Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Mini-Review Article

Vaccines: An Important Tool for Infectious Disease

Author(s): Saika Saman, Iti Chauhan and Nimisha Srivastava*

Volume 18, Issue 2, 2023

Published on: 30 November, 2022

Page: [88 - 109] Pages: 22

DOI: 10.2174/2772434418666221114113036

Price: $65

Abstract

Vaccines are usually regarded as one of the most important tools in the battle against infectious diseases. Even though currently accessible vaccinations are an incredible success story in contemporary medicine and have had a significant impact on global morbidity and death rates, it is evident that current vaccine delivery approaches need to be improved. To allow the successful creation of vaccinations against contagious diseases that have proven challenging to manage with conventional procedures, improvements are necessary. Improvements could include the introduction of innovative injectable adjuvants or novel delivery methods, such as mucosal immunization. Protection against infections that infect mucosal areas may necessitate mucosal delivery.

Alternatively, innovative techniques for delivery, such as intradermal administration using self-administrable devices or the use of microneedle technology to bypass the stratum corneum's skin penetration barrier and aid in the transport of antigens, could be utilized to increase vaccine compliance. Needle-free delivery systems are of particular relevance for safer mass immunization programs, as they would prevent problems caused by needles reuse in several regions of the world, as well as needle-stick accidents.

Based on this information, future vaccine development will mainly concentrate on rational antigen, adjuvant, and, most importantly, delivery mechanism design, resulting in new and improved vaccinations.

In addition, this study discusses the current state and prospects of vaccine delivery via a variety of channels, including non- or minimally invasive approaches.

Graphical Abstract

[1]
Rappuoli R, Mandl CW, Black S, De Gregorio E. Vaccines for the twenty-first century society. Nat. Rev. Immunol. 2011; 11(12): 865-72.
[http://dx.doi.org/10.1038/nri3085] [PMID: 22051890]
[2]
Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles. Acta Pathol Microbiol Scand Suppl 2015; 123(4): 275-88.
[http://dx.doi.org/10.1111/apm.12351] [PMID: 25630573]
[3]
Jain S, Khomane KK, Jain A, Dani P. Nanocarriers for transmucosal vaccine delivery. Curr. Nanosci. 2011; 7(2): 160-77.
[http://dx.doi.org/10.2174/157341311794653541]
[4]
Abdollahpour S, Miri HH, Khadivzadeh T. Prediction of neonatal and maternal index based on development and population indicators: a global ecological study. Clin J 2021; 4: 101-5.
[5]
Doherty M, Buchy P, Standaert B, Giaquinto C. Prado- Cohrs D. Vaccine impact: Benefits for human health. Vaccine 2016; 34(52): 6707-14.
[http://dx.doi.org/10.1016/j.vaccine.2016.10.025] [PMID: 27773475]
[6]
Jahan N, Archie SR, Shoyaib AA, Kabir N, Cheung K. Recent approaches for solid dose vaccine delivery. Sci. Pharm. 2019; 87(4): 27.
[http://dx.doi.org/10.3390/scipharm87040027]
[7]
Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol. Med. 2014; 6(6): 708-20.
[http://dx.doi.org/10.1002/emmm.201403876] [PMID: 24803000]
[8]
Nabel GJ. Designing tomorrow’s vaccines. N. Engl. J. Med. 2013; 368(6): 551-60.
[http://dx.doi.org/10.1056/NEJMra1204186] [PMID: 23388006]
[9]
Hatherill M, White RG, Hawn TR. Clinical development of new TB vaccines: recent advances and next steps. Front. Microbiol. 2020; 10: 3154.
[http://dx.doi.org/10.3389/fmicb.2019.03154] [PMID: 32082273]
[10]
Bekker LG, Tatoud R, Dabis F, et al. The complex challenges of HIV vaccine development require renewed and expanded global commitment. Lancet 2020; 395(10221): 384-8.
[http://dx.doi.org/10.1016/S0140-6736(19)32682-0] [PMID: 31806257]
[11]
Matz KM, Marzi A, Feldmann H. Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Rev. Vaccines 2019; 18(12): 1229-42.
[http://dx.doi.org/10.1080/14760584.2019.1698952] [PMID: 31779496]
[12]
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020; 12(3): 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[13]
Fu YH, He JS, Wang XB, et al. A prime–boost vaccination strategy using attenuated Salmonella typhimurium and a replication-deficient recombinant adenovirus vector elicits protective immunity against human respiratory syncytial virus. Biochem. Biophys. Res. Commun. 2010; 395(1): 87-92.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.144] [PMID: 20350532]
[14]
Çuburu N, Kweon MN, Song JH, et al. Sublingual immunization induces broad-based systemic and mucosal immune responses in mice. Vaccine 2007; 25(51): 8598-610.
[http://dx.doi.org/10.1016/j.vaccine.2007.09.073] [PMID: 17996991]
[15]
Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol. Invest. 2010; 39(4-5): 303-55.
[http://dx.doi.org/10.3109/08820131003680369] [PMID: 20450282]
[16]
Haynes BF. New approaches to HIV vaccine development. Curr. Opin. Immunol. 2015; 35: 39-47.
[http://dx.doi.org/10.1016/j.coi.2015.05.007] [PMID: 26056742]
[17]
Junter GA, Karakasyan C. Polysaccharides against viruses: Immunostimulatory properties and the delivery of antiviral vaccines and drugs. Crit. Rev. Ther. Drug Carrier Syst. 2020; 37(1): 1-64.
[18]
Ewald A, Lochner B, Gbureck U, Groll J, Krüger R. Structural optimization of macroporous magnesium phosphate scaffolds and their cytocompatibility. Key Eng. Mater. 2012; Vol. 493: 813-9.
[19]
Wang Y, Wang X, Zhang J, et al. Gambogic acid-encapsulated polymeric micelles improved therapeutic effects on pancreatic cancer. Chin. Chem. Lett. 2019; 30(4): 885-8.
[http://dx.doi.org/10.1016/j.cclet.2019.02.018]
[20]
He T, Liang X, Li L, et al. A spontaneously formed and self-adjuvanted hydrogel vaccine triggers strong immune responses. Mater. Des. 2021; 197109232
[http://dx.doi.org/10.1016/j.matdes.2020.109232]
[21]
Robbins JB, Schneerson R, Szu SC, et al. Prevention of invasive bacterial diseases by immunization with polysaccharide-protein conjugates.In: New Strategies for Oral Immunization. Berlin: Springer 1989; pp. 169-80.
[http://dx.doi.org/10.1007/978-3-642-74529-4_18]
[22]
Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin. Infect. Dis. 2014; 58(3): e44-e100.
[http://dx.doi.org/10.1093/cid/cit684] [PMID: 24311479]
[23]
Lakshmi PK, Bhaskaran S, Saroja CH. Recent trends in vaccine delivery systems: A review. Int. J. Pharm. Investig. 2011; 1(2): 64-74.
[http://dx.doi.org/10.4103/2230-973X.82384] [PMID: 23071924]
[24]
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 2021; 21(2): 83-100.
[http://dx.doi.org/10.1038/s41577-020-00479-7] [PMID: 33353987]
[25]
Henry B, Baclic O. Summary of the NACI update on the recommended use of hepatitis B vaccine. Can. Commun. Dis. Rep. 2017; 43(5): 104-6.
[http://dx.doi.org/10.14745/ccdr.v43i05a04] [PMID: 29770073]
[26]
Halstead SB, Sangkawibha N, Rojanasuphot S. Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 1983; 32(1): 154-6.
[http://dx.doi.org/10.4269/ajtmh.1983.32.154] [PMID: 6824120]
[27]
Kim JH, Skountzou I, Compans R, Jacob J. Original antigenic sin responses to influenza viruses. J. Immunol. 2009; 183(5): 3294-301.
[http://dx.doi.org/10.4049/jimmunol.0900398] [PMID: 19648276]
[28]
Vatti A, Monsalve DM, Pacheco Y, Chang C, Anaya JM, Gershwin ME. Original antigenic sin: A comprehensive review. J. Autoimmun. 2017; 83: 12-21.
[http://dx.doi.org/10.1016/j.jaut.2017.04.008] [PMID: 28479213]
[29]
Trotter CL, Andrews NJ, Kaczmarski EB, Miller E, Ramsay ME. Effectiveness of meningococcal serogroup C conjugate vaccine 4 years after introduction. Lancet 2004; 364(9431): 365-7.
[http://dx.doi.org/10.1016/S0140-6736(04)16725-1] [PMID: 15276396]
[30]
Barker LF, Hussey G. The immunological basis for immunization series: module 5: Tuberculosis. World Health Organization 2011.
[31]
Pollard AJ, Finn A, Curtis N. Non-specific effects of vaccines: plausible and potentially important, but implications uncertain. Arch. Dis. Child. 2017; 102(11): 1077-81.
[http://dx.doi.org/10.1136/archdischild-2015-310282] [PMID: 28501809]
[32]
Higgins JP, Soares-Weiser K, López-López JA, et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ 2016; 355.
[33]
Mina MJ, Kula T, Leng Y, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 2019; 366(6465): 599-606.
[http://dx.doi.org/10.1126/science.aay6485] [PMID: 31672891]
[34]
Zepp F. Principles of vaccine design—Lessons from nature. Vaccine 2010; 28(S3): C14-24.
[http://dx.doi.org/10.1016/j.vaccine.2010.07.020] [PMID: 20713252]
[35]
Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu. Rev. Biomed. Eng. 2012; 14(1): 17-46.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150054] [PMID: 22524387]
[36]
Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 2012; 12(8): 592-605.
[http://dx.doi.org/10.1038/nri3251] [PMID: 22828912]
[37]
Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun. 1997; 65(4): 1387-94.
[http://dx.doi.org/10.1128/iai.65.4.1387-1394.1997] [PMID: 9119478]
[38]
Nicolas JF, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev. Vaccines 2008; 7(8): 1201-14.
[http://dx.doi.org/10.1586/14760584.7.8.1201] [PMID: 18844594]
[39]
Henri S, Guilliams M, Poulin LF, et al. Disentangling the complexity of the skin dendritic cell network. Immunol. Cell Biol. 2010; 88(4): 366-75.
[http://dx.doi.org/10.1038/icb.2010.34] [PMID: 20231850]
[40]
Lambert PH, Laurent PE. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine 2008; 26(26): 3197-208.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.095] [PMID: 18486285]
[41]
Mikszta JA, Laurent PE. Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev. Vaccines 2008; 7(9): 1329-39.
[http://dx.doi.org/10.1586/14760584.7.9.1329] [PMID: 18980537]
[42]
Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum. Vaccin. Immunother. 2016; 12(11): 2975-83.
[http://dx.doi.org/10.1080/21645515.2016.1171440] [PMID: 27050528]
[43]
Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative methods of vaccine delivery: an overview of edible and intradermal vaccines. J. Immunol. Res. 2019; 20198303648
[http://dx.doi.org/10.1155/2019/8303648]
[44]
Ponvert C, Scheinmann P. Vaccine allergy and pseudo-allergy. Eur. J. Dermatol. 2003; 13(1): 10-5.
[PMID: 12609774]
[45]
Marra F, Young F, Richardson K, Marra CA. A Meta-analysis of intradermal versus intramuscular influenza vaccines: Immunogenicity and Adverse Events. Influenza Other Respir. Viruses 2013; 7(4): 584-603.
[http://dx.doi.org/10.1111/irv.12000] [PMID: 22974174]
[46]
Rouphael NG, Mulligan MJ. Microneedle patch for immunization of immunocompromised hosts. Oncotarget 2017; 8(55): 93311-2.
[http://dx.doi.org/10.18632/oncotarget.22072] [PMID: 29212148]
[47]
Esser ES, Pulit-Penaloza JA, Kalluri H, et al. Microneedle patch delivery of influenza vaccine during pregnancy enhances maternal immune responses promoting survival and long-lasting passive immunity to offspring. Sci. Rep. 2017; 7(1): 5705.
[http://dx.doi.org/10.1038/s41598-017-05940-7] [PMID: 28720851]
[48]
Filippelli M, Lionetti E, Gennaro A, et al. Hepatitis B vaccine by intradermal route in non responder patients: An update. World J. Gastroenterol. 2014; 20(30): 10383-94.
[http://dx.doi.org/10.3748/wjg.v20.i30.10383] [PMID: 25132754]
[49]
Chanchairujira T, Chantaphakul N, Thanwandee T, Ong-Ajyooth L. Efficacy of intradermal hepatitis B vaccination compared to intramuscular vaccination in hemodialysis patients. J. Med. Assoc. Thai. 2006; 89(S2): S33-40.
[PMID: 17044452]
[50]
Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM. Dose sparing with intradermal injection of influenza vaccine. N. Engl. J. Med. 2004; 351(22): 2295-301.
[http://dx.doi.org/10.1056/NEJMoa043540] [PMID: 15525714]
[51]
Schiffelers R. Drug Delivery-Select Biosciences Inaugural Summit. 2-4 September 2009, London, UK. Idrugs: the Inves. Drugs J. 2009; 12(11): 679-82.
[52]
Cordeiro AS, Alonso MJ. Recent advances in vaccine delivery. Pharm. Pat. Anal. 2016; 5(1): 49-73.
[http://dx.doi.org/10.4155/ppa.15.38] [PMID: 26667309]
[53]
Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol. J. 2018; 15(1): 17.
[http://dx.doi.org/10.1186/s12985-017-0918-y] [PMID: 29370862]
[54]
Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Intradermal Immunization 2011; pp. 77-112.
[55]
Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum. Vaccin. Immunother. 2017; 13(1): 34-45.
[http://dx.doi.org/10.1080/21645515.2016.1239668] [PMID: 27936348]
[56]
O’Hagan DT, Rappuoli R. Novel approaches to vaccine delivery. Pharm. Res. 2004; 21(9): 1519-30.
[http://dx.doi.org/10.1023/B:PHAM.0000041443.17935.33] [PMID: 15497674]
[57]
Kim SH, Jang YS. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin. Exp. Vaccine Res. 2017; 6(1): 15-21.
[http://dx.doi.org/10.7774/cevr.2017.6.1.15] [PMID: 28168169]
[58]
Halder J, Gupta S, Kumari R, Gupta GD, Rai VK. Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J. Pharm. Innov. 2021; 16(3): 558-65.
[http://dx.doi.org/10.1007/s12247-020-09460-2] [PMID: 32837607]
[60]
Adjuvants and Vaccines. Available from: https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html
[61]
Advances in Single-Shot Vaccine Development. Available from. https://www.biopharminternational.com/view/advances-single-shot-vaccine-development
[62]
Kuperman AS, Grayson MS. albert einstein college of medicine of Yeshiva University. Acad. Med. 2010; 85(9): S362-4.
[http://dx.doi.org/10.1097/ACM.0b013e3181e95bd2] [PMID: 20736587]
[63]
Burkoth TL, Bellhouse BJ, Hewson G, Longridge DJ, Muddle AG, Sarphie DF. Transdermal and transmucosal powdered drug delivery. Critical Rev Therap Drug Carrier Sys 1999; 16(4): 331-84.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v16.i4.10]
[64]
Brown LE. The role of adjuvants in vaccines for seasonal and pandemic influenza. Vaccine 2010; 28(50): 8043-5.
[http://dx.doi.org/10.1016/j.vaccine.2010.09.024] [PMID: 20849874]
[65]
Nordin J, Mullooly J, Poblete S, et al. Influenza vaccine effectiveness in preventing hospitalizations and deaths in persons 65 years or older in Minnesota, New York, and Oregon: data from 3 health plans. J. Infect. Dis. 2001; 184(6): 665-70.
[http://dx.doi.org/10.1086/323085] [PMID: 11517426]
[66]
Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol 2017; 39(Pt B): 174-80.
[http://dx.doi.org/10.1016/j.nbt.2017.07.010] [PMID: 28778817]
[67]
Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 2019; 29(7): 519-29.
[http://dx.doi.org/10.1093/glycob/cwz031] [PMID: 30989179]
[68]
Martin OG, Gonzalez EA, Romeu BA, et al. Inventors; Martin Oliver German Perez, assignee. Single-time vaccines. United States patent application. US 13130146, 2011.
[69]
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol. Rev. 2021; 301(1): 30-47.
[http://dx.doi.org/10.1111/imr.12948] [PMID: 33529407]
[70]
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv. Drug Deliv. Rev. 2022; 186114340
[http://dx.doi.org/10.1016/j.addr.2022.114340] [PMID: 35569561]
[71]
Fernando GJP, Hickling J, Jayashi Flores CM, et al. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 2018; 36(26): 3779-88.
[http://dx.doi.org/10.1016/j.vaccine.2018.05.053] [PMID: 29779922]
[72]
Mellman IS, Fahmy TM, Saltzman WM, Caplan MJ. Inventors; Yale University, assignee. Modular nanoparticles for adaptable vaccines. United States patent US 8,889,117 2014.
[73]
Reddy JR. Preventive and therapeutic vaccine for alzheimer’s disease. United States patent application US 12/624613 2010.
[74]
Zhu Q, Talton J, Zhang G, et al. Large intestine–targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat. Med. 2012; 18(8): 1291-6.
[http://dx.doi.org/10.1038/nm.2866] [PMID: 22797811]
[75]
Sung MH, Poo HY, Kim CJ, et al. Adjuvant composition containing poly-gamma-glutamic acid-chitosan nanoparticles. Patent US20120164174 2012.
[76]
Mendez N, Herrera V, Zhang L, et al. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials 2014; 35(35): 9554-61.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.010] [PMID: 25154663]
[77]
Patel GB, Zhou H, Ponce A, Chen W. Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 2007; 25(51): 8622-36.
[http://dx.doi.org/10.1016/j.vaccine.2007.09.042] [PMID: 17959279]
[78]
Glück R. Immunopotentiating reconstituted influenza virosomes (IRIVs) and other adjuvants for improved presentation of small antigens. Vaccine 1992; 10(13): 915-9.
[http://dx.doi.org/10.1016/0264-410X(92)90325-E] [PMID: 1471412]
[79]
Tan M. Norovirus vaccines: current clinical development and challenges. Pathogens 2021; 10(12): 1641.
[http://dx.doi.org/10.3390/pathogens10121641] [PMID: 34959596]
[80]
Schiller JT, Lowy DR. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 2012; 10(10): 681-92.
[http://dx.doi.org/10.1038/nrmicro2872] [PMID: 22961341]
[81]
Jin C, Gibani MM, Moore M, et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet 2017; 390(10111): 2472-80.
[http://dx.doi.org/10.1016/S0140-6736(17)32149-9] [PMID: 28965718]
[82]
Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc. Natl. Acad. Sci. 2005; 102(13): 4848-53.
[http://dx.doi.org/10.1073/pnas.0501254102] [PMID: 15781870]
[83]
Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev. 2001; 51(1-3): 81-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00171-5] [PMID: 11516781]
[84]
Kelly DF, Pollard AJ, Moxon ER. Immunological Memory. JAMA 2005; 294(23): 3019-23.
[http://dx.doi.org/10.1001/jama.294.23.3019] [PMID: 16414950]
[85]
McVernon J, Johnson PD, Pollard AJ, Slack MP, Moxon ER. Immunologic memory in Haemophilus influenzae type b conjugate vaccine failure. Arch. Dis. Child. 2003; 88(5): 379-83.
[http://dx.doi.org/10.1136/adc.88.5.379] [PMID: 12716702]
[86]
McVernon J, MacLennan J, Buttery J, Oster P, Danzig L, Moxon R. Safety and immunogenicity of meningococcus serogroup C conjugate vaccine administered as a primary or booster vaccination to healthy four-year-old children. Pediatr. Infect. Dis. J. 2002; 21(8): 747-53.
[http://dx.doi.org/10.1097/00006454-200208000-00010] [PMID: 12192163]
[87]
World Health Organization. Tetanus vaccines: WHO position paper, February 2017 – Recommendations. Vaccine 2018; 36(25): 3573-5.
[http://dx.doi.org/10.1016/j.vaccine.2017.02.034] [PMID: 28427847]
[88]
Menon I, Bagwe P, Gomes KB, et al. Microneedles: a new generation vaccine delivery system. Micromachines 2021; 12(4): 435.
[http://dx.doi.org/10.3390/mi12040435] [PMID: 33919925]
[89]
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021; 13(6)e1735
[http://dx.doi.org/10.1002/wnan.1735] [PMID: 34180608]
[90]
Pastor Y, Ting I, Berzosa M, Irache JM, Gamazo C. Vaccine based on outer membrane vesicles using hydrogels as vaccine delivery system. In: Salmonella. New York, NY: Humana 2021; pp. 153-60.
[91]
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum. Vaccin. Immunother. 2018; 14(7): 1717-33.
[http://dx.doi.org/10.1080/21645515.2018.1461296] [PMID: 29624470]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy