Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Status on 1,4-Dihydropyridine Derivatives against Human Pathogenic Parasites

Author(s): Orlando Elso, Guadalupe García Liñares* and Valeria Sülsen

Volume 30, Issue 15, 2023

Published on: 30 December, 2022

Page: [1689 - 1711] Pages: 23

DOI: 10.2174/0929867330666221104162901

Price: $65

Abstract

Infections provoked by parasites are among the most prevalent diseases worldwide and generate important health and socioeconomic problems. Despite the enormous amount of work done, the chemotherapy for most of them remains unsolved. Usually, treatments are based on no specific drugs associated, in several cases, with long-term treatments and severe side effects. In addition, drug resistance and different strains' susceptibility are further drawbacks of the existing chemotherapy. Considering that 1,4-dihydropyridines derivatives constitute an important class of compounds for new drug development, we present in this review an in-depth overview of the work done so far on 1,4-dihydropyridines and their antiparasitic activities. The development of new derivatives or the application of known drugs used for other diseases is described in terms of their potential usefulness for drug design.

[1]
Garrido-Cardenas, J.A.; Mesa-Valle, C.; Manzano-Agugliaro, F. Human parasitology worldwide research. Parasitology, 2018, 145(6), 699-712.
[http://dx.doi.org/10.1017/S0031182017001718] [PMID: 29117879]
[2]
World Health Organization (WHO). Fourth WHO report on neglected tropical diseases. 2017. Available from: https://apps.who.int/iris/handle/10665/25501
[3]
World Health Organization (WHO). Neglected tropical diseases. Available from: https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1
[4]
Malecela, M.N.; Ducker, C. A road map for neglected tropical diseases 2021-2030. Trans. R. Soc. Trop. Med. Hyg., 2021, 115(2), 121-123.
[http://dx.doi.org/10.1093/trstmh/trab002] [PMID: 33508095]
[5]
Parola, P. The return of the big three killers. Clin. Microbiol. Infect., 2013, 19(10), 887-888.
[http://dx.doi.org/10.1111/1469-0691.12331] [PMID: 24205883]
[6]
World Health Organization (WHO). Malaria. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
[7]
World Health Organization (WHO). In: World malaria report; 2021.
[http://dx.doi.org/10.30875/6c551ba0-en]
[8]
van der Pluijm, R.W.; Amaratunga, C.; Dhorda, M.; Dondorp, A.M. Triple artemisinin-based combination therapies for malaria – A new paradigm? Trends Parasitol., 2021, 37(1), 15-24.
[http://dx.doi.org/10.1016/j.pt.2020.09.011] [PMID: 33060063]
[9]
Taravaud, A.; Fechtali-Moute, Z.; Loiseau, P.M.; Pomel, S. Drugs used for the treatment of cerebral and disseminated infections caused by freeliving amoebae. Clin. Transl. Sci., 2021, 14(3), 791-805.
[http://dx.doi.org/10.1111/cts.12955] [PMID: 33650319]
[10]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M.; Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur. J. Med. Chem., 2020, 195, 112275.
[http://dx.doi.org/10.1016/j.ejmech.2020.112275] [PMID: 32283298]
[11]
Gil, C.; Martinez, A. Is drug repurposing really the future of drug discovery or is new innovation truly the way forward? Expert Opin. Drug Discov., 2021, 16(8), 829-831.
[http://dx.doi.org/10.1080/17460441.2021.1912733] [PMID: 33834929]
[12]
Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(2), 95-111.
[http://dx.doi.org/10.1016/j.ijpddr.2014.02.002] [PMID: 25057459]
[13]
Wan, J-P.; Pan, Y. Recent advance in the pharmacology of dihydropyrimidinone. Mini Rev. Med. Chem., 2012, 12(4), 337-349.
[http://dx.doi.org/10.2174/138955712799829267] [PMID: 22303940]
[14]
Ioan, P.; Carosati, E.; Micucci, M.; Cruciani, G.; Broccatelli, F.; Zhorov, B.S.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 1): Action in ion channels and GPCRs. Curr. Med. Chem., 2011, 18(32), 4901-4922.
[http://dx.doi.org/10.2174/092986711797535173] [PMID: 22050742]
[15]
Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Cruciani, G.; Zhorov, B.S.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 2): Action in other targets and antitargets. Curr. Med. Chem., 2012, 19(25), 4306-4323.
[http://dx.doi.org/10.2174/092986712802884204] [PMID: 22709009]
[16]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[17]
World Health Organization (WHO). Chagas disease (also known as American trypanosomiasis). Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed on: June 09 2022).
[18]
Gomes, C.; Almeida, A.B.; Rosa, A.C.; Araujo, P.F.; Teixeira, A.R.L. American trypanosomiasis and Chagas disease: Sexual transmission. Int. J. Infect. Dis., 2019, 81, 81-84.
[http://dx.doi.org/10.1016/j.ijid.2019.01.021] [PMID: 30664986]
[19]
Shikanai-Yasuda, M.A.; Carvalho, N.B. Oral transmission of Chagas disease. Clin. Infect. Dis., 2012, 54(6), 845-852.
[http://dx.doi.org/10.1093/cid/cir956] [PMID: 22238161]
[20]
Villalta, F.; Rachakonda, G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin. Drug Discov., 2019, 14(11), 1161-1174.
[http://dx.doi.org/10.1080/17460441.2019.1652593] [PMID: 31411084]
[21]
Docampo, R.; Moreno, S.N.J. Biochemistry of trypanosoma cruzi. In: American Trypanosomiasis Chagas Disease; Elsevier: Amsterdam, 2017; pp. 371-400.
[http://dx.doi.org/10.1016/B978-0-12-801029-7.00017-4]
[22]
Pérez-Molina, J.A.; Crespillo-Andújar, C.; Bosch-Nicolau, P.; Molina, I. Trypanocidal treatment of Chagas disease. Enfermed. Infec. Microbiol. Clin. (English ed.), 2021, 39(9), 458-470.
[http://dx.doi.org/10.1016/j.eimce.2020.04.012] [PMID: 34736749]
[23]
Kumari, D.; Perveen, S.; Sharma, R.; Singh, K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur. J. Pharmacol., 2021, 910, 174436.
[http://dx.doi.org/10.1016/j.ejphar.2021.174436] [PMID: 34428435]
[24]
Steverding, D. The history of leishmaniasis. Parasit. Vectors, 2017, 10(1), 82.
[http://dx.doi.org/10.1186/s13071-017-2028-5] [PMID: 28202044]
[25]
World Health Organization (WHO). Leishmaniasis. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed on: June 09 2022).
[26]
Liñares, G.; Ravaschino, E.; Rodriguez, J. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr. Med. Chem., 2006, 13(3), 335-360.
[http://dx.doi.org/10.2174/092986706775476043] [PMID: 16475941]
[27]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970.
[http://dx.doi.org/10.1016/S0140-6736(18)31204-2] [PMID: 30126638]
[28]
Sundar, S.; Singh, O.P. Molecular diagnosis of visceral leishmaniasis. Mol. Diagn. Ther., 2018, 22(4), 443-457.
[http://dx.doi.org/10.1007/s40291-018-0343-y] [PMID: 29922885]
[29]
Capela, R.; Moreira, R.; Lopes, F. An overview of drug resistance in protozoal diseases. Int. J. Mol. Sci., 2019, 20(22), 5748.
[http://dx.doi.org/10.3390/ijms20225748] [PMID: 31731801]
[30]
Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol., 2022, 47(3), 516-521.
[http://dx.doi.org/10.1111/ced.14919] [PMID: 34480806]
[31]
Chakravarty, J.; Sundar, S. Drug resistance in leishmaniasis. J. Glob. Infect. Dis., 2010, 2(2), 167-176.
[http://dx.doi.org/10.4103/0974-777X.62887] [PMID: 20606973]
[32]
Santos, S.S.; de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: A review. Int. J. Antimicrob. Agents, 2020, 55(4), 105906.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105906] [PMID: 31987883]
[33]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[34]
Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 57, 101664.
[http://dx.doi.org/10.1016/j.jddst.2020.101664]
[35]
Wolf Nassif, P.; De Mello, T.F.P.; Navasconi, T.R.; Mota, C.A.; Demarchi, I.G.; Aristides, S.M.A.; Lonardoni, M.V.C.; Teixeira, J.J.V.; Silveira, T.G.V. Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: A systematic review. Parasitology, 2017, 144(8), 995-1004.
[http://dx.doi.org/10.1017/S0031182017000385] [PMID: 28367792]
[36]
J, B.; M, B.M.; Chanda, K. An overview on the therapeutics of neglected infectious diseases-Leishmaniasis and chagas diseases. Front Chem., 2021, 9, 622286.
[http://dx.doi.org/10.3389/fchem.2021.622286] [PMID: 33777895]
[37]
Garcia Linares, G.; Rodriguez, J. Current status and progresses made in malaria chemotherapy. Curr. Med. Chem., 2007, 14(3), 289-314.
[http://dx.doi.org/10.2174/092986707779941096] [PMID: 17305534]
[38]
Rudrapal, M.; Chetia, D. Plant flavonoids as potential source of future antimalarial leads. Sys. Rev. Pharm., 2016, 8(1), 13-18.
[http://dx.doi.org/10.5530/srp.2017.1.4]
[39]
Coban, C. The host targeting effect of chloroquine in malaria. Curr. Opin. Immunol., 2020, 66, 98-107.
[http://dx.doi.org/10.1016/j.coi.2020.07.005] [PMID: 32823144]
[40]
Khoury, D.S.; Zaloumis, S.G.; Grigg, M.J.; Haque, A.; Davenport, M.P. Malaria parasite clearance: What are we really measuring? Trends Parasitol., 2020, 36(5), 413-426.
[http://dx.doi.org/10.1016/j.pt.2020.02.005] [PMID: 32298629]
[41]
Bray, P.G.; Wrd, S.A.; O’Neill, P.M. Quinolines and artemisinin: Chemistry, biology and history. Curr. Top. Microbiol. Immunol., 2005, (295), 3-38.
[42]
Peter, S.; Jama, S.; Alven, S.; Aderibigbe, B.A. Artemisinin and derivatives-based hybrid compounds: Promising therapeutics for the treatment of cancer and malaria. Molecules, 2021, 26(24), 7521.
[http://dx.doi.org/10.3390/molecules26247521] [PMID: 34946603]
[43]
World Health Organization (WHO). Schistosomiasis. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (Accessed on: June 09 2022).
[44]
Sah, V.K.; Wang, L.; Min, X.; Rizal, R.; Feng, Z.; Ke, Z.; Deng, M.; Li, L.; Li, H. Human schistosomiasis: A diagnostic imaging focused review of a neglected disease. Radiol. Infect. Dis., 2015, 2(3), 150-157.
[http://dx.doi.org/10.1016/j.jrid.2015.11.007]
[45]
Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet, 2006, 368(9541), 1106-1118.
[http://dx.doi.org/10.1016/S0140-6736(06)69440-3] [PMID: 16997665]
[46]
Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis., 2006, 6(7), 411-425.
[http://dx.doi.org/10.1016/S1473-3099(06)70521-7] [PMID: 16790382]
[47]
LoVerde, P.T.; Alwan, S.N.; Taylor, A.B.; Rhodes, J.; Chevalier, F.D.; Anderson, T.J.C.; McHardy, S.F. Rational approach to drug discovery for human schistosomiasis. Int. J. Parasitol. Drugs Drug Resist., 2021, 16, 140-147.
[http://dx.doi.org/10.1016/j.ijpddr.2021.05.002] [PMID: 34111649]
[48]
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: A review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
[49]
Siqueira, L.P.; Fontes, D.A.F.; Aguilera, C.S.B.; Timóteo, T.R.R.; Ângelos, M.A.; Silva, L.C.P.B.B.; de Melo, C.G.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Schistosomiasis: Drugs used and treatment strategies. Acta Trop., 2017, 176, 179-187.
[http://dx.doi.org/10.1016/j.actatropica.2017.08.002] [PMID: 28803725]
[50]
Taylor, M.J.; Hoerauf, A.; Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet, 2010, 376(9747), 1175-1185.
[http://dx.doi.org/10.1016/S0140-6736(10)60586-7] [PMID: 20739055]
[51]
Tyagi, R.; Bulman, C.A.; Cho-Ngwa, F.; Fischer, C.; Marcellino, C.; Arkin, M.R.; McKerrow, J.H.; McNamara, C.W.; Mahoney, M.; Tricoche, N.; Jawahar, S.; Janetka, J.W.; Lustigman, S.; Sakanari, J.; Mitreva, M. An integrated approach to identify new anti-filarial leads to treat river blindness, a neglected tropical disease. Pathogens, 2021, 10(1), 71.
[http://dx.doi.org/10.3390/pathogens10010071] [PMID: 33466870]
[52]
Prichard, R.K.; Basáñez, M.G.; Boatin, B.A.; McCarthy, J.S.; García, H.H.; Yang, G.J.; Sripa, B.; Lustigman, S. A research agenda for helminth diseases of humans: Intervention for control and elimination. PLoS Negl. Trop. Dis., 2012, 6(4), e1549.
[http://dx.doi.org/10.1371/journal.pntd.0001549] [PMID: 22545163]
[53]
Milton, P.; Hamley, J.I.D.; Walker, M.; Basáñez, M.G. Moxidectin: An oral treatment for human onchocerciasis. Expert Rev. Anti Infect. Ther., 2020, 18(11), 1067-1081.
[http://dx.doi.org/10.1080/14787210.2020.1792772] [PMID: 32715787]
[54]
Sangshetti, J.N.; Shinde, D.B.; Kulkarni, A.; Arote, R. Two decades of antifilarial drug discovery: A review. RSC Advances, 2017, 7(33), 20628-20666.
[http://dx.doi.org/10.1039/C7RA01857F]
[55]
Molyneux, D.H. Advancing toward the elimination of lymphatic filariasis. N. Engl. J. Med., 2018, 379(19), 1871-1872.
[http://dx.doi.org/10.1056/NEJMe1811455] [PMID: 30403953]
[56]
Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite, 2015, 22, 10.
[http://dx.doi.org/10.1051/parasite/2015010] [PMID: 25687209]
[57]
Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev., 2003, 16(2), 273-307.
[http://dx.doi.org/10.1128/CMR.16.2.273-307.2003] [PMID: 12692099]
[58]
Elsheikha, H.M.; Siddiqui, R.; Khan, N.A. Drug discovery against Acanthamoeba infections: Present knowledge and unmet needs. Pathogens, 2020, 9(5), 405.
[http://dx.doi.org/10.3390/pathogens9050405] [PMID: 32456110]
[59]
Seal, D.V.; Hay, J.; Kirkness, C.M. Chlorhexidine or polyhexamethylene biguanide for Acanthamoeba keratitis. Lancet, 1995, 345(8942), 136.
[http://dx.doi.org/10.1016/S0140-6736(95)90106-X] [PMID: 7815880]
[60]
Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Arnalich-Montiel, F.; Piñero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol., 2013, 29(4), 181-187.
[http://dx.doi.org/10.1016/j.pt.2013.01.006] [PMID: 23433689]
[61]
Nakagawa, H.; Koike, N.; Ehara, T.; Hattori, T.; Narimatsu, A.; Kumakura, S.; Goto, H. Corticosteroid eye drop instillation aggravates the development of Acanthamoeba keratitis in rabbit corneas inoculated with Acanthamoeba and bacteria. Sci. Rep., 2019, 9(1), 12821.
[http://dx.doi.org/10.1038/s41598-019-49128-7] [PMID: 31492880]
[62]
Randag, A.C.; van Rooij, J.; van Goor, A.T.; Verkerk, S.; Wisse, R.P.L.; Saelens, I.E.Y.; Stoutenbeek, R.; van Dooren, B.T.H.; Cheng, Y.Y.Y.; Eggink, C.A. The rising incidence of Acanthamoeba keratitis: A 7-year nationwide survey and clinical assessment of risk factors and functional outcomes. PLoS One, 2019, 14(9), e0222092.
[http://dx.doi.org/10.1371/journal.pone.0222092] [PMID: 31491000]
[63]
Núñez-Vergara, L.J.; Squella, J.A.; Bollo-Dragnic, S.; Morello, A.; Repetto, Y.; Aldunate, J.; Letelier, M.E. Nitro aryl 1,4-dihydropyridine derivatives: Effects on Trypanosoma cruzi. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol., 1997, 118(1), 105-111.
[http://dx.doi.org/10.1016/S0742-8413(97)00078-9] [PMID: 9366041]
[64]
Núñez-Vergara, L.J.; Ortiz, M.E.; Bollo, S.; Squella, J.A. Electrochemical generation and reactivity of free radical redox intermediates from ortho-and meta-nitro substituted 1,4-dihydropyridines. Chem. Biol. Interact., 1997, 106(1), 1-14.
[http://dx.doi.org/10.1016/S0009-2797(97)00050-1] [PMID: 9305405]
[65]
Núñez-Vergara, L.J.; Squella, J.A.; Bollo-Dragnic, S.; Marín-Catalán, R.; Pino, L.; Díaz-Araya, G.; Letelier, M.E. Isradipine and lacidipine: Effects in vivo and in vitro on Trypanosoma cruzi epimastigotes. Gen. Pharmacol., 1998, 30(1), 85-87.
[http://dx.doi.org/10.1016/S0306-3623(97)00077-3] [PMID: 9457486]
[66]
Maya, J.D.; Morello, A.; Repetto, Y.; Tellez, R.; Rodriguez, A.; Zelada, U.; Puebla, P.; Caballero, E.; Medarde, M.; Núñez-Vergara, L.J.; Squella, J.A.; Bontá, M.; Bollo, S.; San Feliciano, A. Effects of 3-chloro-phenyl-1,4-dihydropyridine derivatives on Trypanosome cruzi epimastigotes. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2000, 125(1), 103-109.
[PMID: 11790334]
[67]
Hirota, K.; Tsubouchi, A.; Nakajima-Shimada, J.; Nara, T.; Aoki, T. Inhibition of Trypanosoma cruzi in mammalian cells by nimodipine, with low cytotoxicity to host cells. Trop. Med. Health, 2004, 32(2), 181-188.
[http://dx.doi.org/10.2149/tmh.32.181]
[68]
Reimão, J.Q.; Scotti, M.T.; Tempone, A.G. Anti-leishmanial and anti-trypanosomal activities of 1,4-dihydropyridines: In vitro evaluation and structure–activity relationship study. Bioorg. Med. Chem., 2010, 18(22), 8044-8053.
[http://dx.doi.org/10.1016/j.bmc.2010.09.015] [PMID: 20934347]
[69]
Bellera, C.L.; Balcazar, D.E.; Vanrell, M.C.; Casassa, A.F.; Palestro, P.H.; Gavernet, L.; Labriola, C.A.; Gálvez, J.; Bruno-Blanch, L.E.; Romano, P.S.; Carrillo, C.; Talevi, A. Computer-guided drug repurposing: Identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur. J. Med. Chem., 2015, 93, 338-348.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.065] [PMID: 25707014]
[70]
Correa, I.T.S.; da Costa-Silva, T.A.; Tempone, A.G. Bioenergetics impairment of Trypanosoma cruzi by the antihypertensive manidipine: A drug repurposing strategy. Acta Trop., 2021, 214, 105768.
[http://dx.doi.org/10.1016/j.actatropica.2020.105768] [PMID: 33245907]
[71]
Ambriz Peña, X.; González Santoyo, I.; Hernández Gallegos, Z.; Noyola Díaz, M. Determination of activity in vitro deactivatives of nicardipine on the strain W. Ciencia Nicolaita, 2007, 46, 69-78.
[72]
Pollo, L.A.E.; de Moraes, M.H.; Cisilotto, J.; Creczynski- Pasa, T.B.; Biavatti, M.W.; Steindel, M.; Sandjo, L.P. Synthesis and in vitro evaluation of Ca 2+ channel blockers 1,4-dihydropyridines analogues against Trypanosoma cruzi and Leishmania amazonensis: SAR analysis. Parasitol. Int., 2017, 66(6), 789-797.
[http://dx.doi.org/10.1016/j.parint.2017.08.005] [PMID: 28801098]
[73]
Planer, J.D.; Hulverson, M.A.; Arif, J.A.; Ranade, R.M.; Don, R.; Buckner, F.S. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2014, 8(7), e2977.
[http://dx.doi.org/10.1371/journal.pntd.0002977] [PMID: 25033456]
[74]
Machado, Y.A.; Bahia, M.T.; Caldas, I.S.; Mazzeti, A.L.; Novaes, R.D.; Vilas Boas, B.R.; Santos, L.J.S.; Martins-Filho, O.A.; Marques, M.J.; Diniz, L.F. Amlodipine increases the therapeutic potential of Ravuconazole upon Trypanosoma cruzi Infection. Antimicrob. Agents Chemother., 2020, 64(8), e02497-19.
[http://dx.doi.org/10.1128/AAC.02497-19] [PMID: 32423960]
[75]
Misra, S.; Naskar, K.; Sarkar, D.; Ghosh, D. Role of Ca2+ ion on Leishmania-macrophage attachment. Mol. Cell. Biochem., 1991, 102(1), 13-18.
[http://dx.doi.org/10.1007/BF00232154] [PMID: 1904982]
[76]
Tempone, A.G.; Taniwaki, N.N.; Reimão, J.Q. Antileishmanial activity and ultrastructural alterations of Leishmania (L.) chagasi treated with the calcium channel blocker nimodipine. Parasitol. Res., 2009, 105(2), 499-505.
[http://dx.doi.org/10.1007/s00436-009-1427-8] [PMID: 19352709]
[77]
Reimão, J.Q.; Tempone, A.G. Investigation into in vitro anti-leishmanial combinations of calcium channel blockers and current anti-leishmanial drugs. Mem. Inst. Oswaldo Cruz, 2011, 106(8), 1032-1038.
[http://dx.doi.org/10.1590/S0074-02762011000800022] [PMID: 22241129]
[78]
Jeddi, B.; Saberi, S.; Menéndez, J.C.; Sepehri, S. Synthesis and biological evaluation of Tetrahydropyrimidine and Dihydropyridine derivatives against leishmania major. Acta Parasitol., 2022, 67(1), 255-266.
[http://dx.doi.org/10.1007/s11686-021-00457-6] [PMID: 34279776]
[79]
Tulloch, L.B.; Martini, V.P.; Iulek, J.; Huggan, J.K.; Lee, J.H.; Gibson, C.L.; Smith, T.K.; Suckling, C.J.; Hunter, W.N. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases. J. Med. Chem., 2010, 53(1), 221-229.
[http://dx.doi.org/10.1021/jm901059x] [PMID: 19916554]
[80]
Palit, P.; Ali, N. Oral Therapy with Amlodipine and Lacidipine, 1,4-Dihydropyridine derivatives showing activity against experimental visceral Leishmaniasis. Antimicrob. Agents Chemother., 2008, 52(1), 374-377.
[http://dx.doi.org/10.1128/AAC.00522-07] [PMID: 17954702]
[81]
Jaafari, M.R.; Azadi, R.; Alipour-Talesh, G.; Yazdanpanah, M.J.; Alavizadeh, S.H.; Maleki, M.; Banihashemi, M. Study of the in vitro and in vivo antileishmanial activities of nimodipine in susceptible BALB/c mice. J. Vector Borne Dis., 2020, 57(1), 78-84.
[http://dx.doi.org/10.4103/0972-9062.308805] [PMID: 33818460]
[82]
Zuguang, Y.; Knox, V.D. Reversal of chloroquine resistance in falciparum malaria independent of calcium channels. Biochem. Biophys. Res. Commun., 1988, 155(1), 476-481.
[http://dx.doi.org/10.1016/S0006-291X(88)81111-2] [PMID: 2458107]
[83]
Deloron, P.; Basco, L.K.; Dubois, B.; Gaudin, C.; Clavier, F.; Le Bras, J.; Verdier, F. In vitro and in vivo potentiation of chloroquine against malaria parasites by an enantiomer of amlodipine. Antimicrob. Agents Chemother., 1991, 35(7), 1338-1342.
[http://dx.doi.org/10.1128/AAC.35.7.1338] [PMID: 1834011]
[84]
Tanabe, K.; Kato, M.; Izumo, A.; Hagiwara, A.; Doi, S. Plasmodium chabaudi: In vivo effects of Ca2' antagonists on chloroquine-resistant and chloroquine-sensitive parasites. Experim. Parasitol., 1990, 70, 419-426.
[85]
Ye, Z.; Dyke, K.V. Reversal of chloroquine resistance in falciparum malaria by some calcium channel inhibitors and optical isomers is independent of calcium channel blockade. Drug Chem. Toxicol., 1994, 17(2), 149-162.
[http://dx.doi.org/10.3109/01480549409014308] [PMID: 8062642]
[86]
Menezes, C.M.S.; Kirchgatter, K.; Di Santi, S.M.; Savalli, C.; Monteiro, F.G.; Paula, G.A.; Ferreira, E.I. In vitro evaluation of verapamil and other modulating agents in Brazilian chloroquine-resistant Plasmodium falciparum isolates. Rev. Soc. Bras. Med. Trop., 2003, 36(1), 5-9.
[http://dx.doi.org/10.1590/S0037-86822003000100002] [PMID: 12715057]
[87]
Randrianarivelojosia, M.; Jambou, R. Isradipine – a calcium channel blocker – does not potentiate chloroquine antiplasmodial activity against Plasmodium falciparum. Parasite, 2005, 12(2), 187-189.
[http://dx.doi.org/10.1051/parasite/2005122187] [PMID: 15991834]
[88]
Kumar, P.; Kadyan, K.; Duhan, M.; Sindhu, J.; Singh, V.; Saharan, B.S. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents. Chem. Cent. J., 2017, 11(1), 115.
[http://dx.doi.org/10.1186/s13065-017-0344-7] [PMID: 29138944]
[89]
Van Horn, K. S. Anti-parasitic and Anti-bacterial Agents: Studies on 1,4-dihydropyridines and 2,4-diaminoquinazolines. Dissertation, University of Souht Floricla, 2013.
[90]
Mvumvu, N. Synthesis of 1,4-Dihydropyridines as Potential Antimalarial Chemotype; Master of Sciences, University of Cape Town: South Africa, 2015.
[91]
Mendonça-Silva, D.L.; Novozhilova, E.; Cobbett, P.J.R.; Silva, C.L.M.; Noël, F.; Totten, M.I.J.; Maule, A.G.; Day, T.A. Role of calcium influx through voltage-operated calcium channels and of calcium mobilization in the physiology of Schistosoma mansoni muscle contractions. Parasitology, 2006, 133(1), 67-74.
[http://dx.doi.org/10.1017/S0031182006000023] [PMID: 16566851]
[92]
Silva-Moraes, V.; Couto, F.F.B.; Vasconcelos, M.M.; Araújo, N.; Coelho, P.M.Z.; Katz, N.; Grenfell, R.F.Q. Antischistosomal activity of a calcium channel antagonist on schistosomula and adult Schistosoma mansoni worms. Mem. Inst. Oswaldo Cruz, 2013, 108(5), 600-604.
[http://dx.doi.org/10.1590/0074-0276108052013011] [PMID: 23903976]
[93]
Ibrahim, A.; Abdel-Ghaffar, M.; Saad, A.G.; Moharm, I.; Sharaf, O.; Badr, M. Parasitological and histopathological effects of some antischistosome drugs in Schistosoma mansoni- infected mice. Menoufia Med. J., 2017, 30(4), 1193.
[http://dx.doi.org/10.4103/mmj.mmj_672_16]
[94]
Zorn, K.M.; Sun, S.; McConnon, C.L.; Ma, K.; Chen, E.K.; Foil, D.H.; Lane, T.R.; Liu, L.J.; El-Sakkary, N.; Skinner, D.E.; Ekins, S.; Caffrey, C.R. A machine learning strategy for drug discovery identifies anti-schistosomal small molecules. ACS Infect. Dis., 2021, 7(2), 406-420.
[http://dx.doi.org/10.1021/acsinfecdis.0c00754] [PMID: 33434015]
[95]
Baig, A.M.; Iqbal, J.; Khan, N.A. In vitro efficacies of clinically available drugs against growth and viability of an Acanthamoeba castellanii keratitis isolate belonging to the T4 genotype. Antimicrob. Agents Chemother., 2013, 57(8), 3561-3567.
[http://dx.doi.org/10.1128/AAC.00299-13] [PMID: 23669391]
[96]
Baig, A.M.; Kulsoom, H.; Khan, N.A. Primary amoebic meningoencephalitis: Amoebicidal effects of clinically approved drugs against Naegleria fowleri. J. Med. Microbiol., 2014, 63(5), 760-762.
[http://dx.doi.org/10.1099/jmm.0.072306-0] [PMID: 24493160]
[97]
Baig, A.M.; Rana, Z.; Waliani, N.; Karim, S.; Rajabali, M. Evidence of human-like Ca2+ channels and effects of Ca2+ channel blockers in Acanthamoeba castellanii. Chem. Biol. Drug Des., 2019, 93(3), 351-363.
[http://dx.doi.org/10.1111/cbdd.13421] [PMID: 30362253]
[98]
Baig, A.M.; Khaleeq, A.; Nazim, F. Targeting CNS related protist pathogens: Calcium ion dependency in the brain-eating amoebae. ACS Chem. Neurosci., 2020, 11(16), 2385-2387.
[http://dx.doi.org/10.1021/acschemneuro.9b00635] [PMID: 31840980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy