero, M.; Annese, T.; Favia, G.; Specchia, G.; Ribatti, D. Vascular density and inflammatory infiltrate in primary oral squamous cell carcinoma and after allogeneic hematopoietic stem cell transplantation. Ann. Hematol., 2019, 98(4), 979-986.
[http://dx.doi.org/10.1007/s00277-018-3575-3] [PMID: 30519712]
[54]
Pham, V.H.; Gargiulo Isacco, C.; Nguyen, K.C.D.; Le, S.H.; Tran, D.K.; Nguyen, Q.V.; Pham, H.T.; Aityan, S.; Pham, S.T.; Cantore, S.; Inchingolo, A.M.; Inchingolo, A.D.; Dipalma, G.; Ballini, A.; Inchingolo, F. Rapid and sensitive diagnostic procedure for multiple detection of pandemic Coronaviridae family members SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV: a translational research and cooperation between the Phan Chau Trinh University in Vietnam and University of Bari “Aldo Moro” in Italy. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(12), 7173-7191.
[http://dx.doi.org/10.26355/eurrev_202006_21713] [PMID: 32633414]
[55]
Inchingolo, A.D.; Dipalma, G.; Inchingolo, A.M.; Malcangi, G.; Santacroce, L.; D’Oria, M.T.; Isacco, C.G.; Bordea, I.R.; Candrea, S.; Scarano, A.; Morandi, B.; Del Fabbro, M.; Farronato, M.; Tartaglia, G.M.; Balzanelli, M.G.; Ballini, A.; Nucci, L.; Lorusso, F.; Taschieri, S.; Inchingolo, F. The 15-months clinical experience of SARS-CoV-2: A literature review of therapies and adjuvants. Antioxidants, 2021, 10(6), 881.
[http://dx.doi.org/10.3390/antiox10060881] [PMID: 34072708]
[56]
Charitos, I.A.; Ballini, A.; Bottalico, L.; Cantore, S.; Passarelli, P.C.; Inchingolo, F.; D’Addona, A.; Santacroce, L. Special features of SARS-CoV-2 in daily practice. World J. Clin. Cases, 2020, 8(18), 3920-3933.
[http://dx.doi.org/10.12998/wjcc.v8.i18.3920] [PMID: 33024749]
[57]
Yu, L.; Xu, Y.; Wang, F.; Yang, C.; Liu, G.; Song, X. Functional roles of pattern recognition receptors that recognize virus nucleic acids in human adipose-derived mesenchymal stem cells. BioMed Res. Int., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/9872138] [PMID: 28105439]
[58]
Mastrangelo, F.; Scacco, S.; Ballini, A.; Quaresima, R.; Gnoni, A.; De Vito, D.; Scarano, A.; Dipalma, G.; Gargiulo Isacco, C.; Cantore, S.; Coscia, M.F.; Pettini, F.; Sammartino, G.; Cicciù, M.; Conti, P.; Lo Muzio, L. A pilot study of human mesenchymal stem cells from visceral and sub-cutaneous fat tissue and their differentiation to osteogenic phenotype. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(7), 2924-2934.
[http://dx.doi.org/10.26355/eurrev_201904_17572] [PMID: 31002143]
[59]
Pugliese, D.; Melfa, F.; Guarino, E.; Cascardi, E.; Maggi, M.; Ferrari, E.; Maiorano, E. Histopathological features of tissue alterations induced by cryolipolysis on human adipose tissue. Aesthet. Surg. J., 2020, 40(7), 761-766.
[http://dx.doi.org/10.1093/asj/sjaa035] [PMID: 32240286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy