Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Nanoscale Carriers for Therapy of Alzheimer's Disease: Current Strategies and Perspectives

Author(s): Lucia Zakharova*, Gulnara Gaynanova, Elmira Vasilieva, Leysan Vasileva, Rais Pavlov, Ruslan Kashapov, Konstantin Petrov and Oleg Sinyashin

Volume 30, Issue 33, 2023

Published on: 28 December, 2022

Page: [3743 - 3774] Pages: 32

DOI: 10.2174/0929867330666221115103513

Price: $65

Abstract

This review covers nanotherapeutic strategies for solving the global problems associated with Alzheimer's disease (AD). The most dramatic factor contributing humanistic, social and economic urgency of the situation is the incurability of the disease, with the drug intervention addressing only AD symptoms and retarding their progress. Key sources behind these challenges are the inability of the early diagnosis of AD, the lack of comprehensive information on the molecular mechanism of the pathogenesis, the bloodbrain barrier obstacles, and the insufficient effectiveness of currently available drugs and therapeutic strategies. The application of nanocarriers allows part of these problems to be solved, together with the improvement of drug bioavailability, prolonged circulation, and overcoming/bypassing the biological barriers. To this date, numerous types and subtypes of nanocarriers are developed and reviewed, the majority of which can be adapted for the treatment of various diseases. Therefore, herein, nanotherapy strategies are specifically categorized in term of the administration routes of AD medicines, with the noninvasive, i.e., transdermal, oral, and intranasal routes emphasized. Further, benefits/ limitations of various nanocarriers are discussed, and perspectives of their application are highlighted.

[1]
Se Thoe, E.; Fauzi, A.; Tang, Y.Q.; Chamyuang, S.; Chia, A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci., 2021, 276, 119129-119151.
[http://dx.doi.org/10.1016/j.lfs.2021.119129] [PMID: 33515559]
[2]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 308(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[3]
Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 1976, 99(3), 459-496.
[http://dx.doi.org/10.1093/brain/99.3.459] [PMID: 11871]
[4]
Nguyen, T.T.; Nguyen, T.T.D.; Nguyen, T.K.O.; Vo, T.K.; Vo, V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother., 2021, 139, 111623-111632.
[http://dx.doi.org/10.1016/j.biopha.2021.111623] [PMID: 33915504]
[5]
Cummings, J.; Fox, N. Defining disease modifying therapy for Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4(2), 1-7.
[http://dx.doi.org/10.14283/jpad.2017.12] [PMID: 29071250]
[6]
Reiss, A.B.; Ahmed, S.; Dayaramani, C.; Glass, A.D.; Gomolin, I.H.; Pinkhasov, A.; Stecker, M.M.; Wisniewski, T.; De Leon, J. The role of mitochondrial dysfunction in Alzheimer’s disease: A potential pathway to treatment. Exp. Gerontol., 2022, 164, 111828-111836.
[http://dx.doi.org/10.1016/j.exger.2022.111828] [PMID: 35508280]
[7]
Kukharsky, M.S.; Ovchinnikov, R.K.; Bachurin, S.O. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2015, 115(6), 103-114.
[http://dx.doi.org/10.17116/jnevro20151156103-114] [PMID: 26438898]
[8]
Xi, Y.; Chen, Y.; Jin, Y.; Han, G.; Song, M.; Song, T.; Shi, Y.; Tao, L.; Huang, Z.; Zhou, J.; Ding, Y.; Zhang, H. Versatile nanomaterials for Alzheimer’s disease: Pathogenesis inspired disease-modifying therapy. J. Control. Release, 2022, 345, 38-61.
[http://dx.doi.org/10.1016/j.jconrel.2022.02.034] [PMID: 35257810]
[9]
Jellinger, K.A. Neuropathology of the Alzheimer’s continuum: an update. Free Neuropathol., 2020, 1, 32-65.
[10]
Bachurin, S.O.; Gavrilova, S.I.; Samsonova, A.; Barreto, G.E.; Aliev, G. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol. Res., 2018, 129, 216-226.
[http://dx.doi.org/10.1016/j.phrs.2017.11.021] [PMID: 29170097]
[11]
Makhaeva, G.F.; Shevtsova, E.F.; Boltneva, N.P.; Lushchekina, S.V.; Kovaleva, N.V.; Rudakova, E.V.; Bachurin, S.O.; Richardson, R.J. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer’s disease. Chem. Biol. Interact., 2019, 308, 224-234.
[http://dx.doi.org/10.1016/j.cbi.2019.05.020] [PMID: 31100279]
[12]
Hinge, N.S.; Kathuria, H.; Pandey, M.M. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s. Appl. Mater. Today, 2022, 26, 101303-101335.
[http://dx.doi.org/10.1016/j.apmt.2021.101303]
[13]
Ordóñez-Gutiérrez, L.; Wandosell, F. Nanoliposomes as a therapeutic tool for Alzheimer’s disease. Front. Synaptic Neurosci., 2020, 12, 20-29.
[http://dx.doi.org/10.3389/fnsyn.2020.00020] [PMID: 32523525]
[14]
Gopalan, D.; Pandey, A.; Udupa, N.; Mutalik, S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J. Control. Release, 2020, 319, 183-200.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.034] [PMID: 31866505]
[15]
Poudel, P.; Park, S. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics, 2022, 14(4), 835-872.
[http://dx.doi.org/10.3390/pharmaceutics14040835] [PMID: 35456671]
[16]
Cunha, A.; Gaubert, A.; Latxague, L.; Dehay, B. PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics, 2021, 13(7), 1042-1065.
[http://dx.doi.org/10.3390/pharmaceutics13071042] [PMID: 34371733]
[17]
Akel, H.; Ismail, R.; Csóka, I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2020, 148, 38-53.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.014] [PMID: 31926222]
[18]
Gaynanova, G.; Vasileva, L.; Kashapov, R.; Kuznetsova, D.; Kushnazarova, R.; Tyryshkina, A.; Vasilieva, E.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-assembling drug formulations with tunable permeability and biodegradability. Molecules, 2021, 26(22), 6786-6825.
[http://dx.doi.org/10.3390/molecules26226786] [PMID: 34833877]
[19]
Kashapov, R.; Ibragimova, A.; Pavlov, R.; Gabdrakhmanov, D.; Kashapova, N.; Burilova, E.; Zakharova, L.; Sinyashin, O. Nanocarriers for biomedicine: from lipid formulations to inorganic and hybrid nanoparticles. Int. J. Mol. Sci., 2021, 22(13), 7055-7104.
[http://dx.doi.org/10.3390/ijms22137055] [PMID: 34209023]
[20]
Antipin, I.S.; Alfimov, M.V.; Arslanov, V.V.; Burilov, V.A.; Vatsadze, S.Z.; Voloshin, Y.Z.; Volcho, K.P.; Gorbatchuk, V.V.; Gorbunova, Y.G.; Gromov, S.P.; Dudkin, S.V.; Zaitsev, S.Y.; Zakharova, L.Y.; Ziganshin, M.A.; Zolotukhina, A.V.; Kalinina, M.A.; Karakhanov, E.A.; Kashapov, R.R.; Koifman, O.I.; Konovalov, A.I.; Korenev, V.S.; Maksimov, A.L.; Mamardashvili, N.Z.; Mamardashvili, G.M.; Martynov, A.G.; Mustafina, A.R.; Nugmanov, R.I.; Ovsyannikov, A.S.; Padnya, P.L.; Potapov, A.S.; Selektor, S.L.; Sokolov, M.N.; Solovieva, S.E.; Stoikov, I.I.; Stuzhin, P.A.; Suslov, E.V.; Ushakov, E.N.; Fedin, V.P.; Fedorenko, S.V.; Fedorova, O.A.; Fedorov, Y.V.; Chvalun, S.N.; Tsivadze, A.Y.; Shtykov, S.N.; Shurpik, D.N.; Shcherbina, M.A.; Yakimova, L.S. Functional supramolecular systems: Design and applications. Russ. Chem. Rev., 2021, 90(8), 895-1107.
[http://dx.doi.org/10.1070/RCR5011]
[21]
Kashapov, R.; Gaynanova, G.; Gabdrakhmanov, D.; Kuznetsov, D.; Pavlov, R.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers. Int. J. Mol. Sci., 2020, 21(18), 6961-7007.
[http://dx.doi.org/10.3390/ijms21186961] [PMID: 32971917]
[22]
Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release, 2022, 348, 206-238.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.056] [PMID: 35660634]
[23]
Wen, M.M.; El-Salamouni, N.S.; El-Refaie, W.M.; Hazzah, H.A.; Ali, M.M.; Tosi, G.; Farid, R.M.; Blanco-Prieto, M.J.; Billa, N.; Hanafy, A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release, 2017, 245, 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[24]
Ferreira, D.; Nordberg, A.; Westman, E. Biological subtypes of Alzheimer disease: A systematic review and meta- analysis. Neurology, 2020, 94, 436-448.
[25]
Ingelsson, M.; Fukumoto, H.; Newell, K.L.; Growdon, J.H.; Hedley-Whyte, E.T.; Frosch, M.P.; Albert, M.S.; Hyman, B.T.; Irizarry, M.C. Early A accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 2004, 62(6), 925-931.
[http://dx.doi.org/10.1212/01.WNL.0000115115.98960.37] [PMID: 15037694]
[26]
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A Unique microglia type associated with restricting development of Alzheimer’s disease. Cell, 2017, 169(7), 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[27]
Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol., 2020, 57(7), 2959-2980.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[28]
Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci., 2017, 18(7), 419-434.
[http://dx.doi.org/10.1038/nrn.2017.48] [PMID: 28515434]
[29]
Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; Benzinger, T.L.S.; Fagan, A.M.; Ringman, J.M.; Schneider, L.S.; Morris, J.C.; Chui, H.C.; Law, M.; Toga, A.W.; Zlokovic, B.V. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med., 2019, 25(2), 270-276.
[http://dx.doi.org/10.1038/s41591-018-0297-y] [PMID: 30643288]
[30]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[31]
Sozio, P.; Cerasa, L.S.; Marinelli, L.; Di Stefano, A. Transdermal donepezil on the treatment of Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2012, 8, 361-368.
[PMID: 22942647]
[32]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[33]
Visser, C.C.; Stevanović, S.; Heleen Voorwinden, L.; Gaillard, P.J.; Crommelin, D.J.A.; Danhof, M.; de Boer, A.G. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J. Drug Target., 2004, 12(3), 145-150.
[http://dx.doi.org/10.1080/10611860410001701706] [PMID: 15203893]
[34]
Ohtsuki, S.; Ikeda, C.; Uchida, Y.; Sakamoto, Y.; Miller, F.; Glacial, F.; Decleves, X.; Scherrmann, J.M.; Couraud, P.O.; Kubo, Y.; Tachikawa, M.; Terasaki, T. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol. Pharm., 2013, 10(1), 289-296.
[http://dx.doi.org/10.1021/mp3004308] [PMID: 23137377]
[35]
Agrawal, M.; Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release, 2017, 260, 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
[36]
Hervé, F.; Ghinea, N.; Scherrmann, J.M. CNS delivery via adsorptive transcytosis. AAPS J., 2008, 10(3), 455-472.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[37]
Broadwell, R.D.; Balin, B.J. Endocytic and exocytic pathways of the neuronal secretory process and trans synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J. Comp. Neurol., 1985, 242(4), 632-650.
[http://dx.doi.org/10.1002/cne.902420410] [PMID: 2418083]
[38]
Lu, W.; Tan, Y.Z.; Hu, K.L.; Jiang, X.G. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier. Int. J. Pharm., 2005, 295(1-2), 247-260.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.043] [PMID: 15848009]
[39]
Lu, W.; Sun, Q.; Wan, J.; She, Z.; Jiang, X.G. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res., 2006, 66(24), 11878-11887.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2354] [PMID: 17178885]
[40]
Shimon-Hophy, M.; Wadhwani, K.C.; Chandrasekaran, K.; Larson, D.; Smith, Q.R.; Rapoport, S.I. Regional blood-brain barrier transport of cationized bovine serum albumin in awake rats. Am. J. Physiol., 1991, 261(2 Pt 2), R478-R483.
[PMID: 1877704]
[41]
Pavlov, R.V.; Gaynanova, G.A.; Kuznetsova, D.A.; Vasileva, L.A.; Zueva, I.V.; Sapunova, A.S.; Buzyurova, D.N.; Babaev, V.M.; Voloshina, A.D.; Lukashenko, S.S.; Rizvanov, I.K.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int. J. Pharm., 2020, 587, 119640-119651.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119640] [PMID: 32673770]
[42]
Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71(2), 251-256.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[43]
Huang, R.; Ke, W.; Liu, Y.; Jiang, C.; Pei, Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials, 2008, 29(2), 238-246.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.024] [PMID: 17935779]
[44]
Maussang, D.; Rip, J.; van Kregten, J.; van den Heuvel, A.; van der Pol, S.; van der Boom, B.; Reijerkerk, A.; Chen, L.; de Boer, M.; Gaillard, P.; de Vries, H. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov. Today. Technol., 2016, 20, 59-69.
[http://dx.doi.org/10.1016/j.ddtec.2016.09.003] [PMID: 27986226]
[45]
Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 2022, 12(4), 735-757.
[http://dx.doi.org/10.1007/s13346-020-00891-5] [PMID: 33491126]
[46]
Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci., 2018, 195, 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[47]
Martins, P.P.; Smyth, H.D.C.; Cui, Z. Strategies to facilitate or block nose-to-brain drug delivery. Int. J. Pharm., 2019, 570, 118635-118643.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118635] [PMID: 31445062]
[48]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[49]
Gomes, A.; Aguiar, L.; Ferraz, R.; Teixeira, C.; Gomes, P. The emerging role of ionic liquid-based approaches for enhanced skin permeation of bioactive molecules: a snapshot of the past couple of years. Int. J. Mol. Sci., 2021, 22(21), 11991-12016.
[http://dx.doi.org/10.3390/ijms222111991] [PMID: 34769430]
[50]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554-646570.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[51]
Knorr, F.; Lademann, J.; Patzelt, A.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Follicular transport route - Research progress and future perspectives. Eur. J. Pharm. Biopharm., 2009, 71(2), 173-180.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.001] [PMID: 19041720]
[52]
Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev., 2021, 174, 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[53]
Lu, F.; Wang, C.; Zhao, R.; Du, L.; Fang, Z.; Guo, X.; Zhao, Z. Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors (Basel), 2018, 8(2), 31-50.
[http://dx.doi.org/10.3390/bios8020031] [PMID: 29587456]
[54]
Hogan, M.B.; Peele, K.; Wilson, N.W. Skin barrier function and its importance at the start of the atopic march. J. Allergy (Cairo), 2012, 2012, 901940.
[http://dx.doi.org/10.1155/2012/901940] [PMID: 22619686]
[55]
Warner, R.R.; Myers, M.C.; Taylor, D.A. Electron probe analysis of human skin: determination of the water concentration profile. J. Invest. Dermatol., 1988, 90(2), 218-224.
[http://dx.doi.org/10.1111/1523-1747.ep12462252] [PMID: 3339263]
[56]
Villanueva-Martínez, A.; Merino, V.; Ganem-Rondero, A. Transdermal formulations and strategies for the treatment of osteoporosis. J. Drug Deliv. Sci. Technol., 2022, 69, 103111-103131.
[http://dx.doi.org/10.1016/j.jddst.2022.103111]
[57]
Neupane, R.; Boddu, S.H.S.; Abou-Dahech, M.S.; Bachu, R.D.; Terrero, D.; Babu, R.J.; Tiwari, A.K. Transdermal delivery of chemotherapeutics: Strategies, requirements, and opportunities. Pharmaceutics, 2021, 13(7), 960-991.
[http://dx.doi.org/10.3390/pharmaceutics13070960] [PMID: 34206728]
[58]
De Oliveira, T.C.; Tavares, M.E.V.; Soares-Sobrinho, J.L.; Chaves, L.L. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. J. Drug Deliv. Sci. Technol., 2022, 68, 103110-103118.
[http://dx.doi.org/10.1016/j.jddst.2022.103110]
[59]
Zhao, Z.Q.; Chen, B.Z.; Zhang, X.P.; Zheng, H.; Guo, X.D. An update on the routes for the delivery of donepezil. Mol. Pharm., 2021, 18(7), 2482-2494.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00290] [PMID: 34100291]
[60]
Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A.W.G.; Al-Kinani, A.A.; Alany, R.G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv. Drug Deliv. Rev., 2021, 177, 113957-113977.
[http://dx.doi.org/10.1016/j.addr.2021.113957] [PMID: 34481032]
[61]
Yadav, P.R.; Munni, M.N.; Campbell, L.; Mostofa, G.; Dobson, L.; Shittu, M.; Pattanayek, S.K.; Uddin, M.J.; Das, D.B. J.; Das, D.B. Translation of polymeric microneedles for treatment of human diseases: recent trends, progress, and challenges. Pharmaceutics, 2021, 13(8), 1132-1176.
[http://dx.doi.org/10.3390/pharmaceutics13081132] [PMID: 34452093]
[62]
Sutthapitaksakul, L.; Dass, C.R.; Sriamornsak, P. Donepezil—an updated review of challenges in dosage form design. J. Drug Deliv. Sci. Technol., 2021, 63, 102549-102560.
[http://dx.doi.org/10.1016/j.jddst.2021.102549]
[63]
Khoury, R.; Rajamanickam, J.; Grossberg, G.T. An update on the safety of current therapies for Alzheimer’s disease: Focus on rivastigmine. Ther. Adv. Drug Saf., 2018, 9(3), 171-178.
[http://dx.doi.org/10.1177/2042098617750555] [PMID: 29492246]
[64]
Ita, K. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases. J. Drug Target., 2017, 25(5), 406-419.
[http://dx.doi.org/10.1080/1061186X.2016.1245310] [PMID: 27701893]
[65]
Govender, T.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Modi, G.; Naidoo, D.; Pillay, V. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders. Pharm. Dev. Technol., 2017, 22(4), 476-486.
[http://dx.doi.org/10.1080/10837450.2016.1189937] [PMID: 27268737]
[66]
Nguyen, T.T.; Giau, V.V.; Vo, T.K. Current advances in transdermal delivery of drugs for Alzheimer’s disease. Indian J. Pharmacol., 2017, 49(2), 145-154.
[PMID: 28706327]
[67]
Ameen, D.; Michniak-Kohn, B. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: Effect of penetration enhancers and crystallization inhibition. Eur. J. Pharm. Biopharm., 2019, 139, 262-271.
[http://dx.doi.org/10.1016/j.ejpb.2019.04.008] [PMID: 30981946]
[68]
Lane, M.E. Skin penetration enhancers. Int. J. Pharm., 2013, 447(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.040] [PMID: 23462366]
[69]
Georgieva, D.; Ivanova-Mileva, K.; Ivanova, S.; Kostova, B.; Rachev, D.; Christova, D. Thermoresponsive poly(N-isopropylacrylamide) copolymer networks for galantamine hydrobromide delivery. Colloid Polym. Sci., 2020, 298(4-5), 377-384.
[http://dx.doi.org/10.1007/s00396-020-04621-8]
[70]
Dan, S.; Sharma, D.; Rastogi, K. Shaloo; Ojha, H.; Pathak, M.; Singhal, R. Therapeutic and diagnostic applications of nanocomposites in the treatment Alzheimer’s disease studies. Biointerface Res. Appl. Chem., 2021, 12(1), 940-960.
[http://dx.doi.org/10.33263/BRIAC121.940960]
[71]
Salimi, A.; Ghobadian, H.; Sharif Makhmalzadeh, B. Dermal pharmacokinetics of rivastigmine-loaded liposomes: An ex vivo-in vivo correlation study. J. Liposome Res., 2021, 31(3), 246-254.
[http://dx.doi.org/10.1080/08982104.2020.1787440] [PMID: 32594811]
[72]
Ravi, G.; Gupta, N.V. Development and evaluation of transdermal film containing solid lipid nanoparticles of rivastigmine tartrate. Int. J. Appl. Pharmaceut., 2017, 9(6), 85-90.
[http://dx.doi.org/10.22159/ijap.2017v9i6.22354]
[73]
Mendes, I.T.; Ruela, A.L.M.; Carvalho, F.C.; Freitas, J.T.J.; Bonfilio, R.; Pereira, G.R. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids Surf. B Biointerfaces, 2019, 177, 274-281.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.007] [PMID: 30763792]
[74]
Kodoth, A.K.; Ghate, V.M.; Lewis, S.A.; Prakash, B.; Badalamoole, V. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil. Int. J. Biol. Macromol., 2019, 134, 269-279.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.191] [PMID: 31047929]
[75]
Kim, J.Y.; Han, M.R.; Kim, Y.H.; Shin, S.W.; Nam, S.Y.; Park, J.H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 105, 148-155.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.006] [PMID: 27288938]
[76]
Rehman, N.U.; Song, C.; Kim, J.; Noh, I.; Rhee, Y.S.; Chung, H.J. Pharmacokinetic evaluation of a novel donepezil-loaded dissolving microneedle patch in rats. Pharmaceutics, 2021, 14(1), 5-19.
[http://dx.doi.org/10.3390/pharmaceutics14010005] [PMID: 35056902]
[77]
Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 44-76.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.006] [PMID: 33359666]
[78]
Shi, C.; Yang, D.; Zhao, Y.; Wen, T.; Zhao, W.; Hu, P.; Huang, Z.; Quan, G.; Wu, C.; Pan, X. The spatial-dimensional and temporal-dimensional fate of nanocarrier-loaded dissolving microneedles with different lengths of needles. Med. Drug Discov., 2022, 14, 100124-100133.
[http://dx.doi.org/10.1016/j.medidd.2022.100124]
[79]
Don, T.M.; Chen, M.; Lee, I.C.; Huang, Y.C. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. Int. J. Biol. Macromol., 2022, 207, 90-99.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.127] [PMID: 35218808]
[80]
Al-Rawi, N.N.; Rawas-Qalaji, M. Dissolving microneedles with antibacterial functionalities: A systematic review of laboratory studies. Eur. J. Pharm. Sci., 2022, 174, 106202-106216.
[http://dx.doi.org/10.1016/j.ejps.2022.106202] [PMID: 35526676]
[81]
Zhang, N.; Zhou, X.; Liu, L.; Zhao, L.; Xie, H.; Yang, Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front. Pharmacol., 2021, 12, 719905-719914.
[http://dx.doi.org/10.3389/fphar.2021.719905] [PMID: 34630098]
[82]
Peng, K.; Vora, L.K.; Tekko, I.A.; Permana, A.D.; Domínguez-Robles, J.; Ramadon, D.; Chambers, P.; McCarthy, H.O.; Larrañeta, E.; Donnelly, R.F. Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. J. Control. Release, 2021, 339, 361-380.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.001] [PMID: 34619227]
[83]
Yan, Q.; Wang, W.; Weng, J.; Zhang, Z.; Yin, L.; Yang, Q.; Guo, F.; Wang, X.; Chen, F.; Yang, G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv., 2020, 27(1), 1147-1155.
[http://dx.doi.org/10.1080/10717544.2020.1797240] [PMID: 32729341]
[84]
Agrawal, S.; Gandhi, S.N.; Gurjar, P.; Saraswathy, N. Microneedles: An advancement to transdermal drug delivery system approach. J. Appl. Pharm. Sci., 2020, 10(3), 149-159.
[http://dx.doi.org/10.7324/JAPS.2020.103019]
[85]
Wu, H.; Fang, F.; Zheng, L.; Ji, W.; Qi, M.; Hong, M.; Ren, G. Ionic liquid form of donepezil: Preparation, characterization and formulation development. J. Mol. Liq., 2020, 300, 112308-112318.
[http://dx.doi.org/10.1016/j.molliq.2019.112308]
[86]
Dinh, L.; Lee, S.; Abuzar, S.M.; Park, H.; Hwang, S.J. Hwang, Formulation, preparation, characterization, and evaluation of dicarboxylic ionic liquid donepezil transdermal patches. Pharmaceutics, 2022, 14(1), 205-224.
[http://dx.doi.org/10.3390/pharmaceutics14010205] [PMID: 35057101]
[87]
Cai, Y.; Tian, Q.; Liu, C.; Fang, L. Development of long-acting rivastigmine drug-in-adhesive patch utilizing ion- pair strategy and characterization of controlled release mechanism. Eur. J. Pharm. Sci., 2021, 161, 105774-105783.
[http://dx.doi.org/10.1016/j.ejps.2021.105774] [PMID: 33640502]
[88]
Sguizzato, M.; Esposito, E.; Cortesi, R. Lipid-based nanosystems as a tool to overcome skin barrier. Int. J. Mol. Sci., 2021, 22(15), 8319-8334.
[http://dx.doi.org/10.3390/ijms22158319] [PMID: 34361084]
[89]
Moghaddam, A.A.; Aqil, M.; Ahmad, F.J.; Ali, M.M.; Sultana, Y.; Ali, A. Nanoethosomes mediated transdermal delivery of vinpocetine for management of Alzheimer’s disease. Drug Deliv., 2015, 22(8), 1018-1026.
[http://dx.doi.org/10.3109/10717544.2013.846433] [PMID: 24717007]
[90]
Shi, J.; Wang, Y.; Luo, G. Ligustrazine phosphate ethosomes for treatment of Alzheimer’s disease, in vitro and in animal model studies. AAPS PharmSciTech, 2012, 13(2), 485-492.
[http://dx.doi.org/10.1208/s12249-012-9767-6] [PMID: 22415639]
[91]
Ueda, K.; Katayama, S.; Arai, T.; Furuta, N.; Ikebe, S.; Ishida, Y.; Kanaya, K.; Ouma, S.; Sakurai, H.; Sugitani, M.; Takahashi, M.; Tanaka, T.; Tsuno, N.; Wakutani, Y.; Shekhawat, A.; Das Gupta, A.; Kiyose, K.; Toriyama, K.; Nakamura, Y. Efficacy, safety, and tolerability of switching from oral cholinesterase inhibitors to rivastigmine transdermal patch with 1-step titration in patients with mild to moderate Alzheimer’s disease: A 24-week, open-label, multicenter study in Japan. Dement. Geriatr. Cogn. Disord. Extra, 2019, 9(2), 302-318.
[http://dx.doi.org/10.1159/000501364] [PMID: 31572426]
[92]
Colombo, D.; Caltagirone, C.; Padovani, A.; Sorbi, S.; Spalletta, G.; Simoni, L.; Ori, A.; Zagni, E. Gender differences in neuropsychiatric symptoms in mild to moderate Alzheimer’s disease patients undergoing switch of cholinesterase inhibitors: A Post Hoc Analysis of the EVOLUTION Study. J. Womens Health (Larchmt.), 2018, 27(11), 1368-1377.
[http://dx.doi.org/10.1089/jwh.2017.6420] [PMID: 30085899]
[93]
Ramezanpour, M.; Leung, S.S.W.; Delgado-Magnero, K.H.; Bashe, B.Y.M.; Thewalt, J.; Tieleman, D.P. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta, 2016, 1858, 1688-1709.
[94]
Mehta, S.; Dumoga, S.; Malhotra, S.; Singh, N. Comparative analysis of PEG-liposomes and RBCs-derived nanovesicles for anti-tumor therapy. Colloids Surf. B Biointerfaces, 2022, 218, 112785-112790.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112785] [PMID: 36037734]
[95]
Yin, L.; Pang, Y.; Shan, L.; Gu, J. The in vivo Pharmacokinetics of block copolymers containing polyethylene glycol used in nanocarrier drug delivery systems. Drug Metab. Dispos., 2022, 50(6), 827-836.
[http://dx.doi.org/10.1124/dmd.121.000568] [PMID: 35066464]
[96]
Jiang, T.; Ma, S.; Shen, Y.; Li, Y.; Pan, R.; Xing, H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv., 2021, 28(1), 478-486.
[http://dx.doi.org/10.1080/10717544.2021.1889717] [PMID: 33641554]
[97]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014, 869269.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[98]
Moya, E.L.J.; Lombardo, S.M.; Vandenhaute, E.; Schneider, M.; Mysiorek, C.; Türeli, A.E.; Kanda, T.; Shimizu, F.; Sano, Y.; Maubon, N.; Gosselet, F.; Günday-Türeli, N.; Dehouck, M.P. Interaction of surfactant coated PLGA nanoparticles with in vitro human brain-like endothelial cells. Int. J. Pharm., 2022, 621, 121780-121792.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121780] [PMID: 35504427]
[99]
Mehrabian, A.; Mashreghi, M.; Dadpour, S.; Badiee, A.; Arabi, L.; Hoda Alavizadeh, S.; Alia Moosavian, S.; Reza Jaafari, M. Nanocarriers call the last shot in the treatment of brain cancers. Technol. Cancer Res. Treat., 2022, 21, 15330338221080974.
[http://dx.doi.org/10.1177/15330338221080974] [PMID: 35253549]
[100]
K C, S.; Kakoty, V.; Krishna, K.V.; Dubey, S.K.; Chitkara, D.; Taliyan, R. Neuroprotective efficacy of co-encapsulated rosiglitazone and vorinostat nanoparticle on streptozotocin induced mice model of Alzheimer’s disease. ACS Chem. Neurosci., 2021, 12(9), 1528-1541.
[http://dx.doi.org/10.1021/acschemneuro.1c00022] [PMID: 33860663]
[101]
Haake, A.; Nguyen, K.; Friedman, L.; Chakkamparambil, B.; Grossberg, G.T. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Saf., 2020, 19(2), 147-157.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[102]
Cacabelos, R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol., 2020, 16(8), 673-701.
[http://dx.doi.org/10.1080/17425255.2020.1779700] [PMID: 32520597]
[103]
Krishna, K.V.; Wadhwa, G.; Alexander, A.; Kanojia, N.; Saha, R.N.; Kukreti, R.; Singhvi, G.; Dubey, S.K. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem. Neurosci., 2019, 10(9), 4124-4135.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[104]
Neves, A.R.; Queiroz, J.F.; Costa Lima, S.A.; Figueiredo, F.; Fernandes, R.; Reis, S. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery. J. Colloid Interface Sci., 2016, 463, 258-265.
[http://dx.doi.org/10.1016/j.jcis.2015.10.057] [PMID: 26550783]
[105]
Liu, W.; Pan, H.; Zhang, C.; Zhao, L.; Zhao, R.; Zhu, Y.; Pan, W. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int. J. Mol. Sci., 2016, 17(7), 1171-1190.
[http://dx.doi.org/10.3390/ijms17071171] [PMID: 27455239]
[106]
Ghosh, S.; Ghosh, S.; Sil, P.C. Role of nanostructures in improvising oral medicine. Toxicol. Rep., 2019, 6, 358-368.
[http://dx.doi.org/10.1016/j.toxrep.2019.04.004] [PMID: 31080743]
[107]
Bachurin, S.O. A review of drugs for treatment of Alzheimer’s disease in clinical trials: main trends. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2016, 116(8), 77-87.
[http://dx.doi.org/10.17116/jnevro20161168177-87] [PMID: 28635742]
[108]
Florentino, S.A.; Bawany, M.H.; Ma, H.M. Acetylcholinesterase inhibitors to enhance recovery from traumatic brain injury: a comprehensive review and case series. Brain Inj., 2022, 36(4), 441-454.
[http://dx.doi.org/10.1080/02699052.2022.2034962] [PMID: 35113764]
[109]
Charoo, N.A.; Rahman, Z.; Khan, M.A. Nanoparticles for Improvement in Oral Bioavailability. In: Nanoarchitectonics in Biomedicine; Elsevier; Amsterdam, 2019; pp. 371-410.
[http://dx.doi.org/10.1016/B978-0-12-816200-2.00006-2]
[110]
Wilson, B.; Geetha, K.M. Neurotherapeutic applications of nanomedicine for treating Alzheimer’s disease. J. Control. Release, 2020, 325, 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.044] [PMID: 32473177]
[111]
Markovic, M.; Ben-Shabat, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Lipids and lipid-processing pathways in drug delivery and therapeutics. Int. J. Mol. Sci., 2020, 21(9), 3248-3262.
[http://dx.doi.org/10.3390/ijms21093248] [PMID: 32375338]
[112]
Abbas, H.; Gad, H.A.; Khattab, M.A.; Mansour, M. The tragedy of Alzheimer’s disease: towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics, 2021, 13(10), 1635-1657.
[http://dx.doi.org/10.3390/pharmaceutics13101635] [PMID: 34683928]
[113]
Shukla, S.; Hernandez, C. Liposome based drug delivery as a potential treatment option for Alzheimer’s disease. Neural Regen. Res., 2022, 17(6), 1190-1198.
[http://dx.doi.org/10.4103/1673-5374.327328] [PMID: 34782553]
[114]
Seo, M.W.; Park, T.E. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomed. Eng. Lett., 2021, 11(3), 211-216.
[http://dx.doi.org/10.1007/s13534-021-00198-5] [PMID: 34350048]
[115]
Saka, R.; Chella, N.; Khan, W. Development of imatinib mesylate-loaded liposomes for nose to brain delivery: In vitro and in vivo evaluation. AAPS PharmSciTech, 2021, 22(5), 192.
[http://dx.doi.org/10.1208/s12249-021-02072-0] [PMID: 34184160]
[116]
Juhairiyah, F.; de Lange, E.C.M. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential. AAPS J., 2021, 23(6), 114-129.
[http://dx.doi.org/10.1208/s12248-021-00648-z] [PMID: 34713363]
[117]
Shah, U.; Joshi, G.; Sawant, K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater. Sci. Eng. C, 2014, 35, 153-163.
[http://dx.doi.org/10.1016/j.msec.2013.10.038] [PMID: 24411363]
[118]
Tariq, M.; Alam, M.A.; Singh, A.T.; Iqbal, Z.; Panda, A.K.; Talegaonkar, S. Biodegradable polymeric nanoparticles for oral delivery of epirubicin: In vitro, ex vivo, and in vivo investigations. Colloids Surf. B Biointerfaces, 2015, 128, 448-456.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.043] [PMID: 25769281]
[119]
Joshi, G.; Kumar, A.; Sawant, K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur. J. Pharm. Sci., 2014, 60, 80-89.
[http://dx.doi.org/10.1016/j.ejps.2014.04.014] [PMID: 24810394]
[120]
Sánchez-López, E.; Ettcheto, M.; Egea, M.A.; Espina, M.; Cano, A.; Calpena, A.C.; Camins, A.; Carmona, N.; Silva, A.M.; Souto, E.B.; García, M.L. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. J. Nanobiotechnol., 2018, 16(1), 32-47.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[121]
Krishna, K.V.; Saha, R.N.; Dubey, S.K. Biophysical, biochemical, and behavioral implications of ApoE3 conjugated donepezil nanomedicine in a Aβ1-42 induced Alzheimer’s disease rat model. ACS Chem. Neurosci., 2020, 11(24), 4139-4151.
[http://dx.doi.org/10.1021/acschemneuro.0c00430] [PMID: 33251785]
[122]
Bartolomé, F.; Rosa, L.; Valenti, P.; Lopera, F.; Hernández-Gallego, J.; Cantero, J.L.; Orive, G.; Carro, E. Lactoferrin as immune-enhancement strategy for SARS-CoV-2 infection in Alzheimer’s disease patients. Front. Immunol., 2022, 13, 878201-878212.
[http://dx.doi.org/10.3389/fimmu.2022.878201] [PMID: 35547737]
[123]
Agwa, M.M.; Abdelmonsif, D.A.; Khattab, S.N.; Sabra, S. Self-assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 162, 246-261.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.058] [PMID: 32531361]
[124]
Monaco, A.; Ferrandino, I.; Boscaino, F.; Cocca, E.; Cigliano, L.; Maurano, F.; Luongo, D.; Spagnuolo, M.S.; Rossi, M.; Bergamo, P. Conjugated linoleic acid prevents age-dependent neurodegeneration in a mouse model of neuropsychiatric lupus via the activation of an adaptive response. J. Lipid Res., 2018, 59(1), 48-57.
[http://dx.doi.org/10.1194/jlr.M079400] [PMID: 29167408]
[125]
Laserra, S.; Basit, A.; Sozio, P.; Marinelli, L.; Fornasari, E.; Cacciatore, I.; Ciulla, M.; Türkez, H.; Geyikoglu, F.; Di Stefano, A. Solid lipid nanoparticles loaded with lipoyl-memantine codrug: Preparation and characterization. Int. J. Pharm., 2015, 485(1-2), 183-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.001] [PMID: 25747452]
[126]
Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv., 2016, 23(4), 1434-1443.
[http://dx.doi.org/10.3109/10717544.2015.1089956] [PMID: 26405825]
[127]
AnjiReddy, K.; Karpagam, S. In vitro and in vivo evaluation of oral disintegrating nanofiber and thin-film contains hyperbranched chitosan/donepezil for active drug delivery. J. Polym. Environ., 2021, 29(3), 922-936.
[http://dx.doi.org/10.1007/s10924-020-01937-y]
[128]
de Boer, A.G.; Gaillard, P.J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 323-355.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105237] [PMID: 16961459]
[129]
Chougle, S.; Kumar, D.; Khan, A.; Zehra, S.; Ali̇, A. Treatment of Alzheimer’s disease by natural products. J. Exp. Clin. Med., 2021, 38(4), 634-644.
[http://dx.doi.org/10.52142/omujecm.38.4.42]
[130]
Raju, M.; Kunde, S.S.; Auti, S.T.; Kulkarni, Y.A.; Wairkar, S. Berberine loaded nanostructured lipid carrier for Alzheimer’s disease: Design, statistical optimization and enhanced in vivo performance. Life Sci., 2021, 285, 119990-119996.
[http://dx.doi.org/10.1016/j.lfs.2021.119990] [PMID: 34592234]
[131]
Sayed, N.; Khurana, A.; Godugu, C. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J. Drug Deliv. Sci. Technol., 2019, 53, 101201-101218.
[http://dx.doi.org/10.1016/j.jddst.2019.101201]
[132]
Durham, B. Novel histone deacetylase (HDAC) inhibitors with improved selectivity for HDAC2 and 3 protect against neural cell death. Biosci. Horiz., 2012, 5, hzs003.
[http://dx.doi.org/10.1093/biohorizons/hzs003]
[133]
Green, K.N.; Steffan, J.S.; Martinez-Coria, H.; Sun, X.; Schreiber, S.S.; Thompson, L.M.; LaFerla, F.M. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci., 2008, 28(45), 11500-11510.
[http://dx.doi.org/10.1523/JNEUROSCI.3203-08.2008] [PMID: 18987186]
[134]
Vakilinezhad, M.A.; Amini, A.; Akbari Javar, H.; Baha’addini Beigi Zarandi, B.F.; Montaseri, H.; Dinarvand, R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru, 2018, 26(2), 165-177.
[http://dx.doi.org/10.1007/s40199-018-0221-5] [PMID: 30386982]
[135]
Labban, S.; Alghamdi, B.S.; Alshehri, F.S.; Kurdi, M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav. Brain Res., 2021, 402, 113100-113108.
[http://dx.doi.org/10.1016/j.bbr.2020.113100] [PMID: 33417994]
[136]
Al-Edresi, S.; Alsalahat, I.; Freeman, S.; Aojula, H.; Penny, J. Resveratrol-mediated cleavage of amyloid β1-42 peptide: Potential relevance to Alzheimer’s disease. Neurobiol. Aging, 2020, 94, 24-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.04.012] [PMID: 32512325]
[137]
Qu, C.; Li, Q.P.; Su, Z.R.; Ip, S.P.; Yuan, Q.J.; Xie, Y.L.; Xu, Q.Q.; Yang, W.; Huang, Y.F.; Xian, Y.F.; Lin, Z.X. Nano-Honokiol ameliorates the cognitive deficits in TgCRND8 mice of Alzheimer’s disease via inhibiting neuropathology and modulating gut microbiota. J. Adv. Res., 2022, 35, 231-243.
[http://dx.doi.org/10.1016/j.jare.2021.03.012] [PMID: 35024199]
[138]
Serafini, M.M.; Catanzaro, M.; Rosini, M.; Racchi, M.; Lanni, C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol. Res., 2017, 124, 146-155.
[http://dx.doi.org/10.1016/j.phrs.2017.08.004] [PMID: 28811228]
[139]
Yusuf, H.; Rahmawati, R.A.; Syamsur Rijal, M.A.; Isadiartuti, D. Curcumin micelles entrapped in eudragit S-100 matrix: A synergistic strategy for enhanced oral delivery. Future Sci. OA, 2021, 7(4), FSO677-FSO687.
[http://dx.doi.org/10.2144/fsoa-2020-0131] [PMID: 33815823]
[140]
Kakkar, V.; Kaur, I.P. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem. Toxicol., 2011, 49(11), 2906-2913.
[http://dx.doi.org/10.1016/j.fct.2011.08.006] [PMID: 21889563]
[141]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[142]
Tian, M.P.; Song, R.X.; Wang, T.; Sun, M.J.; Liu, Y.; Chen, X.G. Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes. Int. J. Biol. Macromol., 2018, 120(Pt A), 702-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.146] [PMID: 30170061]
[143]
Hsu, C.Y.; Wang, P.W.; Alalaiwe, A.; Lin, Z.C.; Fang, J.Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients, 2019, 11(1), 68-97.
[http://dx.doi.org/10.3390/nu11010068] [PMID: 30609658]
[144]
Alexander, A.; Agrawal, M.; Saraf, S.; Saraf, S.; Ajazuddin; Chougule, M.B.; Ajazuddin. Formulation strategies of nano lipid carrier for effective brain targeting of anti-AD drugs. Curr. Pharm. Des., 2020, 26(27), 3269-3280.
[http://dx.doi.org/10.2174/1381612826666200212120947] [PMID: 32048957]
[145]
Tian, C.; Asghar, S.; Wu, Y.; Kambere Amerigos, D.; Chen, Z.; Zhang, M.; Yin, L.; Huang, L.; Ping, Q.; Xiao, Y. N-acetyl-L-cysteine functionalized nanostructured lipid preparation, in vitro and in vivo evaluations. Drug Deliv., 2017, 24, 1605-1616.
[http://dx.doi.org/10.1080/10717544.2017.1391890] [PMID: 29063815]
[146]
Lee, D.; Minko, T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics, 2021, 13(12), 2049-2095.
[http://dx.doi.org/10.3390/pharmaceutics13122049] [PMID: 34959331]
[147]
Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of polymeric nanoparticles for blood-brain barrier transfer—strategies and challenges. Adv. Sci. (Weinh.), 2021, 8(10), 2003937-2003968.
[http://dx.doi.org/10.1002/advs.202003937] [PMID: 34026447]
[148]
Brookes, A.; Ji, L.; Bradshaw, T.D.; Stocks, M.; Gray, D.; Butler, J.; Gershkovich, P. Is oral lipid-based delivery for drug targeting to the brain feasible? Eur. J. Pharm. Biopharm., 2022, 172, 112-122.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.004] [PMID: 35149190]
[149]
Dhas, N.L.; Kudarha, R.R.; Mehta, T.A. Intranasal delivery of nanotherapeutics/ nanobiotherapeutics for the treatment of Alzheimer’s disease: A proficient approach. Crit. Rev. Ther. Drug Carrier Syst., 2019, 36(5), 373-447.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018026762] [PMID: 32421951]
[150]
Gorain, B.; Rajeswary, D.C.; Pandey, M.; Kesharwani, P.; Kumbhar, S.A.; Choudhury, H. Nose to brain delivery of nanocarriers towards attenuation of demented condition. Curr. Pharm. Des., 2020, 26(19), 2233-2246.
[http://dx.doi.org/10.2174/1381612826666200313125613] [PMID: 32167424]
[151]
Laffleur, F.; Bauer, B. Progress in nasal drug delivery systems. Int. J. Pharm., 2021, 607, 120994-121010.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120994] [PMID: 34390810]
[152]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose- to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[153]
Fonseca, L.C.; Lopes, J.A.; Vieira, J.; Viegas, C.; Oliveira, C.S.; Hartmann, R.P.; Fonte, P. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv. Transl. Res., 2021, 11(2), 411-425.
[http://dx.doi.org/10.1007/s13346-021-00940-7] [PMID: 33638130]
[154]
Ghori, M.U.; Mahdi, M.H.; Smith, A.M.; Conway, B.R. Nasal drug delivery systems: An overview. Am. J. Pharmacol. Sci., 2015, 3, 110-119.
[155]
Sood, S.; Jain, K.; Gowthamarajan, K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J. Drug Target., 2014, 22(4), 279-294.
[http://dx.doi.org/10.3109/1061186X.2013.876644] [PMID: 24404923]
[156]
Jain, D.; Rashid, M.A.; Ahmad, F.J. Recent advances in targeted drug delivery approaches using lipidic and polymeric nanocarriers for the management of Alzheimer’s disease. Curr. Pharm. Des., 2021, 27(43), 4388-4403.
[http://dx.doi.org/10.2174/1381612827666210927163258] [PMID: 34579627]
[157]
Yu, S.; Xu, X.; Feng, J.; Liu, M.; Hu, K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int. J. Pharm., 2019, 560, 282-293.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.012] [PMID: 30772458]
[158]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomed., 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[159]
Lehr, C.M. Lectin-mediated drug delivery. J. Control. Release, 2000, 65(1-2), 19-29.
[http://dx.doi.org/10.1016/S0168-3659(99)00228-X] [PMID: 10699266]
[160]
Gao, Y.; Almalki, W.H.; Afzal, O.; Panda, S.K.; Kazmi, I.; Alrobaian, M.; Katouah, H.A.; Altamimi, A.S.A.; Al-Abbasi, F.A.; Alshehri, S.; Soni, K.; Ibrahim, I.A.A.; Rahman, M.; Beg, S. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer’s disease. Biomed. Pharmacother., 2021, 141, 111829-111839.
[http://dx.doi.org/10.1016/j.biopha.2021.111829] [PMID: 34147904]
[161]
Chen, Y.; Fan, H.; Xu, C.; Hu, W.; Yu, B. Efficient cholera toxin B subunit-based nanoparticles with MRI capability for drug delivery to the brain following intranasal administration. Macromol. Biosci., 2019, 19(2), 1800340-1800340.
[http://dx.doi.org/10.1002/mabi.201800340]
[162]
Rajput, A.; Butani, S. Donepezil HCl liposomes: Development, characterization, cytotoxicity, and pharmacokinetic study. AAPS PharmSciTech, 2022, 23(2), 74.
[http://dx.doi.org/10.1208/s12249-022-02209-9] [PMID: 35149912]
[163]
Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; AlSarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci. Rep., 2019, 9(1), 9563-9582.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[164]
Gu, F.; Fan, H.; Cong, Z.; Li, S.; Wang, Y.; Wu, C. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride. Acta Pharm., 2020, 70(3), 411-422.
[http://dx.doi.org/10.2478/acph-2020-0032] [PMID: 32074067]
[165]
Chen, W.; Li, R.; Zhu, S.; Ma, J.; Pang, L.; Ma, B.; Du, L.; Jin, Y. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer’s disease induced by lipopolysaccharides. Int. J. Pharm., 2020, 578, 119115-119123.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119115] [PMID: 32045690]
[166]
Espinoza, L.C.; Vacacela, M.; Clares, B.; Garcia, M.L.; Fabrega, M.J.; Calpena, A.C. Development of a nasal donepezil-loaded microemulsion for the treatment of Alzheimer’s disease: in vitro and ex vivo characterization. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 43-53.
[http://dx.doi.org/10.2174/1871527317666180104122347] [PMID: 29299992]
[167]
Espinoza, L.C.; Silva-Abreu, M.; Clares, B.; Rodríguez-Lagunas, M.J.; Halbaut, L.; Cañas, M.A.; Calpena, A.C. Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics, 2019, 11(2), 64-79.
[http://dx.doi.org/10.3390/pharmaceutics11020064] [PMID: 30717264]
[168]
Khunt, D.; Shrivas, M.; Polaka, S.; Gondaliya, P.; Misra, M. Role of omega-3 fatty acids and butter oil in targeting delivery of donepezil hydrochloride microemulsion to brain via the intranasal route: A comparative study. AAPS PharmSciTech, 2020, 21(2), 45-55.
[http://dx.doi.org/10.1208/s12249-019-1585-7] [PMID: 31900652]
[169]
Shah, B.M.; Misra, M.; Shishoo, C.J.; Padh, H. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization. Drug Deliv., 2015, 22(7), 918-930.
[http://dx.doi.org/10.3109/10717544.2013.878857] [PMID: 24467601]
[170]
Shah, B.; Khunt, D.; Misra, M.; Padh, H. Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting. Pharm. Res., 2018, 35(1), 8-17.
[http://dx.doi.org/10.1007/s11095-017-2279-z] [PMID: 29294189]
[171]
Kotta, S.; Mubarak Aldawsari, H.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem., 2021, 357, 129721-129733.
[http://dx.doi.org/10.1016/j.foodchem.2021.129721] [PMID: 33866243]
[172]
Kaur, A.; Nigam, K.; Bhatnagar, I.; Sukhpal, H.; Awasthy, S.; Shankar, S.; Tyagi, A.; Dang, S. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv. Transl. Res., 2020, 10(6), 1862-1875.
[http://dx.doi.org/10.1007/s13346-020-00754-z] [PMID: 32297166]
[173]
Phongpradist, R.; Thongchai, W.; Thongkorn, K.; Lekawanvijit, S.; Chittasupho, C. Surface modification of curcumin microemulsions by coupling of KLVFF peptide: A prototype for targeted bifunctional microemulsions. Polymers, 2022, 14(3), 443-453.
[http://dx.doi.org/10.3390/polym14030443] [PMID: 35160433]
[174]
Horsley, J.R.; Jovcevski, B.; Wegener, K.L.; Yu, J.; Pukala, T.L.; Abell, A.D. Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: A potential therapeutic strategy for Alzheimer’s disease. Biochem. J., 2020, 477(11), 2039-2054.
[http://dx.doi.org/10.1042/BCJ20200290] [PMID: 32427336]
[175]
Huang, Q.; Zhao, Q.; Peng, J.; Yu, Y.; Wang, C.; Zou, Y.; Su, Y.; Zhu, L.; Wang, C.; Yang, Y. Peptide-polyphenol (KLVFF/EGCG) binary modulators for inhibiting aggregation and neurotoxicity of amyloid-β peptide. ACS Omega, 2019, 4(2), 4233-4242.
[http://dx.doi.org/10.1021/acsomega.8b02797]
[176]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[177]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[178]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[179]
Ahmadi, N.; Hosseini, M.J.; Rostamizadeh, K.; Anoush, M. Investigation of therapeutic effect of curcumin α and β glucoside anomers against Alzheimer’s disease by the nose to brain drug delivery. Brain Res., 2021, 1766, 147517.
[http://dx.doi.org/10.1016/j.brainres.2021.147517] [PMID: 33991495]
[180]
Arumugam, K.; Subramanian, G.; Mallayasamy, S.; Averineni, R.; Reddy, M.; Udupa, N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm., 2008, 58(3), 287-297.
[http://dx.doi.org/10.2478/v10007-008-0014-3] [PMID: 19103565]
[181]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[PMID: 26834457]
[182]
Nageeb El-Helaly, S.; Abd Elbary, A.; Kassem, M.A.; El-Nabarawi, M.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: Preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[183]
Li, W.; Zhou, Y.; Zhao, N.; Hao, B.; Wang, X.; Kong, P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ. Toxicol. Pharmacol., 2012, 34(2), 272-279.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[184]
Kulkarni, P.; Rawtani, D.; Barot, T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2021, 163, 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.015] [PMID: 33774160]
[185]
Yang, Z.Z.; Zhang, Y.Q.; Wang, Z.Z.; Wu, K.; Lou, J.N.; Qi, X.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm., 2013, 452(1-2), 344-354.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[186]
Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm. Res., 2015, 32(12), 3837-3849.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[187]
Corace, G.; Angeloni, C.; Malaguti, M.; Hrelia, S.; Stein, P.C.; Brandl, M.; Gotti, R.; Luppi, B. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J. Liposome Res., 2014, 24(4), 323-335.
[http://dx.doi.org/10.3109/08982104.2014.899369] [PMID: 24807822]
[188]
Dogterom, P.; Nagelkerke, J.F.; Mulder, G.J. Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: Effect of glutathione and vitamin E. Biochem. Pharmacol., 1988, 37(12), 2311-2313.
[http://dx.doi.org/10.1016/0006-2952(88)90356-5] [PMID: 3390201]
[189]
Nacka, F.; Cansell, M.; Méléard, P.; Combe, N. Incorporation of α-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids, 2001, 36(12), 1313-1320.
[http://dx.doi.org/10.1007/s11745-001-0846-x] [PMID: 11834082]
[190]
Stough, C.; Downey, L.; Silber, B.; Lloyd, J.; Kure, C.; Wesnes, K.; Camfield, D. The effects of 90-day supplementation with the Omega-3 essential fatty acid docosahexaenoic acid (DHA) on cognitive function and visual acuity in a healthy aging population. Neurobiol. Aging, 2012, 33(4), 824.e1-824.e3.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.019] [PMID: 21531481]
[191]
Phillips, M.; Childs, C.; Calder, P.; Rogers, P. No effect of Omega-3 fatty acid supplementation on cognition and mood in individuals with cognitive impairment and probable Alzheimer’s Disease: A randomised controlled trial. Int. J. Mol. Sci., 2015, 16(10), 24600-24613.
[http://dx.doi.org/10.3390/ijms161024600] [PMID: 26501267]
[192]
Rampa, A.; Gobbi, S.; Belluti, F.; Bisi, A. Tackling Alzheimer’s disease with existing drugs: A promising strategy for bypassing obstacles. Curr. Med. Chem., 2021, 28(12), 2305-2327.
[http://dx.doi.org/10.2174/0929867327666200831140745] [PMID: 32867634]
[193]
Qian, S.; He, L.; Wang, Q.; Wong, Y.C.; Mak, M.; Ho, C.Y.; Han, Y.; Zuo, Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer’s disease. Life Sci., 2018, 207, 428-435.
[http://dx.doi.org/10.1016/j.lfs.2018.06.032] [PMID: 29966606]
[194]
Makhaeva, G.F.; Kovaleva, N.V.; Boltneva, N.P.; Rudakova, E.V.; Lushchekina, S.V.; Astakhova, T.Y.; Serkov, I.V.; Proshin, A.N.; Radchenko, E.V.; Palyulin, V.A.; Korabecny, J.; Soukup, O.; Bachurin, S.O.; Richardson, R.J. Bis-Amiridines as acetylcholinesterase and butyrylcholinesterase inhibitors: n-functionalization determines the multitarget anti-Alzheimer’s activity profile. Molecules, 2022, 27(3), 1060-1084.
[http://dx.doi.org/10.3390/molecules27031060] [PMID: 35164325]
[195]
Makhaeva, G.F.; Serkov, I.V.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Kochetkova, E.A.; Proshin, A.N.; Bachurin, S.O. Novel conjugates of 4-amino-2,3-polymethylenequinolines and vanillin as potential multitarget agents for AD treatment. Mendeleev Commun., 2021, 31(5), 606-608.
[http://dx.doi.org/10.1016/j.mencom.2021.09.005]
[196]
Burilova, E.A.; Pashirova, T.N.; Zueva, I.V.; Gibadullina, E.M.; Lushchekina, S.V.; Sapunova, A.S.; Kayumova, R.M.; Rogov, A.M.; Evtjugin, V.G.; Sudakov, I.A.; Vyshtakalyuk, A.B.; Voloshina, A.D.; Bukharov, S.V.; Burilov, A.R.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Bi- functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer’s disease via an intranasal route. Nanoscale, 2020, 12(25), 13757-13770.
[http://dx.doi.org/10.1039/D0NR04037A] [PMID: 32573587]
[197]
Zhao, J.; Xu, N.; Yang, X.; Ling, G.; Zhang, P. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease. Colloid Interface Sci. Commun., 2022, 46, 100579-100587.
[http://dx.doi.org/10.1016/j.colcom.2021.100579]
[198]
Daund, V.; Chalke, S.; Sherje, A.P.; Kale, P.P. ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. J. Drug Deliv. Sci. Technol., 2021, 64, 102599-102612.
[http://dx.doi.org/10.1016/j.jddst.2021.102599]
[199]
Yu, G.; Chen, X. Host-guest chemistry in supramolecular theranostics. Theranostics, 2019, 9(11), 3041-3074.
[http://dx.doi.org/10.7150/thno.31653] [PMID: 31244941]
[200]
Adlard, P.A.; Bush, A.I. Metals and Alzheimer’s disease. J. Alzheimers Dis., 2006, 10(2-3), 145-163.
[http://dx.doi.org/10.3233/JAD-2006-102-303] [PMID: 17119284]
[201]
Nath, A.K.; Dey, S.G. Simultaneous binding of heme and Cu with amyloid β peptides: Active site and reactivities. Dalton Trans., 2022, 51(13), 4986-4999.
[http://dx.doi.org/10.1039/D2DT00162D] [PMID: 35266499]
[202]
Yu, M.; Ryan, T.M.; Ellis, S.; Bush, A.I.; Triccas, J.A.; Rutledge, P.J.; Todd, M.H. Neuroprotective peptide-macrocycle conjugates reveal complex structure-activity relationships in their interactions with amyloid β. Metallomics, 2014, 6(10), 1931-1940.
[http://dx.doi.org/10.1039/C4MT00122B] [PMID: 25132118]
[203]
Xu, W.; Gao, C.; Sun, X.; Tai, W.C.S.; Lung, H.L.; Law, G.L. Design, synthesis and comparison of water-soluble phthalocyanine/porphyrin analogues and their inhibition effects on Aβ42 fibrillization. Inorg. Chem. Front., 2021, 8(14), 3501-3513.
[http://dx.doi.org/10.1039/D1QI00237F]
[204]
Liu, Z.; Ma, M.; Yu, D.; Ren, J.; Qu, X. Target-driven supramolecular self-assembly for selective amyloid-β photooxygenation against Alzheimer’s disease. Chem. Sci. (Camb.), 2020, 11(40), 11003-11008.
[http://dx.doi.org/10.1039/D0SC04984K] [PMID: 34094349]
[205]
Martins, A.F.; Dias, D.M.; Morfin, J.F.; Lacerda, S.; Laurents, D.V.; Tóth, É.; Geraldes, C.F.G.C. Interaction of PiB-derivative metal complexes with beta-amyloid peptides: selective recognition of the aggregated forms. Chemistry, 2015, 21(14), 5413-5422.
[http://dx.doi.org/10.1002/chem.201406152] [PMID: 25712142]
[206]
Razuvayeva, Y.; Kashapov, R.; Zakharova, L. Calixarene-based pure and mixed assemblies for biomedical applications. Supramol. Chem., 2020, 32(3), 178-206.
[http://dx.doi.org/10.1080/10610278.2020.1725515]
[207]
Español, E.; Villamil, M. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules, 2019, 9(3), 90-104.
[http://dx.doi.org/10.3390/biom9030090] [PMID: 30841659]
[208]
Wang, Z.; Tao, S.; Dong, X.; Sun, Y. Para-sulfonatocalix[n]arenes inhibit amyloid β-peptide fibrillation and reduce amyloid cytotoxicity. Chem. Asian J., 2017, 12(3), 341-346.
[http://dx.doi.org/10.1002/asia.201601461] [PMID: 27911039]
[209]
Schubert, E.A.; Kayser, V.; Wheate, N.J. Analysis of the interaction of para-sulfonatocalix[8]arene with free amino acids and a six residue segment of β-amyloid peptide as a potential treatment for Alzheimer’s disease. J. Incl. Phenom. Macrocycl. Chem., 2019, 93(3-4), 265-273.
[http://dx.doi.org/10.1007/s10847-018-00879-2]
[210]
Fanizza, E.; Depalo, N.; Fedorenko, S.; Iacobazzi, R.M.; Mukhametshina, A.; Zairov, R.; Salatino, A.; Vischio, F.; Panniello, A.; Laquintana, V.; Curri, M.L.; Mustafina, A.; Denora, N.; Striccoli, M. Green fluorescent terbium (III) complex doped silica nanoparticles. Int. J. Mol. Sci., 2019, 20(13), 3139-3154.
[http://dx.doi.org/10.3390/ijms20133139] [PMID: 31252567]
[211]
Xu, Z.; Jia, S.; Wang, W.; Yuan, Z.; Jan Ravoo, B.; Guo, D.S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat. Chem., 2019, 11(1), 86-93.
[http://dx.doi.org/10.1038/s41557-018-0164-y] [PMID: 30455432]
[212]
Consoli, G.M.L.; Tosto, R.; Baglieri, A.; Petralia, S.; Campagna, T.; Di Natale, G.; Zimbone, S.; Giuffrida, M.L.; Pappalardo, G. Novel peptide-calix[4]arene conjugate inhibits aβ aggregation and rescues neurons from Aβ’s oligomers cytotoxicity in vitro. ACS Chem. Neurosci., 2021, 12(8), 1449-1462.
[http://dx.doi.org/10.1021/acschemneuro.1c00117] [PMID: 33844495]
[213]
Wheate, N.J. Comparative host-guest complex formation of the Alzheimer’s drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). J. Incl. Phenom. Macrocycl. Chem., 2021, 101(1-2), 131-137.
[http://dx.doi.org/10.1007/s10847-021-01096-0]
[214]
Ostos, F.J.; Lebrón, J.A.; López-Cornejo, P.; López-López, M.; García-Calderón, M.; García-Calderón, C.B.; Rosado, I.V.; Kalchenko, V.I.; Rodik, R.V.; Moyá, M.L. Self-aggregation in aqueous solution of amphiphilic cationic calix[4]arenes. Potential use as vectors and nanocarriers. J. Mol. Liq., 2020, 304, 112724-112737.
[http://dx.doi.org/10.1016/j.molliq.2020.112724]
[215]
Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chem. Rev., 2019, 119(16), 9657-9721.
[http://dx.doi.org/10.1021/acs.chemrev.8b00605] [PMID: 31306015]
[216]
Feldman, H.H.; Lane, R. Rivastigmine: A placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2007, 78(10), 1056-1063.
[http://dx.doi.org/10.1136/jnnp.2006.099424] [PMID: 17353259]
[217]
Hsieh, S.W.; Chen, J.C.; Chen, N.C.; Jhang, K.M.; Wang, W.; Yang, Y.H. Real-world evaluation of tolerability, safety and efficacy of rivastigmine oral solution in patients with mild to moderate Alzheimer’s disease dementia. Clin. Psychopharmacol. Neurosci., 2021, 19(3), 459-469.
[http://dx.doi.org/10.9758/cpn.2021.19.3.459] [PMID: 34294615]
[218]
Lohan, S.; Sharma, T.; Saini, S.; Singh, A.; Kumar, A.; Raza, K.; Kaur, J.; Singh, B. Galactosylated nanoconstructs of berberine with enhanced biopharmaceutical and cognitive potential: A preclinical evidence in Alzheimer‘s disease. J. Drug Deliv. Sci. Technol., 2021, 66, 102695-102704.
[http://dx.doi.org/10.1016/j.jddst.2021.102695]
[219]
Lohan, S.; Sharma, T.; Saini, S.; Swami, R.; Dhull, D.; Beg, S.; Raza, K.; Kumar, A.; Singh, B. QbD-steered development of mixed nanomicelles of galantamine: Demonstration of enhanced brain uptake, prolonged systemic retention and improved biopharmaceutical attributes. Int. J. Pharm., 2021, 600, 120482-120493.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120482] [PMID: 33737096]
[220]
Hanafy, A.S.; Farid, R.M.; Helmy, M.W.; ElGamal, S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv., 2016, 23(8), 3111-3122.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[221]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[222]
Takeuchi, H.; Imamura, K.; Ji, B.; Tsukita, K.; Enami, T.; Takao, K.; Miyakawa, T.; Hasegawa, M.; Sahara, N.; Iwata, N.; Inoue, M.; Hara, H.; Tabira, T.; Ono, M.; Trojanowski, J.Q.; Lee, V.M.Y.; Takahashi, R.; Suhara, T.; Higuchi, M.; Inoue, H. Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. NPJ Vaccines, 2020, 5(1), 28-38.
[http://dx.doi.org/10.1038/s41541-020-0172-y] [PMID: 32219000]
[223]
Silva-Abreu, M.; Calpena, A.C.; Andrés-Benito, P.; Aso, E.; Romero, I.A.; Roig-Carles, D.; Gromnicova, R.; Espina, M.; Ferrer, I.; García, M.L.; Male, D. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: In vitro and in vivo studies. Int. J. Nanomed., 2018, 13, 5577-5590.
[http://dx.doi.org/10.2147/IJN.S171490] [PMID: 30271148]
[224]
Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O.P.; Singh, B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces, 2021, 205, 111838-101849.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111838] [PMID: 34022704]
[225]
Sadeghi, M.; Ganji, F.; Taghizadeh, S.M.; Daraei, B. Preparation and characterization of rivastigmine transdermal patch based on chitosan microparticles. Iran J. Pharm. Res., 2016, 15, 283-294.
[226]
Kearney, M.C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 103, 43-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.026] [PMID: 27018330]
[227]
Yoon, S.K.; Bae, K.S.; Hong, D.H.; Kim, S.S.; Choi, Y.K.; Lim, H.S. Pharmacokinetic evaluation by modeling and simulation analysis of a donepezil patch formulation in healthy male volunteers. Drug Des. Devel. Ther., 2020, 14, 1729-1737.
[http://dx.doi.org/10.2147/DDDT.S244957] [PMID: 32440098]
[228]
Kumar, M.; Sharma, P.; Maheshwari, R.; Tekade, M.; Shrivastava, S.K.; Tekade, R.K. Beyond the blood-brain barrier: Facing new challenges and prospects of nanotechnology-mediated targeted delivery to the brain. In: Nanotechnology-based targeted drug delivery systems for brain tumors; Elsevier: Amsterdam, 2018; pp. 397-437.
[229]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[230]
Bajracharya, R.; Caruso, A.C.; Vella, L.J.; Nisbet, R.M. Current and emerging strategies for enhancing antibody delivery to the brain. Pharmaceutics, 2021, 13(12), 2014-2029.
[http://dx.doi.org/10.3390/pharmaceutics13122014] [PMID: 34959296]
[231]
Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement. (N. Y.), 2022, 8(1), e12295-e12318.
[http://dx.doi.org/10.1002/trc2.12295] [PMID: 35516416]
[232]
Kirabali, T.; Rust, R.; Rigotti, S.; Siccoli, A.; Nitsch, R.M.; Kulic, L. Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer’s disease. Brain Pathol., 2020, 30(6), 1056-1070.
[http://dx.doi.org/10.1111/bpa.12895] [PMID: 32866303]
[233]
Choi, S.W.; Kim, J. Recent progress in autocatalytic ceria nanoparticles-based translational research on brain diseases. ACS Appl. Nano Mater., 2020, 3(2), 1043-1062.
[http://dx.doi.org/10.1021/acsanm.9b02243]
[234]
Mukherjee, S.; Madamsetty, V.S.; Bhattacharya, D.; Roy Chowdhury, S.; Paul, M.K.; Mukherjee, A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv. Funct. Mater., 2020, 30(35), 2003054-2003080.
[http://dx.doi.org/10.1002/adfm.202003054]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy