Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Review of Antidepressant Effects and Mechanisms of Three Common Herbal Medicines: Panax ginseng, Bupleurum chinense, and Gastrodia elata

Author(s): Dan Mu and Qin Ma*

Volume 22, Issue 8, 2023

Published on: 29 December, 2022

Page: [1164 - 1175] Pages: 12

DOI: 10.2174/1871527322666221116164836

open access plus

Abstract

Objectives: Major depressive disorder (MDD) has been reported to affect an increasing number of individuals due to the modern lifestyle. Because of its complicated mechanisms and recurrent attacks, MDD is considered a refractory chronic disease. Although the mainstream therapy for MDD is chemical drugs, they are not a panacea for MDD because of their expensiveness, associated serious adverse reactions, and endless treatment courses. Hence, we studied three kinds of herbal medicines, namely, Panax ginseng C.A. Mey (PGM), Bupleurum chinense DC (BCD), and Gastrodia elata Blume (GEB), and reviewed the mechanisms underlying their antidepressant properties to provide a reference for the development of antidepressants and clinical medications.

Methods: An extensive range of medicinal, clinical, and chemistry databases and search engines were used for our literature search. We searched the literature using certain web literature search engines, including Google Scholar, PubMed, Science Direct, CNKI (China National Knowledge Infrastructure), and Web of Science.

Results: Experimental research found that active compounds of these three medicines exhibited good antidepressant effects in vivo and in vitro. Clinical investigations revealed that single or combined treatment of these medicines improved certain depressive symptoms. Antidepressant mechanisms are summarized based on this research.

Conclusion: The antidepressant mechanism of these three medicines includes but is not limited to ameliorating inflammation within the brain, reversing the hypothalamic-pituitary adrenal axis (HPA) system hyperfunction, inhibiting monoamine neurotransmitters reuptake, anti-neuron apoptosis and preventing neurotoxicity, and regulating depressive-related pathways such as the BDNF pathway and the PI3K/Akt/mTOR pathway.

Graphical Abstract

[1]
Uchida S, Yamagata H, Seki T, Watanabe Y. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci 2018; 72(4): 212-27.
[http://dx.doi.org/10.1111/pcn.12621] [PMID: 29154458]
[2]
Gonda X, Petschner P, Eszlari N, et al. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2019; 194: 22-43.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.002] [PMID: 30189291]
[3]
Wang J, Patten SB, Currie S, Sareen J, Schmitz N. A population-based longitudinal study on work environmental factors and the risk of major depressive disorder. Am J Epidemiol 2012; 176(1): 52-9.
[http://dx.doi.org/10.1093/aje/kwr473] [PMID: 22556191]
[4]
Uher R, Farmer A, Henigsberg N, et al. Adverse reactions to antidepressants. Br J Psychiatry 2009; 195(3): 202-10.
[http://dx.doi.org/10.1192/bjp.bp.108.061960] [PMID: 19721108]
[5]
Coupland C, Hill T, Morriss R, Moore M, Arthur A, Hippisley-Cox J. Antidepressant use and risk of adverse outcomes in people aged 20-64 years: Cohort study using a primary care database. BMC Med 2018; 16(1): 36-59.
[http://dx.doi.org/10.1186/s12916-018-1022-x] [PMID: 29514662]
[6]
Anglin R, Yuan Y, Moayyedi P, Tse F, Armstrong D, Leontiadis GI. Risk of upper gastrointestinal bleeding with selective serotonin reuptake inhibitors with or without concurrent nonsteroidal anti-inflammatory use: A systematic review and meta-analysis. Am J Gastroenterol 2014; 109(6): 811-9.
[http://dx.doi.org/10.1038/ajg.2014.82] [PMID: 24777151]
[7]
Henssler J, Heinz A, Brandt L, Bschor T. Antidepressant withdrawal and rebound phenomena. Dtsch Arztebl Int 2019; 116(20): 355-61.
[PMID: 31288917]
[8]
Leonard BE. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 2018; 30(1): 1-16.
[http://dx.doi.org/10.1017/neu.2016.69] [PMID: 28112061]
[9]
Ma K, Zhang H, Baloch Z. Pathogenetic and therapeutic applications of Tumor Necrosis Factor-α (TNF-α) in major depressive disorder: A systematic review. Int J Mol Sci 2016; 17(5): 733-53.
[http://dx.doi.org/10.3390/ijms17050733] [PMID: 27187381]
[10]
Milenkovic VM, Stanton EH, Nothdurfter C, Rupprecht R, Wetzel CH. The role of chemokines in the pathophysiology of major depressive disorder. Int J Mol Sci 2019; 20(9): 2283-99.
[http://dx.doi.org/10.3390/ijms20092283] [PMID: 31075818]
[11]
Liu W, Ge T, Leng Y, et al. The role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/6871089] [PMID: 28246558]
[12]
Wu Z, Wang G, Wei Y, Xiao L, Wang H. PI3K/AKT/GSK3β/CRMP-2-mediated neuroplasticity in depression induced by stress. Neuroreport 2018; 29(15): 1256-63.
[http://dx.doi.org/10.1097/WNR.0000000000001096] [PMID: 30113922]
[13]
Chandran A, Iyo AH, Jernigan CS, Legutko B, Austin MC, Karolewicz B. Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40: 240-5.
[http://dx.doi.org/10.1016/j.pnpbp.2012.08.001] [PMID: 22889863]
[14]
Young SN. How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci 2007; 32(6): 394-9.
[PMID: 18043762]
[15]
Schildkraut JJ. The catecholamine hypothesis of affective disorders. A review of supporting evidence. Int J Psychiatry 1967; 4(3): 203-17.
[PMID: 4863731]
[16]
Meyer JH, Wilson AA, Sagrati S, et al. Brain monoamine oxidase A binding in major depressive disorder: Relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry 2009; 66(12): 1304-12.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.156] [PMID: 19996035]
[17]
Kim YJ, Jang MG, Zhu L, et al. Cytological characterization of anther development in Panax ginseng Meyer. Protoplasma 2016; 253(4): 1111-24.
[http://dx.doi.org/10.1007/s00709-015-0869-3] [PMID: 26277352]
[18]
Liu Z, Wang CZ, Zhu XY, et al. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: Identification of chemical characteristics for panax ginseng quality control. Molecules 2017; 22(5): 734-48.
[http://dx.doi.org/10.3390/molecules22050734] [PMID: 28471389]
[19]
Ovodov YS, Solov’eva TF. Polysaccharides of Panax ginseng. Chem Nat Compd 1966; 2(5): 243-5.
[http://dx.doi.org/10.1007/BF00566981]
[20]
Zhao B, Lv C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: A review of isolation, structures, and bioactivities. Int J Biol Macromol 2019; 133: 324-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.229] [PMID: 30943421]
[21]
Sun L, Wu D, Ning X, et al. α-Amylase-assisted extraction of polysaccharides from Panax ginseng Int J Biol Macromol 2015; 75: 152-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.025] [PMID: 25616118]
[22]
Fu PP, Gao QP, Wang WZ, Jiang RZ. Chemical properties and anti-tumoractivity of polysaccharides from roots of panax ginseng. J Nor Beth Univer Med Sci 1994; 20(5): 439-41.
[23]
Tomoda M, Shimada K, Konno C, Hikino H. Structure of panaxan B, a hypoglycaemic glycan of Panax ginseng roots. Phytochemistry 1985; 24(10): 2431-3.
[http://dx.doi.org/10.1016/S0031-9422(00)83057-5]
[24]
Sun L, Peng X, Sun P, et al. Structural characterization and immunostimulatory activity of a novel linear α-(1→6)-D-glucan isolated from Panax ginseng C. A. Meyer. Glycoconj J 2012; 29(5-6): 357-64.
[http://dx.doi.org/10.1007/s10719-012-9403-4] [PMID: 22684214]
[25]
Zhao JL, Zhang M, Zhou HL. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules 2019; 24(8): 1605-23.
[http://dx.doi.org/10.3390/molecules24081605] [PMID: 31018583]
[26]
Lee B, Kim H, Shim I, Lee H, Hahm DH. Wild ginseng attenuates anxiety- and depression-like behaviors during morphine withdrawal. J Microbiol Biotechnol 2011; 21(10): 1088-96.
[http://dx.doi.org/10.4014/jmb.1106.06027] [PMID: 22031036]
[27]
Kim EH, Jang MH, Shin MC, Shin MS, Kim CJ. Protective effect of aqueous extract of Ginseng radix against 1-methyl-4-phenylpyridinium-induced apoptosis in PC12 cells. Biol Pharm Bull 2003; 26(12): 1668-73.
[http://dx.doi.org/10.1248/bpb.26.1668] [PMID: 14646168]
[28]
Kang A, Hao H, Zheng X, et al. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J Neuroinflammation 2011; 8(1): 100-13.
[http://dx.doi.org/10.1186/1742-2094-8-100] [PMID: 21843370]
[29]
Wang J, Flaisher-Grinberg S, Li S, et al. Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice. J Ethnopharmacol 2010; 132(1): 65-9.
[http://dx.doi.org/10.1016/j.jep.2010.07.042] [PMID: 20673793]
[30]
Lee B, Shim I, Lee H, Hahm DH. Effect of ginsenoside Re on depression- and anxiety-like behaviors and cognition memory deficit induced by repeated immobilization in rats. J Microbiol Biotechnol 2012; 22(5): 708-20.
[http://dx.doi.org/10.4014/jmb.1112.12046] [PMID: 22561867]
[31]
Cui J, Jiang L, Xiang H. Ginsenoside Rb3 exerts antidepressant-like effects in several animal models. J Psychopharmacol 2012; 26(5): 697-713.
[http://dx.doi.org/10.1177/0269881111415735] [PMID: 21948936]
[32]
Björkholm C, Monteggia LM. BDNF-A key transducer of antidepressant effects. Neuropharmacology 2016; 102: 72-9.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[33]
Yan B, He J, Xu H, et al. Quetiapine attenuates the depressive and anxiolytic-like behavioural changes induced by global cerebral ischemia in mice. Behav Brain Res 2007; 182(1): 36-41.
[http://dx.doi.org/10.1016/j.bbr.2007.05.002] [PMID: 17568696]
[34]
Szuhany KL, Otto MW. Assessing BDNF as a mediator of the effects of exercise on depression. J Psychiatr Res 2020; 123: 114-8.
[http://dx.doi.org/10.1016/j.jpsychires.2020.02.003] [PMID: 32065946]
[35]
Xu C, Teng J, Chen W, et al. 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(8): 1402-11.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.010] [PMID: 20647027]
[36]
Zhang H, Li Z, Zhou Z, Yang H, Zhong Z, Lou C. Antidepressant-like effects of ginsenosides: A comparison of ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K, and 20(S)-protopanaxadiol in mice models of despair. Pharmacol Biochem Behav 2016; 140: 17-26.
[http://dx.doi.org/10.1016/j.pbb.2015.10.018] [PMID: 26528894]
[37]
Jeong HG, Ko YH, Oh SY, Han C, Kim T, Joe SH. Effect of Korean Red Ginseng as an adjuvant treatment for women with residual symptoms of major depression. Asia-Pac Psychiatry 2015; 7(3): 330-6.
[http://dx.doi.org/10.1111/appy.12169] [PMID: 25504813]
[38]
Yang F, Dong X, Yin X, Wang W, You L, Ni J. Radix Bupleuri: A review of traditional uses, botany, phytochemistry, pharmacology, and toxicology. BioMed Res Int 2017; 2017(May): 1-22.
[http://dx.doi.org/10.1155/2017/7597596] [PMID: 28593176]
[39]
Sun P, Li Y, Wei S, et al. Pharmacological effects and chemical constituents of Bupleurum. Mini Rev Med Chem 2018; 19(1): 34-55.
[http://dx.doi.org/10.2174/1871520618666180628155931] [PMID: 29956627]
[40]
Wang YX, Liu Q, Zhang M, et al. Polysaccharides from bupleurum induce immune reversal in late sepsis. Shock 2018; 49(4): 451-9.
[http://dx.doi.org/10.1097/SHK.0000000000000934] [PMID: 28658005]
[41]
Sun L, Feng K, Jiang R, et al. Water-soluble polysaccharide from Bupleurum chinense DC: Isolation, structural features and antioxidant activity. Carbohydr Polym 2010; 79(1): 180-3.
[http://dx.doi.org/10.1016/j.carbpol.2009.07.044]
[42]
Di HY, Zhang YY, Chen DF. Isolation of an anti-complementary polysaccharide from the root of Bupleurum chinense and identification of its targets in complement activation cascade. Chin J Nat Med 2013; 11(2): 177-84.
[http://dx.doi.org/10.1016/S1875-5364(13)60046-1] [PMID: 23787186]
[43]
Li XQ, Song YN, Wang SJ, Rahman K, Zhu JY, Zhang H. Saikosaponins: A review of pharmacological effects. J Asian Nat Prod Res 2018; 20(5): 399-411.
[http://dx.doi.org/10.1080/10286020.2018.1465937] [PMID: 29726699]
[44]
Liu S, Lu S, Su Y, Guo Y. Analysis of volatile compounds in radix bupleuri injection by GC-MS-MS. Chromatographia 2011; 74(5-6): 497-502.
[http://dx.doi.org/10.1007/s10337-011-2082-7]
[45]
Tan LL, Hu ZH, Cai X, Chen Y, Shi WJ. Histochemecal localization and the content compare of main medicinal components of vegetative organs in Bupleurum chinense DC. Fen Zi Xi Bao Sheng Wu Xue Bao 2007; 40(4): 214-22.
[PMID: 17966458]
[46]
Yang L, Yang L, Yang X, et al. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 2020; 177: 112434.
[http://dx.doi.org/10.1016/j.phytochem.2020.112434] [PMID: 32544729]
[47]
Yang L, Shergis JL, Di YM, et al. Managing depression with Bupleurum chinense herbal formula: A systematic review and meta-analysis of randomized controlled trials. J Altern Complement Med 2020; 26(1): 8-24.
[http://dx.doi.org/10.1089/acm.2019.0105] [PMID: 31328996]
[48]
Sun X, Li X, Pan R, Xu Y, Wang Q, Song M. Total Saikosaponins of Bupleurum yinchowense reduces depressive, anxiety-like behavior and increases synaptic proteins expression in chronic corticosterine-treated mice. BMC Complement Altern Med 2018; 18(1): 117-26.
[http://dx.doi.org/10.1186/s12906-018-2186-9] [PMID: 29609584]
[49]
Chen L, Zhang YP, Jin LX. Preparation, characterization and anti-ageing activity of Gastrodia elata blume polysaccharide. Acta Aliment 2018; 47(2): 210-9.
[http://dx.doi.org/10.1556/066.2018.47.2.10]
[50]
Cai ZZ, Xu GY, Dong HY. Protective effect of saikosaponin on the hippocampal neuron of depression model rats. Med Innov China 2016; (3): 28-80.
[51]
Li HY, Zhao YH, Zeng MJ, et al. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: Involvement of HPA axis and hippocampal neurogenesis. Psychopharmacology (Berl) 2017; 234(22): 3385-94.
[http://dx.doi.org/10.1007/s00213-017-4720-8] [PMID: 28875366]
[52]
Li ZY, Jiang YM, Liu YM, et al. Saikosaponin D acts against corticosterone-induced apoptosis via regulation of mitochondrial GR translocation and a GR-dependent pathway. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53: 80-9.
[http://dx.doi.org/10.1016/j.pnpbp.2014.02.010] [PMID: 24636912]
[53]
Sun Y, Xu X, Zhang J, Chen Y. Treatment of depression with Chai Hu Shu Gan San: A systematic review and meta-analysis of 42 randomized controlled trials. BMC Complement Altern Med 2018; 18(1): 66-78.
[http://dx.doi.org/10.1186/s12906-018-2130-z] [PMID: 29454341]
[54]
Li P, Xu JG, Ji D, et al. Correlation between appearance characteristics and intrinsic quality of Gastrodiae Rhizoma. Zhongguo Zhongyao Zazhi 2019; 44(20): 4460-6.
[PMID: 31872633]
[55]
Li L, Zhang Y, Cheng QZ. Analysis and evaluation of ecological environment in Gastrodia elata production area. Res Info Tradit Chin Med 2004; 6(6): 14-16+22.
[56]
Feng XZ. Studies on Constituents of Tian-ma (Gastrodia data Bl.). Acta Chimi Sin 1979.
[57]
Zhou J. The chemistry of Gastrodia elata BL.I. The isolation and identification of chemical constituents of Gastrodia elata BL. Acta Chimi Sin 1979.
[58]
Jer-Huei Lin Yi-Chu Liu, Jiing-Ping Hau, Kuo-Ching Wen. Parishins B and C from rhizomes of Gastrodia elata. Phytochemistry 1996; 42(2): 549-51.
[http://dx.doi.org/10.1016/0031-9422(95)00955-8]
[59]
Li N, Wang KJ, Chen JJ, Zhou J. Phenolic compounds from the rhizomes of Gastrodia elata. J Asian Nat Prod Res 2007; 9(4): 373-7.
[http://dx.doi.org/10.1080/10286020600780979] [PMID: 17613623]
[60]
Zhang ZC, Su G, Li J, Wu H, Xie XD. Two new neuroprotective phenolic compounds from Gastrodia elata. J Asian Nat Prod Res 2013; 15(6): 619-23.
[http://dx.doi.org/10.1080/10286020.2013.791286] [PMID: 23659598]
[61]
Wang Y, Lin S, Chen M, et al. Chemical constituents from aqueous extract of Gastrodia elata. Zhongguo Zhongyao Zazhi 2012; 37(12): 1775-81.
[PMID: 22997823]
[62]
Li Z, Wang Y, Ouyang H, et al. A novel dereplication strategy for the identification of two new trace compounds in the extract of Gastrodia elata using UHPLC/Q-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988: 45-52.
[http://dx.doi.org/10.1016/j.jchromb.2015.02.020] [PMID: 25746751]
[63]
Li JL, Zhao Z, Liu HC, et al. Content of mineral elements of Gastrodia elata by principal components analysis. Zhongguo Zhongyao Zazhi 2015; 40(6): 1123-8.
[PMID: 26226757]
[64]
Qiu H, Tang W, Tong X, Ding K, Zuo J. Structure elucidation and sulfated derivatives preparation of two α-d-glucans from Gastrodia elata Bl. and their anti-dengue virus bioactivities. Carbohydr Res 2007; 342(15): 2230-6.
[http://dx.doi.org/10.1016/j.carres.2007.06.021] [PMID: 17637459]
[65]
Chen PJ, Sheen LY. Gastrodiae Rhizoma (tiān má): A review of biological activity and antidepressant mechanisms. J Tradit Complement Med 2011; 1(1): 31-40.
[http://dx.doi.org/10.1016/S2225-4110(16)30054-2] [PMID: 24716103]
[66]
Chen J, Tian S, Shu X, Du H, Li N, Wang J. Extraction, characterization and immunological activity of polysaccharides from Rhizoma gastrodiae. Int J Mol Sci 2016; 17(7): 1011-24.
[http://dx.doi.org/10.3390/ijms17071011] [PMID: 27347944]
[67]
Lee OH, Kim KI, Han CK, Kim YC, Hong HD. Effects of acidic polysaccharides from gastrodia rhizome on systolic blood pressure and serum lipid concentrations in spontaneously hypertensive rats fed a high-fat diet. Int J Mol Sci 2012; 13(1): 698-709.
[http://dx.doi.org/10.3390/ijms13010698] [PMID: 22312280]
[68]
Bao Q, Qian L, Gong C, Shen X. Immune-enhancing activity of polysaccharides from Gastrodia elata. J Food Process Preserv 2017; 41(4): e13016.
[http://dx.doi.org/10.1111/jfpp.13016]
[69]
Zhu ZY, Chen CJ, Sun HQ, Chen LJ. Structural characterisation and ACE-inhibitory activities of polysaccharide from Gastrodia elata Blume. Nat Prod Res 2019; 33(12): 1721-6.
[http://dx.doi.org/10.1080/14786419.2018.1434643] [PMID: 29394871]
[70]
Chen XQ, Chen SJ, Liang WN, et al. Saikosaponin A attenuates perimenopausal depression-like symptoms by chronic unpredictable mild stress. Neurosci Lett 2018; 662: 283-9.
[http://dx.doi.org/10.1016/j.neulet.2017.09.046] [PMID: 28958685]
[71]
Wang YW, Li ZF, He MZ, Feng YL, Wang Q, Li X, et al. Chemical constituents of Gastrodia elata. Chin Tradit Herbal Drugs 2013; 44(21): 2974-6.
[72]
Duan XH, Li ZL, Yang DS, Zhang FL, Lin Q, Dai R. Study on the chemical constituents of Gastrodia elata. Zhong Yao Cai 2013; 36(10): 1608-11.
[PMID: 24761669]
[73]
Hao XY, Tian NH, Zhou J. Constituents of Gastrodia elata in Guizhou. Yunnan Zhi Wu Yan Jiu 2000; 22: 81-4.
[74]
Chen X, Cao D, Zhou L, et al. Structure of a polysaccharide from Gastrodia elata Bl., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities. Carbohydr Polym 2011; 86(3): 1300-5.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.029]
[75]
Liu Y, Gao J, Peng M, et al. A review on central nervous system effects of gastrodin. Front Pharmacol 2018; 9(Feb): 24.
[http://dx.doi.org/10.3389/fphar.2018.00024] [PMID: 29456504]
[76]
Chen WC, Lai YS, Lin SH, et al. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J Ethnopharmacol 2016; 182: 190-9.
[http://dx.doi.org/10.1016/j.jep.2016.02.001] [PMID: 26899441]
[77]
Lin SH, Chen WC, Lu KH, et al. Down-regulation of Slit-Robo pathway mediating neuronal cytoskeletal remodeling processes facilitates the antidepressive-like activity of Gastrodia elata Blume. J Agric Food Chem 2014; 62(43): 10493-503.
[http://dx.doi.org/10.1021/jf503132c] [PMID: 25197951]
[78]
Tong M, Jun T, Nie Y, Hao J, Fan D. The role of the slit/robo signaling pathway. J Cancer 2019; 10(12): 2694-705.
[http://dx.doi.org/10.7150/jca.31877] [PMID: 31258778]
[79]
Lin YE, Lin SH, Chen WC, et al. Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol 2016; 187: 57-65.
[http://dx.doi.org/10.1016/j.jep.2016.04.032] [PMID: 27109341]
[80]
Ye T, Meng X, Wang R, et al. Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db Mice. Int J Mol Sci 2018; 19(12): 3977-91.
[http://dx.doi.org/10.3390/ijms19123977] [PMID: 30544722]
[81]
Zhang Y, Liu L, Liu YZ, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol 2015; 18(8): pyv006.
[http://dx.doi.org/10.1093/ijnp/pyv006] [PMID: 25603858]
[82]
Shen R, Ma D, Chen Y, Lin H. Clinical observation of acupoint injection of Gastrodin injection inpatients with depression. J Int Psychiatry 2018; 45(1): 75-7.
[83]
Jing FC, Guo JX, Tan Y. Effects of gastrodin on functional dyspepsia patients with anxiety and depression. Chin J Clin Pharmaco Ther 2010; 15(8): 924-6.
[84]
Sun MJ, Kang TT. Clinical research on tianma gouteng decoction in treating dizziness and headache of depression. China J Chin Med 2012; 27(8): 1011-2.
[85]
Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res 2013; 23(2): 131-44.
[http://dx.doi.org/10.1007/s12640-012-9348-1] [PMID: 22895696]
[86]
Huang Y, Smith DE, Ibáñez-Sandoval O, Sims JE, Friedman WJ. Neuron-specific effects of interleukin-1β are mediated by a novel isoform of the IL-1 receptor accessory protein. J Neurosci 2011; 31(49): 18048-59.
[http://dx.doi.org/10.1523/JNEUROSCI.4067-11.2011] [PMID: 22159118]
[87]
Maes M, Bosmans E, Meltzer HY, Scharpé S, Suy E. Interleukin-1 beta: A putative mediator of HPA axis hyperactivity in major depression? Am J Psychiatry 1993; 150(8): 1189-93.
[http://dx.doi.org/10.1176/ajp.150.8.1189] [PMID: 8328562]
[88]
Keller J, Gomez R, Williams G, et al. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22(4): 527-36.
[http://dx.doi.org/10.1038/mp.2016.120] [PMID: 27528460]
[89]
Arantes-Gonçalves F, Coelho R. Depression and treatment. Apoptosis, neuroplasticity and antidepressants. Acta Med Port 2006; 19(1): 9-20.
[PMID: 16987439]
[90]
Dong Z, Hu Z, Zhu H, et al. Tris-(2,3-dibromopropyl) isocyanurate induces depression-like behaviors and neurotoxicity by oxidative damage and cell apoptosis in vitro and in vivo. J Toxicol Sci 2015; 40(6): 701-9.
[http://dx.doi.org/10.2131/jts.40.701] [PMID: 26558450]
[91]
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-type drugs in tumor cell death: Mechanisms, combination treatment with biologics and nanoparticle delivery. Pharmaceutics 2022; 14(2): 395-422.
[http://dx.doi.org/10.3390/pharmaceutics14020395] [PMID: 35214127]
[92]
Henrici RC, van Schalkwyk DA, Sutherland CJ. Modification of pfap2μ and pfubp1 markedly reduces ring-stage susceptibility of plasmodium falciparum to artemisinin in vitro. Antimicrob Agents Chemother 2019; 64(1): e01542-19.
[http://dx.doi.org/10.1128/AAC.01542-19] [PMID: 31636063]
[93]
Liu JL, Jin RY, Zhang GH, Liang YN. Density functional theory studies on structure-antimalarial activity relationship of artemisinin and its analogues. Nat Prod Res Dev 2017; 31(1): 44-8.

© 2025 Bentham Science Publishers | Privacy Policy