Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Folic Acid Promoted the Coupling Reaction of Epoxides and CO2

Author(s): Mengliang Chai, Fengtian Wu* and Ling Wu*

Volume 20, Issue 4, 2023

Published on: 08 December, 2022

Page: [370 - 375] Pages: 6

DOI: 10.2174/1570178620666221107143338

Price: $65

conference banner
Abstract

The process of hydrogen bond donor accelerating the cycloaddition of epoxides with CO2 is green access to high economic value cyclocarbonate derivatives. However, hydrogen bond donor still has certain limitations such as poor biocompatibility and narrow substrate scope. Our group found that folic acid could promote the coupling reaction of epoxides and CO2 through hydrogen-bonding. The reaction was used to synthesize various cyclocarbonate derivatives in good to high yields with the aid of folic acid and TBAB. In addition, benzoic acids and 2,4-quinazoline dione were synthesized in the presence of CuCl2/folic acid and PdCl2/folic acid, respectively. The reaction mechanism was proposed based on previous reports and control experiments.

Graphical Abstract

[1]
Lu, X.B.; Darensbourg, D. J. Chem. Soc. Rev., 2012, 41(4), 1462-1484.
[http://dx.doi.org/10.1039/C1CS15142H] [PMID: 21858339]
[2]
Gorji, Z.E.; Khodadadi, A.A.; Riahi, S.; Repo, T.; Mortazavi, Y.; Kemell, M. J. Environ. Sci. (China), 2023, 126, 408-422.
[http://dx.doi.org/10.1016/j.jes.2022.04.046]
[3]
Prasad, D.; Patil, K.N.; Chaudhari, N.K.; Kim, H.; Nagaraja, B.M.; Jadhav, A.H. Catal. Rev., Sci. Eng., 2022, 64(2), 356-443.
[http://dx.doi.org/10.1080/01614940.2020.1812212]
[4]
Wu, L.; Zeng, Q.; Hu, P.; Zong, T.; Wu, F. Lett. Org. Chem., 2021, 18(10), 812-816.
[http://dx.doi.org/10.2174/1570178617999201110115648]
[5]
Yao, J.; Sheng, M.; Bai, S.; Su, H.; Shang, H.; Deng, H. Sun. J. Catal. Lett., 2022, 152(3), 781-790.
[http://dx.doi.org/10.1007/s10562-021-03667-9]
[6]
Khan, M.U.; Khan, S.U.; Kiriratnikom, J.; Zareen, S.; Zhang, X. Chin. Chem. Lett., 2022, 33(2), 1081-1086.
[http://dx.doi.org/10.1016/j.cclet.2021.06.002]
[7]
Zhang, J.; Zou, M.; Li, Q.; Dai, W.; Wang, D.; Zhang, S.; Li, B.; Yang, L.; Luo, S.; Luo, X. Appl. Surf. Sci., 2022, 572151408
[http://dx.doi.org/10.1016/j.apsusc.2021.151408]
[8]
Fiorani, G.; Guo, W.; Kleij, A.W. Green Chem., 2015, 17(3), 1375-1389.
[http://dx.doi.org/10.1039/C4GC01959H]
[9]
Xie, Y.; Sun, Q.; Fu, Y.; Song, L.; Liang, J.; Xu, X.; Wang, H.; Li, J.; Tu, S.; Lu, X.; Li, J. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(48), 25594-25600.
[http://dx.doi.org/10.1039/C7TA09656A]
[10]
Dai, Z.; Sun, Q.; Liu, X.; Guo, L.; Li, J.; Pan, S.; Bian, C.; Wang, L.; Hu, X.; Meng, X.; Zhao, L.; Deng, F.; Xiao, F.S. ChemSusChem, 2017, 10(6), 1186-1192.
[http://dx.doi.org/10.1002/cssc.201601375] [PMID: 27860370]
[11]
Tang, L.; Zhang, S.; Wu, Q.; Wang, X.; Wu, H.; Jiang, Z. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(7), 2964-2973.
[http://dx.doi.org/10.1039/C7TA09082J]
[12]
Liu, F.; Gu, Y.; Xin, H.; Zhao, P.; Gao, J.; Liu, M. ACS Sustain. Chem. Eng., 2019, 7(19), 16674-16681.
[http://dx.doi.org/10.1021/acssuschemeng.9b04090]
[13]
Ejarque, D.; Calvet, T.; Font-Bardia, M.; Pons, J. CrystEngComm, 2022, 24(15), 2808-2824.
[http://dx.doi.org/10.1039/D1CE01584B]
[14]
Ejarque, D.; Calvet, T.; Font-Bardia, M.; Pons, J. CrystEngComm, 2021, 23(35), 6199-6213.
[http://dx.doi.org/10.1039/D1CE00833A]
[15]
Sun, H.; Zhang, D. J. Phys. Chem. A, 2007, 111(32), 8036-8043.
[http://dx.doi.org/10.1021/jp073873p]
[16]
Fanjul-Mosteirín, N.; Jehanno, C.; Ruipérez, F.; Sardon, H.; Dove, A.P. ACS Sustain. Chem. Eng, 2019, 7(12), 10633-10640.
[http://dx.doi.org/10.1021/acssuschemeng.9b01300]
[17]
Zhang, Z.; Fan, F.; Xing, H.; Yang, Q.; Bao, Z.; Ren, Q. ACS Sustain. Chem. Eng, 2017, 5(4), 2841-2846.
[http://dx.doi.org/10.1021/acssuschemeng.7b00513]
[18]
Castro-Osma, J.A.; Martínez, J.; de la Cruz-Martínez, F.; Caballero, M.P.; Fernández-Baeza, J.; Rodríguez-López, J.; Otero, A.; Lara-Sánchez, A. Tejeda. J. Catal. Sci. Technol., 2018, 8(7), 1981-1987.
[http://dx.doi.org/10.1039/C8CY00381E]
[19]
Wu, X.; Chen, C.; Guo, Z.; North, M.; Whitwood, A.C. ACS Catal., 2019, 9(3), 1895-1906.
[http://dx.doi.org/10.1021/acscatal.8b04387]
[20]
Liu, N.; Xie, Y.F.; Wang, C.; Li, S.J.; Wei, D.; Li, M.; Dai, B. ACS Catal., 2018, 8(11), 9945-9957.
[http://dx.doi.org/10.1021/acscatal.8b01925]
[21]
Li, Y.; Dominelli, B.; Reich, R.M.; Liu, B.; Kühn, F.E. Catal. Commun., 2019, 124, 118-122.
[http://dx.doi.org/10.1016/j.catcom.2019.03.012]
[22]
Wu, F.; Lin, Y. Appl. Organomet. Chem., 2020, 34(3)e5427
[23]
Wu, F.; Wu, L.; Cui, C. Tetrahedron, 2021, 83131965
[http://dx.doi.org/10.1016/j.tet.2021.131965]
[24]
Piquereau, J.; Boitard, S.E.; Ventura-Clapier, R.; Mericskay, M. Int. J. Mol. Sci., 2021, 23(1), 30.
[http://dx.doi.org/10.3390/ijms23010030] [PMID: 35008448]
[25]
Sopeña, S.; Martin, E.; Escudero-Adán, E.C.; Kleij, A.W. ACS Catal., 2017, 7(5), 3532-3539.
[http://dx.doi.org/10.1021/acscatal.7b00475]
[26]
Dai, W.; Yang, W.; Zhang, Y.; Wang, D.; Luo, X.; Tu, X. J. CO2 Util., , 2017, 17, 256-262.
[27]
Wang, Y.; Liu, Y.; Su, Q.; Li, Y.; Deng, L.; Dong, L.; Fu, M.; Liu, S.; Cheng, W. J. CO2 Util., , 2022, 60101976,
[28]
Ji, L.; Luo, Z.; Zhang, Y.; Wang, R.; Ji, Y.; Xia, F.; Gao, G. Molecular Catalysis, 2018, 446, 124-130.
[http://dx.doi.org/10.1016/j.mcat.2017.12.026]
[29]
Song, B.; Cao, N.; Zhang, J. Xie. J.Molecular. Catalysis., 2021, 516111981
[http://dx.doi.org/10.1016/j.mcat.2021.111981]
[30]
Wang, Y.; Jiang, X.; Wang, B. Chem. Commun. (Camb.), 2020, 56(92), 14416-14419.
[http://dx.doi.org/10.1039/D0CC06451C] [PMID: 33146176]
[31]
Sharafi-Kolkeshvandi, M.; Nikpour, F. Chin. Chem. Lett., 2012, 23(4), 431-433.
[http://dx.doi.org/10.1016/j.cclet.2012.01.027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy