Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Co-administration of Pterocarpus marsupium Extract and Glibenclamide Exhibits Better Effects in Regulating Hyperglycemia and Associated Changes in Alloxan-induced Diabetic Mice

Author(s): Neha Sharma*, Anand Kar, Sunanda Panda and Dhananjay Yadav*

Volume 22, Issue 32, 2022

Published on: 22 November, 2022

Page: [2617 - 2628] Pages: 12

DOI: 10.2174/1568026623666221108125036

Price: $65

Abstract

Background: Diabetes mellitus (DM) is a well-known global metabolic disorder. For its treatment, glibenclamide (GLB) is very often prescribed. However, herbal drugs are considered effective and better alternatives due to their low risk of side effects. This study was conducted to determine the combined effects of GLB and Pterocarpus marsupium (PM, a commonly available Indian herb) extract for the effective and safe treatment of hyperglycemia in the mouse model.

Methods: Healthy adult male mice were distributed into five groups (n=7 in each group). Group I acted as the control, whereas groups II, III, IV, and V were considered experimental groups which received a single dosage (150 mg/kg body weight) of alloxan (ALX) intraperitoneally (i.p.). In addition, groups III, IV, and V received a pre-standardized dose of GLB (500 μg/kg body weight), PM extract (150 mg/kg body weight), and GLB+PM, respectively, at the same doses as used in individual treatment, after the seventh day of ALX administration for 15 days and the alterations in different DM related parameters were evaluated.

Results: ALX-induced hyperglycemia and other adverse effects were nearly normalized by GLB and PM co-treatment as evidenced by marked suppression in glucose, triglyceride, total-cholesterol, lipid-peroxidation, and lipid-hydroperoxides with an increase in antioxidants status and liver glycogen content. The positive effects were more pronounced when both GLB and PM were given, as compared to that of either of the drugs, administered alone. Liver ultra-structure, analyzed through histology and transmission electron microscopy revealed normalization of the ALX-induced damaged hepatocytes. The presence of epicatechin, the major phytoconstituent of the PM extract, as confirmed by high-performance liquid chromatography (HPLC), is responsible for its antioxidative and glucose-lowering activities.

Conclusion: These findings reveal that PM, along with GLB, exhibits synergistic and better effects than the individual drug in regulating hyperglycemia and associated changes in alloxan-induced mice.

Next »
Graphical Abstract

[1]
Cloete, L. Diabetes mellitus: An overview of the types, symptoms, complications and management. Nurs. Stand., 2022, 37(1), 61-66.
[http://dx.doi.org/10.7748/ns.2021.e11709] [PMID: 34708622]
[2]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[3]
Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 8609213.
[http://dx.doi.org/10.1155/2020/8609213] [PMID: 32215179]
[4]
Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of glycemic indices (hyperglycemia, glucose variability and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res., 2020, 2020, 7489795.
[http://dx.doi.org/10.1155/2020/7489795] [PMID: 33123598]
[5]
Arman, M.S.I.; Mahmud, A.A.; Mahmud, H.R.; Ali Reza, A.S.M. Free radical, oxidative stress and diabetes mellitus: A mini review. Discovery Phytomedicine, 2019, 6(3), 99-101.
[http://dx.doi.org/10.15562/phytomedicine.2019.98]
[6]
Hassan, A.; Khan Mohmand, N.Z.; Ullah, H.; Hussain, A. Antioxidant, antidiabetic, and antihypertension inhibitory potentials of phenolic rich medicinal plants. J. Chem., 2022, 2022, 9046780.
[http://dx.doi.org/10.1155/2022/9046780]
[7]
Salazar-García, M.; Corona, J.C. The use of natural compounds as a strategy to counteract oxidative stress in animal models of diabetes mellitus. Int. J. Mol. Sci., 2021, 22(13), 7009.
[http://dx.doi.org/10.3390/ijms22137009] [PMID: 34209800]
[8]
Mahajan, S.; Chauhan, P.; Mishra, M.; Yadav, D.; Jarouliya, U.; Prasad, G. Pterocarpus Marsupium and Gymnema Sylvestre powder in alleviation of biochemical abnormalities associated with human type 2 diabetes mellitus. J. Complem. Med. Alt. Health Care (Don Mills), 2018, 7, 555718.
[9]
Rojas, L.B.A.; Gomes, M.B. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol. Metab. Syndr., 2013, 5(1), 6.
[http://dx.doi.org/10.1186/1758-5996-5-6] [PMID: 23415113]
[10]
Tsang, M.W. The management of type 2 diabetic patients with hypoglycaemic agents. ISRN Endocrinol., 2012, 2012, 478120.
[http://dx.doi.org/10.5402/2012/478120] [PMID: 22645689]
[11]
Chakravarthy, B.K.; Saroj, G.; Gambhir, S.S.; Gode, K.D. Pancreatic beta cell regeneration-a novel antidiabetic mechanism of Pterocarpus marsupium roxb. Indian J. Pharmacol., 1980, 12, 123-127.
[12]
Dhayaney, V.; Sibi, G. Pterocarpus marsupium for the treatment of diabetes and other disorders. J. Complemen. Med. Altern. healthcare., 2019, 9, 001-006.
[13]
Rahman, M.S.; Mujahid, M.; Siddiqui, M.A.; Rahman, M.A.; Arif, M.; Eram, S.; Khan, A.; Azeemuddin, M. Ethnobotanical uses, phytochemistry and pharmacological activities of Pterocarpus marsupium: A review. Pharmacogn. J., 2018, 10, s1-s8.
[http://dx.doi.org/10.5530/pj.2018.6s.1]
[14]
Kasali, F.M.; Kadima, J.N.; Tusiimire, J.; Ajayi, C.O.; Agaba, A.G. Effects of the Oral Administration of Aqueous and methanolic leaf extracts of Chenopodium ambrosioides L. (Amaranthaceae) on Blood Glucose Levels in Wistar Rats. J. Exp. Pharmacol., 2022, 14, 139-148.
[http://dx.doi.org/10.2147/JEP.S356564] [PMID: 35502164]
[15]
Sharma, N.; Panda, S.; Kar, A. Momordica charantia fruit extract and glibenclamide synergistically ameliorate corticosteroid induced diabetes mellitus in mice. Int. J. Pharm. Bio Sci., 2014, 5, 23-32.
[16]
Sharma, N.; Kar, A. Effects of combined therapy of ethanolic extract of Trigonella foenum graecum or Gymnema sylvestre on the hypoglycemic activity of metformin in the regulation of alloxan induced hyperglycemia and associated adverse effects. Intern. J. Pharmacog. Phytochem. Res., 2014, 6, 506-513.
[17]
Shetty, A.; Choudhury, D.; Rejeesh, V.N.; Nair, V.; Kuruvilla, M.; Kotian, S. Effect of the insulin plant (Costus igneus) leaves on dexamethasone-induced hyperglycemia. Int. J. Ayurveda Res., 2010, 1(2), 100-102.
[http://dx.doi.org/10.4103/0974-7788.64396] [PMID: 20814523]
[18]
Dhanabal, S.P.; Kokate, C.K.; Ramanathan, M.; Kumar, E.P.; Suresh, B. Hypoglycaemic activity of Pterocarpus marsupium Roxb. Phytother. Res., 2006, 20(1), 4-8.
[http://dx.doi.org/10.1002/ptr.1819] [PMID: 16397913]
[19]
Kishore, A.R.; Veerasamy, R.; Jain, M. HPLC method for estimation of (-)-epicatechin in Pterocarpus marsupium herbal extracts and pharmaceutical dosage formulations. Eurasian. J. Anal. Chem., 2010, 6, 31-39.
[20]
Panda, S.; Kar, A.; Banerjee, T.; Sharma, N. Combined effects of quercetin and atenolol in reducing isoproterenol-induced cardiotoxicity in rats: Possible mediation through scavenging free radicals. Cardiovasc. Toxicol., 2012, 12(3), 235-242.
[http://dx.doi.org/10.1007/s12012-012-9161-3] [PMID: 22391854]
[21]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[22]
Zy, J.; Hunt, J.; Wolff, S. Detection of lipid hydroperoxides using the FOX method. Anal. Biochem., 1992, 202, 384-389.
[23]
Griffiths, G.; Leverentz, M.; Silkowski, H.; Gill, N.; Sánchez-Serrano, J.J. Lipid hydroperoxide levels in plant tissues. J. Exp. Bot., 2000, 51(349), 1363-1370.
[http://dx.doi.org/10.1093/jexbot/51.349.1363] [PMID: 10944149]
[24]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[25]
Aebi, H. Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinhem, 1983, pp. 273-286.
[26]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[27]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[28]
Parmar, H.S.; Kar, A. Antiperoxidative, antithyroidal, antihyperglycemic and cardioprotective role of Citrus sinensis peel extract in male mice. Phytother. Res., 2008, 22(6), 791-795.
[http://dx.doi.org/10.1002/ptr.2367] [PMID: 18412146]
[29]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[30]
Miller, N.J.; Castelluccio, C.; Tijburg, L.; Rice-Evans, C. The antioxidant properties of theaflavins and their gallate esters - radical scavengers or metal chelators? FEBS Lett., 1996, 392(1), 40-44.
[http://dx.doi.org/10.1016/0014-5793(96)00780-6] [PMID: 8769311]
[31]
Isse, K.; Lesniak, A.; Grama, K.; Roysam, B.; Minervini, M.I.; Demetris, A.J. Digital transplantation pathology: Combining whole slide imaging, multiplex staining and automated image analysis. Am. J. Transplant., 2012, 12(1), 27-37.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03797.x] [PMID: 22053785]
[32]
Asaoka, Y.; Togashi, Y.; Mutsuga, M.; Imura, N.; Miyoshi, T.; Miyamoto, Y. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice. Exp. Toxicol. Pathol., 2016, 68(4), 233-239.
[http://dx.doi.org/10.1016/j.etp.2015.12.005] [PMID: 26776450]
[33]
Zaitoun, A.A.; Apelqvist, G.; Al-Mardini, H.; Gray, T.; Bengtsson, F.; Record, C.O. Quantitative studies of liver atrophy after portacaval shunt in the rat. J. Surg. Res., 2006, 131(2), 225-232.
[http://dx.doi.org/10.1016/j.jss.2005.11.587] [PMID: 16427088]
[34]
Campuzano-Bublitz, M. A.; Diarte, E. M.; Hellión-Ibarrola, M. C.; Ibarrola, D. A.; Alvarenga, N. L.; Kennedy, M. L. Effect of Prosopis ruscifolia on lipid profile in alloxan-induced hyperglycemic mice and chemical characterization of alkaloid and flavonoid fractions. J Appl. Pharmaceut. Scien., 2019, 9, 086-093.
[35]
Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol., 2018, 17(1), 122.
[http://dx.doi.org/10.1186/s12933-018-0762-4] [PMID: 30170598]
[36]
Ahmad, A.; Ahmad, N.; Anis, M.; Faisal, M.; Alatar, A.A.; Abdel-Salam, E.M.; Meena, R.P.; Sivanesan, I. Biotechnological advances in pharmacognosy and in vitro manipulation of Pterocarpus marsupium Roxb. Plants, 2022, 11(3), 247.
[http://dx.doi.org/10.3390/plants11030247] [PMID: 35161227]
[37]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[38]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[39]
Pant, D.; Pant, N.; Saru, D.; Yadav, U.; Khanal, D. Phytochemical screening and study of anti-oxidant, anti-microbial, anti-diabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J. Intercult. Ethnopharmacol., 2017, 6(2), 1.
[http://dx.doi.org/10.5455/jice.20170403094055] [PMID: 28512598]
[40]
Cordero-Herrera, I.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol. Nutr. Food Res., 2013, 57(6), 974-985.
[http://dx.doi.org/10.1002/mnfr.201200500] [PMID: 23456781]
[41]
Ashcroft, F.M. ATP-sensitive potassium channelopathies: Focus on insulin secretion. J. Clin. Invest., 2005, 115(8), 2047-2058.
[http://dx.doi.org/10.1172/JCI25495] [PMID: 16075046]
[42]
Jackson, J.E.; Bressler, R. Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 1. Drugs, 1981, 22(3), 211-245.
[http://dx.doi.org/10.2165/00003495-198122030-00003] [PMID: 7021124]
[43]
Bensiameur-Touati, K.; Kacimi, G.; Haffaf, E.M.; Berdja, S.; Aouichat-Bouguerra, S. In vivo subacute toxicity and antidiabetic effect of aqueous extract of Nigella sativa. Evid. Based Complement. Alternat. Med., 2017, 2017, 8427034.
[http://dx.doi.org/10.1155/2017/8427034] [PMID: 29479371]
[44]
Oršolić, N.; Sirovina, D.; Odeh, D.; Gajski, G.; Balta, V.; Šver, L.; Jazvinšćak Jembrek, M. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules, 2021, 26(11), 3262.
[http://dx.doi.org/10.3390/molecules26113262] [PMID: 34071554]
[45]
Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals, 2021, 14(8), 806.
[http://dx.doi.org/10.3390/ph14080806] [PMID: 34451903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy