Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

cGAS-STING Pathway as the Target of Immunotherapy for Lung Cancer

Author(s): Qinfu Dan, Yang Yang and Hong Ge*

Volume 23, Issue 5, 2023

Published on: 13 December, 2022

Page: [354 - 362] Pages: 9

DOI: 10.2174/1568009623666221115095114

Price: $65

conference banner
Abstract

Immunotherapy has completely changed the treatment pattern of lung cancer and significantly prolonged the overall survival of patients, especially for advanced patients. However, a large number of lung cancer patients are unable to benefit from immunotherapy, which forces us to find new therapeutic targets to overcome drug resistance to immunotherapy. Cyclical GMP-AMP synthetase (cGAS) recognizes cytoplasmic DNA and promotes the formation of cyclical GMP-AMP (cGAMP), activates stimulator of interferon genes (STING), then induces the expression of varieties proinflammatory cytokines and chemokines, and then promotes the cross-presentation of dendritic cells (DCs) and initiates tumor-specific CD8+T cell response, showing great potential to overcome resistance and enhance antitumor immunity. In this review, we describe recent advances in the biological function,activation mode, and current applications of cGAS-STING pathway in lung cancer therapy. We also describe the mechanisms of the inactivation of cGAS-STING pathway in lung cancer cells, hoping to promote the progress of immunotherapy of lung cancer by targeting cGAS-STING pathway.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[3]
Sayour, E.J.; Mitchell, D.A. Manipulation of innate and adaptive immunity through cancer vaccines. J. Immunol. Res., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/3145742] [PMID: 28265580]
[4]
Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature, 2016, 535(7610), 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[5]
Khoo, L.T.; Chen, L.Y. Role of the cGAS–STING pathway in cancer development and oncotherapeutic approaches. EMBO Rep., 2018, 19(12), e46935.
[http://dx.doi.org/10.15252/embr.201846935] [PMID: 30446584]
[6]
Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149.
[http://dx.doi.org/10.1038/ni.3558] [PMID: 27648547]
[7]
Margolis, S.R.; Wilson, S.C.; Vance, R.E. Evolutionary Origins of cGAS-STING Signaling. Trends Immunol., 2017, 38(10), 733-743.
[http://dx.doi.org/10.1016/j.it.2017.03.004] [PMID: 28416447]
[8]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213), 674-678.
[http://dx.doi.org/10.1038/nature07317] [PMID: 18724357]
[9]
Dou, Z.; Ghosh, K.; Vizioli, M.G.; Zhu, J.; Sen, P.; Wangensteen, K.J.; Simithy, J.; Lan, Y.; Lin, Y.; Zhou, Z.; Capell, B.C.; Xu, C.; Xu, M.; Kieckhaefer, J.E.; Jiang, T.; Shoshkes-Carmel, M.; Tanim, K.M.A.A.; Barber, G.N.; Seykora, J.T.; Millar, S.E.; Kaestner, K.H.; Garcia, B.A.; Adams, P.D.; Berger, S.L. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550(7676), 402-406.
[http://dx.doi.org/10.1038/nature24050] [PMID: 28976970]
[10]
Yang, H.; Wang, H.; Ren, J.; Chen, Q.; Chen, Z.J. cGAS is essential for cellular senescence. Proc. Natl. Acad. Sci. USA, 2017, 114(23), E4612-E4620.
[http://dx.doi.org/10.1073/pnas.1705499114] [PMID: 28533362]
[11]
Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol., 2017, 19(9), 1061-1070.
[http://dx.doi.org/10.1038/ncb3586] [PMID: 28759028]
[12]
Ranoa, D.R.E.; Widau, R.C.; Mallon, S.; Parekh, A.D.; Nicolae, C.M.; Huang, X.; Bolt, M.J.; Arina, A.; Parry, R.; Kron, S.J.; Moldovan, G.L.; Khodarev, N.N.; Weichselbaum, R.R. STING promotes homeostasis via regulation of cell proliferation and chromosomal stability. Cancer Res., 2019, 79(7), 1465-1479.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1972] [PMID: 30482772]
[13]
Woo, S.R.; Fuertes, M.B.; Corrales, L.; Spranger, S.; Furdyna, M.J.; Leung, M.Y.K.; Duggan, R.; Wang, Y.; Barber, G.N.; Fitzgerald, K.A.; Alegre, M.L.; Gajewski, T.F. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 2014, 41(5), 830-842.
[http://dx.doi.org/10.1016/j.immuni.2014.10.017] [PMID: 25517615]
[14]
Wang, H.; Hu, S.; Chen, X.; Shi, H.; Chen, C.; Sun, L.; Chen, Z.J. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1637-1642.
[http://dx.doi.org/10.1073/pnas.1621363114] [PMID: 28137885]
[15]
Sundararaman, S.K.; Barbie, D.A. Tumor cGAMP awakens the natural killers. Immunity, 2018, 49(4), 585-587.
[http://dx.doi.org/10.1016/j.immuni.2018.10.001] [PMID: 30332624]
[16]
Marcus, A.; Mao, A.J.; Lensink-Vasan, M.; Wang, L.; Vance, R.E.; Raulet, D.H. Tumor-Derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity, 2018, 49(4), 754-763.e4.
[http://dx.doi.org/10.1016/j.immuni.2018.09.016] [PMID: 30332631]
[17]
Nakamura, T.; Sato, T.; Endo, R.; Sasaki, S.; Takahashi, N.; Sato, Y.; Hyodo, M.; Hayakawa, Y.; Harashima, H. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J. Immunother. Cancer, 2021, 9(7), e002852.
[http://dx.doi.org/10.1136/jitc-2021-002852] [PMID: 34215690]
[18]
Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol., 2015, 15(7), 405-414.
[http://dx.doi.org/10.1038/nri3845] [PMID: 26027717]
[19]
Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; Murphy, K.M.; Schreiber, R.D. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med., 2011, 208(10), 1989-2003.
[http://dx.doi.org/10.1084/jem.20101158] [PMID: 21930769]
[20]
Reboulet, R.A.; Hennies, C.M.; Garcia, Z.; Nierkens, S.; Janssen, E.M. Prolonged antigen storage endows merocytic dendritic cells with enhanced capacity to prime anti-tumor responses in tumor-bearing mice. J. Immunol., 2010, 185(6), 3337-3347.
[http://dx.doi.org/10.4049/jimmunol.1001619] [PMID: 20720209]
[21]
Lorenzi, S.; Mattei, F.; Sistigu, A.; Bracci, L.; Spadaro, F.; Sanchez, M.; Spada, M.; Belardelli, F.; Gabriele, L.; Schiavoni, G.; Type, I. IFNs control antigen retention and survival of CD8α(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J. Immunol., 2011, 186(9), 5142-5150.
[http://dx.doi.org/10.4049/jimmunol.1004163] [PMID: 21441457]
[22]
Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[23]
Padovan, E.; Spagnoli, G.C.; Ferrantini, M.; Heberer, M. IFN‐α2a induces IP‐10/CXCL10 and MIG/CXCL9 production in monocyte‐derived dendritic cells and enhances their capacity to attract and stimulate CD8 + effector T cells. J. Leukoc. Biol., 2002, 71(4), 669-676.
[http://dx.doi.org/10.1189/jlb.71.4.669] [PMID: 11927654]
[24]
Yang, H.; Lee, W.S.; Kong, S.J.; Kim, C.G.; Kim, J.H.; Chang, S.K.; Kim, S.; Kim, G.; Chon, H.J.; Kim, C. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J. Clin. Invest., 2019, 129(10), 4350-4364.
[http://dx.doi.org/10.1172/JCI125413] [PMID: 31343989]
[25]
Gangaplara, A.; Martens, C.; Dahlstrom, E.; Metidji, A.; Gokhale, A.S.; Glass, D.D.; Lopez-Ocasio, M.; Baur, R.; Kanakabandi, K.; Porcella, S.F.; Shevach, E.M. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog., 2018, 14(4), e1006985.
[http://dx.doi.org/10.1371/journal.ppat.1006985] [PMID: 29672594]
[26]
U’Ren, L.; Guth, A.; Kamstock, D.; Dow, S. Type I interferons inhibit the generation of tumor-associated macrophages. Cancer Immunol. Immunother., 2010, 59(4), 587-598.
[http://dx.doi.org/10.1007/s00262-009-0776-6] [PMID: 19826812]
[27]
Fuertes, M.B.; Kacha, A.K.; Kline, J.; Woo, S.R.; Kranz, D.M.; Murphy, K.M.; Gajewski, T.F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med., 2011, 208(10), 2005-2016.
[http://dx.doi.org/10.1084/jem.20101159] [PMID: 21930765]
[28]
Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; Nagtegaal, I.D.; Palmqvist, R.; Masucci, G.V.; Botti, G.; Tatangelo, F.; Delrio, P.; Maio, M.; Laghi, L.; Grizzi, F.; Asslaber, M.; D’Arrigo, C.; Vidal-Vanaclocha, F.; Zavadova, E.; Chouchane, L.; Ohashi, P.S.; Hafezi-Bakhtiari, S.; Wouters, B.G.; Roehrl, M.; Nguyen, L.; Kawakami, Y.; Hazama, S.; Okuno, K.; Ogino, S.; Gibbs, P.; Waring, P.; Sato, N.; Torigoe, T.; Itoh, K.; Patel, P.S.; Shukla, S.N.; Wang, Y.; Kopetz, S.; Sinicrope, F.A.; Scripcariu, V.; Ascierto, P.A.; Marincola, F.M.; Fox, B.A.; Pagès, F. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol., 2014, 232(2), 199-209.
[http://dx.doi.org/10.1002/path.4287] [PMID: 24122236]
[29]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[30]
Sen, T.; Tong, P.; Stewart, C.A.; Cristea, S.; Valliani, A.; Shames, D.S.; Redwood, A.B.; Fan, Y.H.; Li, L.; Glisson, B.S.; Minna, J.D.; Sage, J.; Gibbons, D.L.; Piwnica-Worms, H.; Heymach, J.V.; Wang, J.; Byers, L.A. CHK1 inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with Cisplatin or Olaparib. Cancer Res., 2017, 77(14), 3870-3884.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3409] [PMID: 28490518]
[31]
Barayan, R.; Ran, X.; Lok, B.H. PARP inhibitors for small cell lung cancer and their potential for integration into current treatment approaches. J. Thorac. Dis., 2020, 12(10), 6240-6252.
[http://dx.doi.org/10.21037/jtd.2020.03.89] [PMID: 33209463]
[32]
Farago, A.F.; Yeap, B.Y.; Stanzione, M.; Hung, Y.P.; Heist, R.S.; Marcoux, J.P.; Zhong, J.; Rangachari, D.; Barbie, D.A.; Phat, S.; Myers, D.T.; Morris, R.; Kem, M.; Dubash, T.D.; Kennedy, E.A.; Digumarthy, S.R.; Sequist, L.V.; Hata, A.N.; Maheswaran, S.; Haber, D.A.; Lawrence, M.S.; Shaw, A.T.; Mino-Kenudson, M.; Dyson, N.J.; Drapkin, B.J. Combination Olaparib and Temozolomide in relapsed small-cell lung cancer. Cancer Discov., 2019, 9(10), 1372-1387.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0582] [PMID: 31416802]
[33]
Knelson, E.H.; Patel, S.A.; Sands, J.M. PARP inhibitors in small-cell lung cancer: Rational combinations to improve responses. Cancers (Basel), 2021, 13(4), 727.
[http://dx.doi.org/10.3390/cancers13040727] [PMID: 33578789]
[34]
Wang, W.; Hodkinson, P.; McLaren, F.; MacKinnon, A.; Wallace, W.; Howie, S.; Sethi, T. Small cell lung cancer tumour cells induce regulatory T lymphocytes, and patient survival correlates negatively with FOXP3+ cells in tumour infiltrate. Int. J. Cancer, 2012, 131(6), E928-E937.
[http://dx.doi.org/10.1002/ijc.27613] [PMID: 22532287]
[35]
Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; Morse, M.A.; Ascierto, P.A.; Horn, L.; Amin, A.; Pillai, R.N.; Evans, J.; Chau, I.; Bono, P.; Atmaca, A.; Sharma, P.; Harbison, C.T.; Lin, C.S.; Christensen, O.; Calvo, E. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol., 2016, 17(7), 883-895.
[http://dx.doi.org/10.1016/S1470-2045(16)30098-5] [PMID: 27269741]
[36]
Ott, P.A.; Elez, E.; Hiret, S.; Kim, D.W.; Morosky, A.; Saraf, S.; Piperdi, B.; Mehnert, J.M. Pembrolizumab in patients with extensive-stage small-cell lung cancer: Results From the Phase Ib KEYNOTE-028 Study. J. Clin. Oncol., 2017, 35(34), 3823-3829.
[http://dx.doi.org/10.1200/JCO.2017.72.5069] [PMID: 28813164]
[37]
Sato, H.; Niimi, A.; Yasuhara, T.; Permata, T.B.M.; Hagiwara, Y.; Isono, M.; Nuryadi, E.; Sekine, R.; Oike, T.; Kakoti, S.; Yoshimoto, Y.; Held, K.D.; Suzuki, Y.; Kono, K.; Miyagawa, K.; Nakano, T.; Shibata, A. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun., 2017, 8(1), 1751.
[http://dx.doi.org/10.1038/s41467-017-01883-9] [PMID: 29170499]
[38]
Vranic, S. Microsatellite instability status predicts response to anti-PD-1/PD-L1 therapy regardless the histotype: A comment on recent advances. Bosn. J. Basic Med. Sci., 2017, 17(3), 274-275.
[http://dx.doi.org/10.17305/bjbms.2017.2366] [PMID: 28812534]
[39]
Sen, T.; Rodriguez, B.L.; Chen, L.; Corte, C.M.D.; Morikawa, N.; Fujimoto, J.; Cristea, S.; Nguyen, T.; Diao, L.; Li, L.; Fan, Y.; Yang, Y.; Wang, J.; Glisson, B.S.; Wistuba, I.I.; Sage, J.; Heymach, J.V.; Gibbons, D.L.; Byers, L.A. Targeting DNA damage response promotes antitumor immunity through STING-Mediated T-cell activation in small cell lung cancer. Cancer Discov., 2019, 9(5), 646-661.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1020] [PMID: 30777870]
[40]
Thomas, A.; Takahashi, N.; Rajapakse, V.N.; Zhang, X.; Sun, Y.; Ceribelli, M.; Wilson, K.M.; Zhang, Y.; Beck, E.; Sciuto, L.; Nichols, S.; Elenbaas, B.; Puc, J.; Dahmen, H.; Zimmermann, A.; Varonin, J.; Schultz, C.W.; Kim, S.; Shimellis, H.; Desai, P.; Klumpp-Thomas, C.; Chen, L.; Travers, J.; McKnight, C.; Michael, S.; Itkin, Z.; Lee, S.; Yuno, A.; Lee, M.J.; Redon, C.E.; Kindrick, J.D.; Peer, C.J.; Wei, J.S.; Aladjem, M.I.; Figg, W.D.; Steinberg, S.M.; Trepel, J.B.; Zenke, F.T.; Pommier, Y.; Khan, J.; Thomas, C.J. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell, 2021, 39(4), 566-579.e7.
[http://dx.doi.org/10.1016/j.ccell.2021.02.014] [PMID: 33848478]
[41]
Jo, U.; Senatorov, I.S.; Zimmermann, A.; Saha, L.K.; Murai, Y.; Kim, S.H.; Rajapakse, V.N.; Elloumi, F.; Takahashi, N.; Schultz, C.W.; Thomas, A.; Zenke, F.T.; Pommier, Y. Novel and highly potent ATR inhibitor M4344 kills cancer cells with replication stress, and enhances the chemotherapeutic activity of widely used DNA damaging agents. Mol. Cancer Ther., 2021, 20(8), 1431-1441.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-1026] [PMID: 34045232]
[42]
Li, X.; Li, Y.; Zhao, Z.; Miao, N.; Liu, G.; Deng, L.; Wei, S.; Hou, J. Immunogenicity of small‐cell lung cancer associates with STING pathway activation and is enhanced by ATR and TOP1 inhibition. Cancer Med., 2022, cam4.5109.
[http://dx.doi.org/10.1002/cam4.5109] [PMID: 35957613]
[43]
Chabanon, R.M.; Muirhead, G.; Krastev, D.B.; Adam, J.; Morel, D.; Garrido, M.; Lamb, A.; Hénon, C.; Dorvault, N.; Rouanne, M.; Marlow, R.; Bajrami, I.; Cardeñosa, M.L.; Konde, A.; Besse, B.; Ashworth, A.; Pettitt, S.J.; Haider, S.; Marabelle, A.; Tutt, A.N.J.; Soria, J.C.; Lord, C.J.; Postel-Vinay, S. PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. J. Clin. Invest., 2019, 129(3), 1211-1228.
[http://dx.doi.org/10.1172/JCI123319] [PMID: 30589644]
[44]
Mackenzie, K.J.; Carroll, P.; Martin, C.A.; Murina, O.; Fluteau, A.; Simpson, D.J.; Olova, N.; Sutcliffe, H.; Rainger, J.K.; Leitch, A.; Osborn, R.T.; Wheeler, A.P.; Nowotny, M.; Gilbert, N.; Chandra, T.; Reijns, M.A.M.; Jackson, A.P. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature, 2017, 548(7668), 461-465.
[http://dx.doi.org/10.1038/nature23449] [PMID: 28738408]
[45]
Harding, S.M.; Benci, J.L.; Irianto, J.; Discher, D.E.; Minn, A.J.; Greenberg, R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 2017, 548(7668), 466-470.
[http://dx.doi.org/10.1038/nature23470] [PMID: 28759889]
[46]
Parkes, E.E.; Walker, S.M.; Taggart, L.E.; McCabe, N.; Knight, L.A.; Wilkinson, R.; McCloskey, K.D.; Buckley, N.E.; Savage, K.I.; Salto-Tellez, M.; McQuaid, S.; Harte, M.T.; Mullan, P.B.; Harkin, D.P.; Kennedy, R.D. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl. Cancer Inst., 2017, 109(1), djw199.
[http://dx.doi.org/10.1093/jnci/djw199] [PMID: 27707838]
[47]
Erdal, E.; Haider, S.; Rehwinkel, J.; Harris, A.L.; McHugh, P.J. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev., 2017, 31(4), 353-369.
[http://dx.doi.org/10.1101/gad.289769.116] [PMID: 28279982]
[48]
Reisländer, T.; Lombardi, E.P.; Groelly, F.J.; Miar, A.; Porru, M.; Di Vito, S.; Wright, B.; Lockstone, H.; Biroccio, A.; Harris, A.; Londoño-Vallejo, A.; Tarsounas, M. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat. Commun., 2019, 10(1), 3143.
[http://dx.doi.org/10.1038/s41467-019-11048-5] [PMID: 31316060]
[49]
Zhang, N.; Gao, Y.; Zeng, Z.; Luo, Y.; Jiang, X.; Zhang, J.; Li, J.; Zhang, J.; Gong, Y.; Xie, C. PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer. Clin. Transl. Oncol., 2021, 23(9), 1827-1837.
[http://dx.doi.org/10.1007/s12094-021-02591-z] [PMID: 33774805]
[50]
Della Corte, C.M.; Fasano, M.; Ciaramella, V.; Cimmino, F.; Cardnell, R.; Gay, C.M.; Ramkumar, K.; Diao, L.; Di Liello, R.; Viscardi, G.; Famiglietti, V.; Ciardiello, D.; Martini, G.; Napolitano, S.; Tuccillo, C.; Troiani, T.; Martinelli, E.; Wang, J.; Byers, L.; Morgillo, F.; Ciardiello, F. Anti-tumor activity of cetuximab plus avelumab in non-small cell lung cancer patients involves innate immunity activation: findings from the CAVE-Lung trial. J. Exp. Clin. Cancer Res., 2022, 41(1), 109.
[http://dx.doi.org/10.1186/s13046-022-02332-2] [PMID: 35346313]
[51]
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol., 2017, 17(2), 97-111.
[http://dx.doi.org/10.1038/nri.2016.107] [PMID: 27748397]
[52]
Mattarollo, S.R.; Loi, S.; Duret, H.; Ma, Y.; Zitvogel, L.; Smyth, M.J. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res., 2011, 71(14), 4809-4820.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0753] [PMID: 21646474]
[53]
Hossain, D.M.S.; Javaid, S.; Cai, M.; Zhang, C.; Sawant, A.; Hinton, M.; Sathe, M.; Grein, J.; Blumenschein, W.; Pinheiro, E.M.; Chackerian, A. Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J. Clin. Invest., 2018, 128(2), 644-654.
[http://dx.doi.org/10.1172/JCI94586] [PMID: 29337311]
[54]
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; Dilling, T.J.; Dowell, J.; Gettinger, S.; Gubens, M.A.; Hegde, A.; Hennon, M.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Lin, J.; Loo, B.W., Jr; Lovly, C.M.; Martins, R.G.; Massarelli, E.; Morgensztern, D.; Ng, T.; Otterson, G.A.; Patel, S.P.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Singh, A.P.; Stevenson, J.; Tam, A.; Yanagawa, J.; Yang, S.C.; Gregory, K.M.; Hughes, M. NCCN guidelines insights: Non-small cell lung cancer, version 2.2021. J. Natl. Compr. Canc. Netw., 2021, 19(3), 254-266.
[http://dx.doi.org/10.6004/jnccn.2021.0013] [PMID: 33668021]
[55]
Herbst, R.S.; Sznol, M. Diminished but not dead: chemotherapy for the treatment of NSCLC. Lancet Oncol., 2016, 17(11), 1464-1465.
[http://dx.doi.org/10.1016/S1470-2045(16)30524-1] [PMID: 27819227]
[56]
Della Corte, C.M.; Sen, T.; Gay, C.M.; Ramkumar, K.; Diao, L.; Cardnell, R.J.; Rodriguez, B.L.; Stewart, C.A.; Papadimitrakopoulou, V.A.; Gibson, L.; Fradette, J.J.; Wang, Q.; Fan, Y.; Peng, D.H.; Negrao, M.V.; Wistuba, I.I.; Fujimoto, J.; Solis Soto, L.M.; Behrens, C.; Skoulidis, F.; Heymach, J.V.; Wang, J.; Gibbons, D.L.; Byers, L.A. STING pathway expression identifies NSCLC with an immune-responsive phenotype. J. Thorac. Oncol., 2020, 15(5), 777-791.
[http://dx.doi.org/10.1016/j.jtho.2020.01.009] [PMID: 32068166]
[57]
Zhou, L.; Xu, Q.; Huang, L.; Jin, J.; Zuo, X.; Zhang, Q.; Ye, L.; Zhu, S.; Zhan, P.; Ren, J.; Lv, T.; Song, Y. Low-dose carboplatin reprograms tumor immune microenvironment through STING signaling pathway and synergizes with PD-1 inhibitors in lung cancer. Cancer Lett., 2021, 500, 163-171.
[http://dx.doi.org/10.1016/j.canlet.2020.11.049] [PMID: 33278498]
[58]
Kitajima, S.; Ivanova, E.; Guo, S.; Yoshida, R.; Campisi, M.; Sundararaman, S.K.; Tange, S.; Mitsuishi, Y.; Thai, T.C.; Masuda, S.; Piel, B.P.; Sholl, L.M.; Kirschmeier, P.T.; Paweletz, C.P.; Watanabe, H.; Yajima, M.; Barbie, D.A. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov., 2019, 9(1), 34-45.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0689] [PMID: 30297358]
[59]
Yang, C.A.; Huang, H.Y.; Chang, Y.S.; Lin, C.L.; Lai, I.L.; Chang, J.G. DNA-sensing and nuclease gene expressions as markers for colorectal cancer progression. Oncology, 2017, 92(2), 115-124.
[http://dx.doi.org/10.1159/000452281] [PMID: 27988520]
[60]
Song, S.; Peng, P.; Tang, Z.; Zhao, J.; Wu, W.; Li, H.; Shao, M.; Li, L.; Yang, C.; Duan, F.; Zhang, M.; Zhang, J.; Wu, H.; Li, C.; Wang, X.; Wang, H.; Ruan, Y.; Gu, J. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci. Rep., 2017, 7(1), 39858.
[http://dx.doi.org/10.1038/srep39858] [PMID: 28176788]
[61]
Bu, Y.; Liu, F.; Jia, Q.A.; Yu, S.N. Decreased expression of TMEM173 predicts poor prognosis in patients with hepatocellular carcinoma. PLoS One, 2016, 11(11), e0165681.
[http://dx.doi.org/10.1371/journal.pone.0165681] [PMID: 27814372]
[62]
Xia, T.; Konno, H.; Barber, G.N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res., 2016, 76(22), 6747-6759.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1404] [PMID: 27680683]
[63]
Raaby Gammelgaard, K.; Sandfeld-Paulsen, B.; Godsk, S.H.; Demuth, C.; Meldgaard, P.; Sorensen, B.S.; Jakobsen, M.R. cGAS-STING pathway expression as a prognostic tool in NSCLC. Transl. Lung Cancer Res., 2021, 10(1), 340-354.
[http://dx.doi.org/10.21037/tlcr-20-524] [PMID: 33569317]
[64]
Yang, B.; Rao, W.; Luo, H.; Zhang, L.; Wang, D. Relapse‐related molecular signature in early‐stage lung adenocarcinomas based on base excision repair, stimulator of interferon genes pathway and tumor‐infiltrating lymphocytes. Cancer Sci., 2020, 111(10), 3493-3502.
[http://dx.doi.org/10.1111/cas.14570] [PMID: 32654272]
[65]
Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer, 2018, 18(5), 313-322.
[http://dx.doi.org/10.1038/nrc.2018.6] [PMID: 29449659]
[66]
Baird, J.R.; Friedman, D.; Cottam, B.; Dubensky, T.W., Jr; Kanne, D.B.; Bambina, S.; Bahjat, K.; Crittenden, M.R.; Gough, M.J. Radiotherapy Combined with Novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res., 2016, 76(1), 50-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3619] [PMID: 26567136]
[67]
Pierce, R.H.; Campbell, J.S.; Pai, S.I.; Brody, J.D.; Kohrt, H.E.K. In-situ tumor vaccination: Bringing the fight to the tumor. Hum. Vaccin. Immunother., 2015, 11(8), 1901-1909.
[http://dx.doi.org/10.1080/21645515.2015.1049779] [PMID: 26055074]
[68]
Freeman, G.J.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev., 2010, 235(1), 172-189.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00903.x] [PMID: 20536563]
[69]
Park, D.; Tosello-Trampont, A.C.; Elliott, M.R.; Lu, M.; Haney, L.B.; Ma, Z.; Klibanov, A.L.; Mandell, J.W.; Ravichandran, K.S. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature, 2007, 450(7168), 430-434.
[http://dx.doi.org/10.1038/nature06329] [PMID: 17960134]
[70]
Liu, Y.; Crowe, W.N.; Wang, L.; Lu, Y.; Petty, W.J.; Habib, A.A.; Zhao, D. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun., 2019, 10(1), 5108.
[http://dx.doi.org/10.1038/s41467-019-13094-5] [PMID: 31704921]
[71]
Kordbacheh, T.; Honeychurch, J.; Blackhall, F.; Faivre-Finn, C.; Illidge, T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann. Oncol., 2018, 29(2), 301-310.
[http://dx.doi.org/10.1093/annonc/mdx790] [PMID: 29309540]
[72]
Demaria, O.; De Gassart, A.; Coso, S.; Gestermann, N.; Di Domizio, J.; Flatz, L.; Gaide, O.; Michielin, O.; Hwu, P.; Petrova, T.V.; Martinon, F.; Modlin, R.L.; Speiser, D.E.; Gilliet, M. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA, 2015, 112(50), 15408-15413.
[http://dx.doi.org/10.1073/pnas.1512832112] [PMID: 26607445]
[73]
Qiao, Y.; Zhu, S.; Deng, S.; Zou, S.S.; Gao, B.; Zang, G.; Wu, J.; Jiang, Y.; Liu, Y.J.; Chen, J. Human cancer cells sense cytosolic nucleic acids through the RIG-I–MAVS pathway and cGAS–STING Pathway. Front. Cell Dev. Biol., 2021, 8, 606001.
[http://dx.doi.org/10.3389/fcell.2020.606001] [PMID: 33490069]
[74]
Liu, W.; Kim, G.B.; Krump, N.A.; Zhou, Y.; Riley, J.L.; You, J. Selective reactivation of STING signaling to target Merkel cell carcinoma. Proc. Natl. Acad. Sci. USA, 2020, 117(24), 13730-13739.
[http://dx.doi.org/10.1073/pnas.1919690117] [PMID: 32482869]
[75]
Zou, S.S.; Qiao, Y.; Zhu, S.; Gao, B.; Yang, N.; Liu, Y.J.; Chen, J. Intrinsic strategies for the evasion of cGAS-STING signaling-mediated immune surveillance in human cancer: How therapy can overcome them. Pharmacol. Res., 2021, 166, 105514.
[http://dx.doi.org/10.1016/j.phrs.2021.105514] [PMID: 33631336]
[76]
Ma, F.; Lei, Y.Y.; Ding, M.G.; Luo, L.H.; Xie, Y.C.; Liu, X.L. LncRNA NEAT1 Interacted With DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic t cell infiltration via epigenetic inhibition of p53, cGAS, and STING in Lung Cancer. Front. Genet., 2020, 11, 250.
[http://dx.doi.org/10.3389/fgene.2020.00250] [PMID: 32296457]
[77]
Kottakis, F.; Nicolay, B.N.; Roumane, A.; Karnik, R.; Gu, H.; Nagle, J.M.; Boukhali, M.; Hayward, M.C.; Li, Y.Y.; Chen, T.; Liesa, M.; Hammerman, P.S.; Wong, K.K.; Hayes, D.N.; Shirihai, O.S.; Dyson, N.J.; Haas, W.; Meissner, A.; Bardeesy, N. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature, 2016, 539(7629), 390-395.
[http://dx.doi.org/10.1038/nature20132] [PMID: 27799657]
[78]
Shackelford, D.B.; Abt, E.; Gerken, L.; Vasquez, D.S.; Seki, A.; Leblanc, M.; Wei, L.; Fishbein, M.C.; Czernin, J.; Mischel, P.S.; Shaw, R.J. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell, 2013, 23(2), 143-158.
[http://dx.doi.org/10.1016/j.ccr.2012.12.008] [PMID: 23352126]
[79]
Li, L.; Yang, L.; Cheng, S.; Fan, Z.; Shen, Z.; Xue, W.; Zheng, Y.; Li, F.; Wang, D.; Zhang, K.; Lian, J.; Wang, D.; Zhu, Z.; Zhao, J.; Zhang, Y. Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity. Mol. Cancer, 2019, 18(1), 108.
[http://dx.doi.org/10.1186/s12943-019-1027-x] [PMID: 31221150]
[80]
Zhang, Y.; Yang, Q.; Zeng, X.; Wang, M.; Dong, S.; Yang, B.; Tu, X.; Wei, T.; Xie, W.; Zhang, C.; Guo, Q.; Kloeber, J.A.; Cao, Y.; Guo, G.; Zhou, Q.; Zhao, F.; Huang, J.; Liu, L.; Zhang, K.; Wang, M.; Yin, P.; Luo, K.; Deng, M.; Kim, W.; Hou, J.; Shi, Y.; Zhu, Q.; Chen, L.; Hu, S.; Yue, J.; Pi, G.; Lou, Z. MET amplification attenuates lung tumor response to immunotherapy by inhibiting STING. Cancer Discov., 2021, 11(11), 2726-2737.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1500] [PMID: 34099454]
[81]
Oh, D.Y.; Bang, Y.J. HER2-targeted therapies-a role beyond breast cancer. Nat. Rev. Clin. Oncol., 2020, 17(1), 33-48.
[http://dx.doi.org/10.1038/s41571-019-0268-3] [PMID: 31548601]
[82]
Wu, S.; Zhang, Q.; Zhang, F.; Meng, F.; Liu, S.; Zhou, R.; Wu, Q.; Li, X.; Shen, L.; Huang, J.; Qin, J.; Ouyang, S.; Xia, Z.; Song, H.; Feng, X.H.; Zou, J.; Xu, P. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol., 2019, 21(8), 1027-1040.
[http://dx.doi.org/10.1038/s41556-019-0352-z] [PMID: 31332347]
[83]
Lemos, H.; Ou, R.; McCardle, C.; Lin, Y.; Calver, J.; Minett, J.; Chadli, A.; Huang, L.; Mellor, A.L. Overcoming resistance to STING agonist therapy to incite durable protective antitumor immunity. J. Immunother. Cancer, 2020, 8(2), e001182.
[http://dx.doi.org/10.1136/jitc-2020-001182] [PMID: 32847988]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy