Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Developments and Challenges in the Application of Fungal Laccase for the Biodegradation of Textile Dye Pollutants

Author(s): Flávia F. Magalhães, Ana F. Pereira, Raquel O. Cristóvão, Rita A. M. Barros, Joaquim L. Faria, Cláudia G. Silva, Mara G. Freire and Ana P. M. Tavares*

Volume 21, Issue 6, 2024

Published on: 29 December, 2022

Page: [609 - 632] Pages: 24

DOI: 10.2174/1570193X20666221104140632

Price: $65

Abstract

According to the European Environment Agency, the textile industry is responsible for 20% of global water pollution due to dyeing and finishing products, thus facing severe environmental challenges. It is essential to design more biocompatible and sustainable treatment processes capable of removing dyes from industrial wastewater to fight this environmental hazard. Chemical industries must change traditional chemical-based concepts to more environmentally friendly and greener processes to remove pollutants, including dyes. Enzymatic bioremediation is a smart tool and a promising alternative for environmental pollutant degradation. The use of enzymes in dye decolourization makes the process a green and clean alternative to conventional chemical treatments. Moreover, enzymemediated biocatalysis decreases the formation of toxic by-products compared to chemical reactions. The most used enzyme for the decolourization of dyes is laccase. Laccase is a multicopper oxidase found in diverse organisms such as fungi. It promotes the oxidation of phenolic compounds and has a wide range of substrate specificity, making it a promising enzyme for removing different dyes used by the textile industry, including recalcitrant aromatic dyes. The present article gives a comprehensive revision of textile dye decolourization, its types, recent developments in laccase-mediated dye bioremediation technologies, the mechanism of biocatalysis, and their limitations and challenges. Emphasis on the chemical pathways of laccase reaction mechanisms for dye bioremediation processes is also provided. In addition, a brief overview of textile industries and the respective traditional treatment processes for textile wastewater is presented.

Graphical Abstract

[1]
The impact of textile production and waste on the environment (infographic). European Parliament,, 2020. Available from: https://www.europarl.europa.eu/news/en/headlines/society/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographic
[2]
Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 2021, 26(13), 3813.
[http://dx.doi.org/10.3390/molecules26133813] [PMID: 34206669]
[3]
Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., 2019, 3(2), 275-290.
[http://dx.doi.org/10.1016/j.biori.2019.09.001]
[4]
Shah, M.P. Environmental bioremediation: A low cost nature’s natural biotechnology for environmental clean-up. J. Pet. Environ. Biotechnol., 2014, 5(4)
[http://dx.doi.org/10.4172/2157-7463.1000191]
[5]
Srinivasulu, M.; Chandra, M.S.; Maddela, N.R.; Golla, N.; Ramesh, B. Recent trends in bioremediation of pollutants by enzymatic approaches. Cost Effective Technologies Solid Waste Wastewater Treatment; Elsevier, 2022, pp. 115-134.
[http://dx.doi.org/10.1016/B978-0-12-822933-0.00018-8]
[6]
Deska, M.; Kończak, B. Immobilized fungal laccase as “green catalyst” for the decolourization process-State of the art. Process Biochem., 2019, 84, 112-123.
[http://dx.doi.org/10.1016/j.procbio.2019.05.024]
[7]
Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J., 2021, 403, 126272.
[http://dx.doi.org/10.1016/j.cej.2020.126272]
[8]
Morsy, S.A.G.Z.; Ahmad Tajudin, A.; Ali, M.S.M.; Shariff, F.M. Current development in decolorization of synthetic dyes by immobilized laccases. Front. Microbiol., 2020, 11, 572309.
[http://dx.doi.org/10.3389/fmicb.2020.572309] [PMID: 33101245]
[9]
Behera, M.; Nayak, J.; Banerjee, S.; Chakrabortty, S.; Tripathy, S.K. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J. Environ. Chem. Eng., 2021, 9(4), 105277.
[http://dx.doi.org/10.1016/j.jece.2021.105277]
[10]
Roy, M.; Sen, P.; Pal, P. An integrated green management model to improve environmental performance of textile industry towards sustainability. J. Clean. Prod., 2020, 271, 122656.
[http://dx.doi.org/10.1016/j.jclepro.2020.122656]
[11]
Ismail, G.A.; Sakai, H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, 2022, 291(Pt 3), 132906.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132906] [PMID: 34785181]
[12]
Ranasinghe, L.; Jayasooriya, V.M. Ecolabelling in textile industry: A review. Resour. Environ. Sustainab., 2021, 6, 100037.
[http://dx.doi.org/10.1016/j.resenv.2021.100037]
[13]
Methneni, N.; Morales-González, J.A.; Jaziri, A.; Mansour, H.B.; Fernandez-Serrano, M. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. Environ. Res., 2021, 196, 110956.
[http://dx.doi.org/10.1016/j.envres.2021.110956] [PMID: 33675797]
[14]
Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf., 2022, 231, 113160.
[http://dx.doi.org/10.1016/j.ecoenv.2021.113160] [PMID: 35026583]
[15]
Dellamatrice, P.M.; Silva-Stenico, M.E.; Moraes, L.A.B.; Fiore, M.F.; Monteiro, R.T.R. Degradation of textile dyes by cyanobacteria. Braz. J. Microbiol., 2017, 48(1), 25-31.
[http://dx.doi.org/10.1016/j.bjm.2016.09.012] [PMID: 28341397]
[16]
Saravanan, P.; Josephraj, J.; Pushpa Thillainayagam, B. A comprehensive analysis of biosorptive removal of basic dyes by different biosorbents. Environ. Nanotechnol. Monit. Manag., 2021, 16, 100560.
[http://dx.doi.org/10.1016/j.enmm.2021.100560]
[17]
Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng., 2021, 9(2), 105012.
[http://dx.doi.org/10.1016/j.jece.2020.105012]
[18]
Routoula, E.; Patwardhan, S.V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol., 2020, 54(2), 647-664.
[http://dx.doi.org/10.1021/acs.est.9b03737] [PMID: 31913605]
[19]
Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conserv. Sci. Eng., 2017, 2(4), 121-131.
[http://dx.doi.org/10.1007/s41101-017-0031-5]
[20]
Benkhaya, S. rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun., 2020, 115, 107891.
[http://dx.doi.org/10.1016/j.inoche.2020.107891]
[21]
Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Dyes and Pigments: Their Structure and Properties.In:Dyes and Pigments. Springer Briefs in Molecular Science; Springer: Cham, 2016.
[http://dx.doi.org/10.1007/978-3-319-33892-7_2]
[22]
Haji, A.; Naebe, M. Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. J. Clean. Prod., 2020, 265, 121866.
[http://dx.doi.org/10.1016/j.jclepro.2020.121866]
[23]
Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. (Basel), 2021, 11(14), 6255.
[http://dx.doi.org/10.3390/app11146255]
[24]
Singh, A.; Sheikh, J. Cleaner functional dyeing of wool using Kigelia Africana natural dye and Terminalia chebula bio-mordant. Sustain. Chem. Pharm., 2020, 17, 100286.
[http://dx.doi.org/10.1016/j.scp.2020.100286]
[25]
Uddin, M.A.; Rahman, M.M.; Haque, A.N.M.A.; Smriti, S.A.; Datta, E.; Farzana, N.; Chowdhury, S.; Haider, J.; Muhammad Sayem, A.S. Textile colouration with natural colourants: A review. J. Clean. Prod., 2022, 349, 131489.
[http://dx.doi.org/10.1016/j.jclepro.2022.131489]
[26]
Samsami, S.; Mohamadizaniani, M.; Sarrafzadeh, M.H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot., 2020, 143, 138-163.
[http://dx.doi.org/10.1016/j.psep.2020.05.034]
[27]
Taguchi, T.; Ebihara, K.; Yanagisaki, C.; Yoshikawa, J.; Horiguchi, H.; Amachi, S. Decolorization of recalcitrant dyes by a multicopper oxidase produced by Iodidimonas sp. Q-1 with iodide as a novel inorganic natural redox mediator. Sci. Rep., 2018, 8(1), 6717.
[http://dx.doi.org/10.1038/s41598-018-25043-1] [PMID: 29712927]
[28]
Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon, 2019, 5(11), e02711.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02711] [PMID: 31840123]
[29]
Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ., 2020, 717, 137222.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137222] [PMID: 32084689]
[30]
Sharma, J.; Sharma, S.; Soni, V. Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Reg. Stud. Mar. Sci., 2021, 45, 101802.
[http://dx.doi.org/10.1016/j.rsma.2021.101802]
[31]
Koulini, G.V.; Laiju, A.R.; Ramesh, S.T.; Gandhimathi, R.; Nidheesh, P.V. Effective degradation of azo dye from textile wastewater by electro-peroxone process. Chemosphere, 2022, 289, 133152.
[http://dx.doi.org/10.1016/j.chemosphere.2021.133152] [PMID: 34875291]
[32]
Selvaraj, V.; Swarna Karthika, T.; Mansiya, C.; Alagar, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct., 2021, 1224, 129195.
[http://dx.doi.org/10.1016/j.molstruc.2020.129195]
[33]
Alderete, B.L.; da Silva, J.; Godoi, R.; da Silva, F.R.; Taffarel, S.R.; da Silva, L.P.; Garcia, A.L.H.; Júnior, H.M.; de Amorim, H.L.N.; Picada, J.N. Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. Chemosphere, 2021, 263, 128291.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128291] [PMID: 33297233]
[34]
Afrin, S.; Shuvo, H.R.; Sultana, B.; Islam, F.; Rus’d, A.A.; Begum, S.; Hossain, M.N. The degradation of textile industry dyes using the effective bacterial consortium. Heliyon, 2021, 7(10), e08102.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08102] [PMID: 34646956]
[35]
Rahman, S.M.A.; Kumar Saha, A.; Ruhi, R.A.; Haque, M.F.; Mohanta, M.K. Decolourization of textile azo dye direct red 81 by bacteria from textile industry effluent. Int. J. Curr. Microbiol. Appl. Sci., 2019, 8(4), 1742-1754.
[http://dx.doi.org/10.20546/ijcmas.2019.804.203]
[36]
Zahrim, A.Y.; Tizaoui, C.; Hilal, N. Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I. Acid Black 210 dye. J. Hazard. Mater., 2010, 182(1-3), 624-630.
[http://dx.doi.org/10.1016/j.jhazmat.2010.06.077] [PMID: 20633995]
[37]
Sarma, G.K.; Sen Gupta, S.; Bhattacharyya, K.G. Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study. SN Appl. Sci., 2019, 1(3), 211.
[http://dx.doi.org/10.1007/s42452-019-0216-y]
[38]
Senthil Rathi, B.; Senthil Kumar, P. Sustainable approach on the biodegradation of azo dyes: A short review. Curr. Opin. Green Sustain. Chem., 2022, 33, 100578.
[http://dx.doi.org/10.1016/j.cogsc.2021.100578]
[39]
Aoudj, S.; Khelifa, A.; Drouiche, N.; Hecini, M.; Hamitouche, H. Electrocoagulation process applied to wastewater containing dyes from textile industry. Chem. Eng. Process., 2010, 49(11), 1176-1182.
[http://dx.doi.org/10.1016/j.cep.2010.08.019]
[40]
Al-Enezi, M.H.; Aldawsari, F.S. Study of P-Phenylenediamine (PPD) concentrations after hair dye mixing: A call for safety reassessment. Cosmetics, 2022, 9(2), 41.
[http://dx.doi.org/10.3390/cosmetics9020041]
[41]
Senthil Kumar, P.; Saravanan, A. Sustainable wastewater treatments in textile sector; Elsevier Ltd: Amsterdam, 2017.
[http://dx.doi.org/10.1016/B978-0-08-102041-8.00011-1]
[42]
Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 2010, 177(1-3), 70-80.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.047] [PMID: 20044207]
[43]
Adegoke, K.A.; Bello, O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind., 2015, 12, 8-24.
[http://dx.doi.org/10.1016/j.wri.2015.09.002]
[44]
Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol., 2006, 97(9), 1061-1085.
[http://dx.doi.org/10.1016/j.biortech.2005.05.001] [PMID: 15993052]
[45]
Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280(1-3), 1-13.
[http://dx.doi.org/10.1016/j.desal.2011.07.019]
[46]
Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage., 2010, 91(10), 1915-1929.
[http://dx.doi.org/10.1016/j.jenvman.2010.05.003] [PMID: 20627542]
[47]
Pereira, M.F.R.; Soares, S.F.; Órfão, J.J.M.; Figueiredo, J.L. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 2003, 41(4), 811-821.
[http://dx.doi.org/10.1016/S0008-6223(02)00406-2]
[48]
Aldegs, Y.; Elbarghouthi, M.; Elsheikh, A.; Walker, G. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments, 2008, 77(1), 16-23.
[http://dx.doi.org/10.1016/j.dyepig.2007.03.001]
[49]
Herrera-González, A.M.; Caldera-Villalobos, M.; Peláez-Cid, A.A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. J. Environ. Manage., 2019, 234, 237-244.
[http://dx.doi.org/10.1016/j.jenvman.2019.01.012] [PMID: 30634116]
[50]
Senthil Kumar, P.; Joshiba, G.J.; Femina, C.C.; Varshini, P.; Priyadharshini, S.; Arun Karthick, M.S.; Jothirani, R. A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalin. Water Treat., 2019, 172, 395-416.
[http://dx.doi.org/10.5004/dwt.2019.24613]
[51]
Hassan, M.M.; Carr, C.M. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. Chemosphere, 2021, 265, 129087.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129087] [PMID: 33280840]
[52]
Vishnu, D.; Dhandapani, B.; Kannappan Panchamoorthy, G.; Vo, D.V.N.; Ramakrishnan, S.R. Comparison of surface-engineered super-paramagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: a review. Environ. Chem. Lett., 2021, 19(4), 3181-3208.
[http://dx.doi.org/10.1007/s10311-021-01201-2]
[53]
Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Advances, 2015, 5(39), 30801-30818.
[http://dx.doi.org/10.1039/C4RA16959J]
[54]
Shi, B.; Li, G.; Wang, D.; Feng, C.; Tang, H. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. J. Hazard. Mater., 2007, 143(1-2), 567-574.
[http://dx.doi.org/10.1016/j.jhazmat.2006.09.076] [PMID: 17070993]
[55]
Oladoja, N.A. Headway on natural polymeric coagulants in water and wastewater treatment operations. J. Water Process Eng., 2015, 6, 174-192.
[http://dx.doi.org/10.1016/j.jwpe.2015.04.004]
[56]
Huang, X.; Bo, X.; Zhao, Y.; Gao, B.; Wang, Y.; Sun, S.; Yue, Q.; Li, Q. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresour. Technol., 2014, 165, 116-121.
[http://dx.doi.org/10.1016/j.biortech.2014.02.125] [PMID: 24656485]
[57]
Lee, J.W.; Choi, S.P.; Thiruvenkatachari, R.; Shim, W.G.; Moon, H. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigments, 2006, 69(3), 196-203.
[http://dx.doi.org/10.1016/j.dyepig.2005.03.008]
[58]
Hai, F.I.; Yamamoto, K.; Fukushi, K. Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol., 2007, 37(4), 315-377.
[http://dx.doi.org/10.1080/10643380601174723]
[59]
Yin, C.Y. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem., 2010, 45(9), 1437-1444.
[http://dx.doi.org/10.1016/j.procbio.2010.05.030]
[60]
Greluk, M.; Hubicki, Z. Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions. Chem. Eng. Res. Des., 2013, 91(7), 1343-1351.
[http://dx.doi.org/10.1016/j.cherd.2013.01.019]
[61]
Ranganathan, K.; Karunagaran, K.; Sharma, D.C. Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis-Case studies. Resour. Conserv. Recycl.,, 2007, 50(3), 306-318.
[http://dx.doi.org/10.1016/j.resconrec.2006.06.004]
[62]
Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng., 2018, 6(4), 4676-4697.
[http://dx.doi.org/10.1016/j.jece.2018.06.060]
[63]
Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage., 2016, 182, 351-366.
[http://dx.doi.org/10.1016/j.jenvman.2016.07.090] [PMID: 27497312]
[64]
Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res., 2004, 8(3-4), 501-551.
[http://dx.doi.org/10.1016/S1093-0191(03)00032-7]
[65]
dos Santos, A.B.; Cervantes, F.J.; van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol., 2007, 98(12), 2369-2385.
[http://dx.doi.org/10.1016/j.biortech.2006.11.013] [PMID: 17204423]
[66]
Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 2010, 260(1-3), 34-38.
[http://dx.doi.org/10.1016/j.desal.2010.05.004]
[67]
Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Llorca, M.; Sánchez Pérez, J.A.; Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. J. Hazard. Mater., 2017, 323(PtA), 442-451.
[http://dx.doi.org/10.1016/j.jhazmat.2016.03.013] [PMID: 26988902]
[68]
Asghar, A.; Abdul Raman, A.A.; Wan Daud, W.M.A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J. Clean. Prod., 2015, 87, 826-838.
[http://dx.doi.org/10.1016/j.jclepro.2014.09.010]
[69]
Hassaan, M.A.; El Nemr, A. Advanced oxidation processes for textile wastewater treatment. Int. J. Photochem. Photobiol., 2017, 2, 85-93.
[http://dx.doi.org/10.11648/j.ijpp.20170203.13]
[70]
Paleologou, A.; Marakas, H.; Xekoukoulotakis, N.P.; Moya, A.; Vergara, Y.; Kalogerakis, N.; Gikas, P.; Mantzavinos, D. Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catal. Today, 2007, 129(1-2), 136-142.
[http://dx.doi.org/10.1016/j.cattod.2007.06.059]
[71]
Bagwasi, S.; Tian, B.; Zhang, J.; Nasir, M. Synthesis, characterization and application of bismuth and boron Co-doped TiO2: A visible light active photocatalyst. Chem. Eng. J., 2013, 217, 108-118.
[http://dx.doi.org/10.1016/j.cej.2012.11.080]
[72]
Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng., 2019, 7(5), 103248.
[http://dx.doi.org/10.1016/j.jece.2019.103248]
[73]
Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review. Water Res., 2018, 139, 118-131.
[http://dx.doi.org/10.1016/j.watres.2018.03.042] [PMID: 29631187]
[74]
de Lima, R.S. de Paiva e Silva Zanta, C.L.; Meili, L.; dos Santos Lins, P.V.; de Souza dos Santos, G.E.; Tonholo, J. Fenton-based processes for the regeneration of biochar from Syagrus coronata biomass used as dye adsorbent. Desal. Water Treat., 2019, 162, 391-398.
[http://dx.doi.org/10.5004/dwt.2019.24343]
[75]
Pupo Nogueira, R.F.; Trovó, A.G.; Da Silva, M.R.A.; Villa, R.D.; De Oliveira, M.C. Fundaments and environmental applications of Fenton and photo-Fenton processes. Quim. Nova, 2007, 30, 400-408.
[http://dx.doi.org/10.1590/S0100-40422007000200030]
[76]
Tosik, R. Dyes color removal by ozone and hydrogen peroxide: Some aspects and problems. Ozone Sci. Eng., 2005, 27(4), 265-271.
[http://dx.doi.org/10.1080/01919510591005905]
[77]
Diya’uddeen, B.H.; Abdul Aziz, A.R.; Daud, W.M.A.W. On the limitation of Fenton oxidation operational parameters: A review. Int. J. Chem. React. Eng., 2012, 10.
[http://dx.doi.org/10.1515/1542-6580.2913]
[78]
Sheriff, T.S.; Cope, S.; Ekwegh, M. Calmagite dye oxidation using in situ generated hydrogen peroxide catalysed by manganese(ii) ions. Dalton Trans., 2007, 44(44), 5119-5122.
[http://dx.doi.org/10.1039/b711143f] [PMID: 17985017]
[79]
Hayat, H.; Mahmood, Q.; Pervez, A.; Bhatti, Z.A.; Baig, S.A. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separ. Purif. Tech., 2015, 154, 149-153.
[http://dx.doi.org/10.1016/j.seppur.2015.09.025]
[80]
Mojsov, K.; Andronikov, D.; Janevski, A.; Kuzelov, A.; Gaber, S. The application of enzymes for the removal of dyes from textile effluents. Adv. Technol., 2016, 5(1), 81-86.
[http://dx.doi.org/10.5937/savteh1601081M]
[81]
Husain, Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Crit. Rev. Biotechnol., 2006, 26(4), 201-221.
[http://dx.doi.org/10.1080/07388550600969936] [PMID: 17095432]
[82]
Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov., 2020, 19, 101026.
[http://dx.doi.org/10.1016/j.eti.2020.101026]
[83]
Jegannathan, K.R.; Nielsen, P.H. Environmental assessment of enzyme use in industrial production-A literature review. J. Clean. Prod., 2013, 42, 228-240.
[http://dx.doi.org/10.1016/j.jclepro.2012.11.005]
[84]
Ivanov, V.; Stabnikov, V.; Stabnikova, O.; Kawasaki, S. Environmental safety and biosafety in construction biotechnology. World J. Microbiol. Biotechnol., 2019, 35(2), 26.
[http://dx.doi.org/10.1007/s11274-019-2598-9] [PMID: 30666430]
[85]
Teerapatsakul, C.; Parra, R.; Keshavarz, T.; Chitradon, L. Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate. Int. Biodeterior. Biodegrad., 2017, 120, 52-57.
[http://dx.doi.org/10.1016/j.ibiod.2017.02.001]
[86]
Mousavi, S.M.; Hashemi, S.A.; Iman Moezzi, S.M.; Ravan, N.; Gholami, A.; Lai, C.W.; Chiang, W.H.; Omidifar, N.; Yousefi, K.; Behbudi, G. Recent advances in enzymes for the bioremediation of pollutants. Biochem. Res. Int., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/5599204] [PMID: 34401207]
[87]
Biko, O.D.V.; Viljoen-Bloom, M.; van Zyl, W.H. Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb. Technol., 2020, 141, 109669.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109669] [PMID: 33051019]
[88]
Nayana, P.; Aiswarya, C.; Aparna, C.K.; Nambisan, P. Dataset on optimization of lignin peroxidase production by Endomelanconiopsis sp. under submerged fermentation using one factor at a time approach. Data Brief, 2020, 29, 105244.
[http://dx.doi.org/10.1016/j.dib.2020.105244] [PMID: 32099876]
[89]
Riyadi, F.A.; Tahir, A.A.; Yusof, N.; Sabri, N.S.A.; Noor, M.J.M.M.; Akhir, F.N.M.D.; Othman, N.; Zakaria, Z.; Hara, H. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Sci. Rep., 2020, 10(1), 7813.
[http://dx.doi.org/10.1038/s41598-020-64817-4] [PMID: 32385385]
[90]
Falade, A.O.; Eyisi, O.A.L.; Mabinya, L.V.; Nwodo, U.U.; Okoh, A.I. Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnol. Rep. (Amst.), 2017, 16, 12-17.
[http://dx.doi.org/10.1016/j.btre.2017.10.001] [PMID: 29062721]
[91]
Garg, S.K.; Modi, D.R. Decolorization of pulp-paper mill effluents by white-rot fungi. Crit. Rev. Biotechnol., 1999, 19(2), 85-112.
[http://dx.doi.org/10.1080/0738-859991229206]
[92]
Chivukula, M.; Spadaro, J.T.; Renganathan, V. Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry, 1995, 34(23), 7765-7772.
[http://dx.doi.org/10.1021/bi00023a024] [PMID: 7779823]
[93]
Torres-Duarte, C.; Vazquez-Duhalt, R. Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field.Biocatalysis Based on Heme Peroxidases; Torres, E.; Ayala, M., Eds.; Springer: Berlin, Heidelberg, 2010, pp. 179-206.
[http://dx.doi.org/10.1007/978-3-642-12627-7_8]
[94]
Li, X.; Jia, R.; Li, P.; Ang, S. Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase. J. Mol. Catal., B Enzym., 2009, 56(1), 1-6.
[http://dx.doi.org/10.1016/j.molcatb.2008.03.013]
[95]
Falade, A.O.; Mabinya, L.V.; Okoh, A.I.; Nwodo, U.U. Biochemical and molecular characterization of a novel dye-decolourizing peroxidase from Raoultella ornithinolytica OKOH-1. Int. J. Biol. Macromol., 2019, 121, 454-462.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.045] [PMID: 30316770]
[96]
Liu, S.; Xu, X.; Kang, Y.; Xiao, Y.; Liu, H. Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. R. Soc. Open Sci., 2020, 7(9), 200688.
[http://dx.doi.org/10.1098/rsos.200688] [PMID: 33047030]
[97]
Preethi, S.; Anumary, A.; Ashokkumar, M.; Thanikaivelan, P. Probing horseradish peroxidase catalyzed degradation of azo dye from tannery wastewater. Springerplus, 2013, 2(1), 341.
[http://dx.doi.org/10.1186/2193-1801-2-341] [PMID: 23961406]
[98]
Chang, Y.; Yang, D.; Li, R.; Wang, T.; Zhu, Y. Textile dye biodecolorization by manganese peroxidase: A review. Molecules, 2021, 26(15), 4403.
[http://dx.doi.org/10.3390/molecules26154403] [PMID: 34361556]
[99]
Shaffiqu, T.S.; Roy, J.J.; Nair, R.A.; Abraham, T.E. Degradation of textile dyes mediated by plant peroxidases. Appl. Biochem. Biotechnol., 2002, 102-103(1-6), 315-326.
[http://dx.doi.org/10.1385/ABAB:102-103:1-6:315] [PMID: 12396133]
[100]
Arrieta-Baez, D.; Roman, R.; Vazquez-Duhalt, R.; Jiménez-Estrada, M. Peroxidase-mediated transformation of hydroxy-9,10-anthraquinones. Phytochemistry, 2002, 60(6), 567-572.
[http://dx.doi.org/10.1016/S0031-9422(02)00173-5] [PMID: 12126702]
[101]
Misal, S.A.; Gawai, K.R. Azoreductase: A key player of xenobiotic metabolism. Bioresour. Bioprocess., 2018, 5(1), 17.
[http://dx.doi.org/10.1186/s40643-018-0206-8]
[102]
Morrison, J.M.; Wright, C.M.; John, G.H. Identification, isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe, 2012, 18(2), 229-234.
[http://dx.doi.org/10.1016/j.anaerobe.2011.12.006] [PMID: 22182443]
[103]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 2001, 77(3), 247-255.
[http://dx.doi.org/10.1016/S0960-8524(00)00080-8] [PMID: 11272011]
[104]
Russ, R.; Rau, J.; Stolz, A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl. Environ. Microbiol., 2000, 66(4), 1429-1434.
[http://dx.doi.org/10.1128/AEM.66.4.1429-1434.2000] [PMID: 10742223]
[105]
Gingell, R.; Walker, R. Mechanisms of azo reduction by Streptococcus faecalis. II. The role of soluble flavins. Xenobiotica, 1971, 1(3), 231-239.
[http://dx.doi.org/10.3109/00498257109033172] [PMID: 4341449]
[106]
Yoo, E.S.; Libra, J.; Adrian, L. Mechanism of decolorization of azo dyes in anaerobic mixed culture. J. Environ. Eng., 2001, 127(9), 844-849.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2001)127:9(844)]
[107]
Chen, H.; Hopper, S.L.; Cerniglia, C.E. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology (Reading), 2005, 151(5), 1433-1441.
[http://dx.doi.org/10.1099/mic.0.27805-0] [PMID: 15870453]
[108]
Ajaz, M.; Shakeel, S. Rehman, A Microbial use for azo dye degradation-A strategy for dye bioremediation. Int. Microbiol., 2019, 23223, 149-159.
[http://dx.doi.org/10.1007/s10123-019-00103-2]
[109]
Qi, J.; Schlömann, M.; Tischler, D. Biochemical characterization of an azoreductase from Rhodococcus opacus 1CP possessing methyl red degradation ability. J. Mol. Catal., B Enzym., 2016, 130, 9-17.
[http://dx.doi.org/10.1016/j.molcatb.2016.04.012]
[110]
Dong, H.; Guo, T.; Zhang, W.; Ying, H.; Wang, P.; Wang, Y.; Chen, Y. Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. Int. J. Biol. Macromol., 2019, 140, 1037-1046.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.196] [PMID: 31449862]
[111]
Abbas, A.; Mushtaq, A.; Cheema, A.I.; Mahmood, F.; Khan, M.A.; Naqqash, T.; Khurshid, M.; Manzoor, I.; Muhammad, S.; Shahid, M. Heterologous expression of azoreductase-encoding gene azrS of Bacillus sp. MR-1/2 for enhanced azo dye decolorization and wastewater treatment. Arch. Microbiol., 2020, 202(8), 2135-2145.
[http://dx.doi.org/10.1007/s00203-020-01940-w] [PMID: 32519019]
[112]
Lang, W.; Sirisansaneeyakul, S.; Ngiwsara, L.; Mendes, S.; Martins, L.O.; Okuyama, M.; Kimura, A. Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: Toward dye decolorization using a packed-bed metal affinity reactor. Bioresour. Technol., 2013, 150, 298-306.
[http://dx.doi.org/10.1016/j.biortech.2013.09.124] [PMID: 24177163]
[113]
Liu, G.; Zhou, J.; Fu, Q.S.; Wang, J. The Escherichia coli azoreductase AzoR Is involved in resistance to thiol-specific stress caused by electrophilic quinones. J. Bacteriol., 2009, 191(20), 6394-6400.
[http://dx.doi.org/10.1128/JB.00552-09] [PMID: 19666717]
[114]
Romero, E.; Savino, S.; Fraaije, M.W.; Lončar, N. Mechanistic and crystallographic studies of azoreductase AzoA from Bacillus wakoensis A01. ACS Chem. Biol., 2020, 15(2), 504-512.
[http://dx.doi.org/10.1021/acschembio.9b00970] [PMID: 31967777]
[115]
Mugerfeld, I.; Law, B.A.; Wickham, G.S.; Thompson, D.K. A putative azoreductase gene is involved in the Shewanella oneidensis re-sponse to heavy metal stress. Appl. Microbiol. Biotechnol., 2009, 82(6), 1131-1141.
[http://dx.doi.org/10.1007/s00253-009-1911-1] [PMID: 19238379]
[116]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pour-cel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[117]
Ryan, A.; Wang, C.J.; Laurieri, N.; Westwood, I.; Sim, E. Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases. Protein Cell, 2010, 1(8), 780-790.
[http://dx.doi.org/10.1007/s13238-010-0090-2] [PMID: 21203919]
[118]
Burton, S.G. Biocatalysis with polyphenol oxidase: A review. Catal. Today, 1994, 22(3), 459-487.
[http://dx.doi.org/10.1016/0920-5861(94)80118-5]
[119]
Singh, R.L.; Singh, P.K.; Singh, R.P. Enzymatic decolorization and degradation of azo dyes-A review. Int. Biodeterior. Biodegradation, 2015, 104, 21-31.
[http://dx.doi.org/10.1016/j.ibiod.2015.04.027]
[120]
Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Bacterial tyrosinases and their applications. Process Biochem., 2012, 47(12), 1749-1760.
[http://dx.doi.org/10.1016/j.procbio.2012.08.018]
[121]
Durán, N.; Rosa, M.A.; D’Annibale, A.; Gianfreda, L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review. Enzyme Microb. Technol., 2002, 31(7), 907-931.
[http://dx.doi.org/10.1016/S0141-0229(02)00214-4]
[122]
Amjad Ali, K.; Qayyum, H. Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes. J. Environ. Sci. (China), 2007, 19(4), 396-402.
[http://dx.doi.org/10.1016/S1001-0742(07)60066-7] [PMID: 17915700]
[123]
Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci., 2020, 21(3), 966.
[http://dx.doi.org/10.3390/ijms21030966] [PMID: 32024019]
[124]
Mayer, A.; Staples, R.C. Laccase: New functions for an old enzyme. Phytochemistry, 2002, 60(6), 551-565.
[http://dx.doi.org/10.1016/S0031-9422(02)00171-1] [PMID: 12126701]
[125]
Call, H.P.; Mücke, I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J. Biotechnol., 1997, 53(2-3), 163-202.
[http://dx.doi.org/10.1016/S0168-1656(97)01683-0]
[126]
Hoopes, J.T.; Dean, J.F.D. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol. Biochem., 2004, 42(1), 27-33.
[http://dx.doi.org/10.1016/j.plaphy.2003.10.011] [PMID: 15061081]
[127]
Couto, S.R.; Toca-Herrera, J.L. Laccase production at reactor scale by filamentous fungi. Biotechnol. Adv., 2007, 25(6), 558-569.
[http://dx.doi.org/10.1016/j.biotechadv.2007.07.002] [PMID: 17706395]
[128]
Sharma, P.; Goel, R.; Capalash, N. Bacterial laccases. World J. Microbiol. Biotechnol., 2007, 23(6), 823-832.
[http://dx.doi.org/10.1007/s11274-006-9305-3]
[129]
Surwase, S.V.; Patil, S.A.; Srinivas, S.; Jadhav, J.P. Interaction of small molecules with fungal laccase: A surface plasmon resonance based study. Enzyme Microb. Technol., 2016, 82, 110-114.
[http://dx.doi.org/10.1016/j.enzmictec.2015.09.002] [PMID: 26672456]
[130]
Zhao, M.; Zhang, B.; Lu, L.; Zhao, L.; Liang, S. Purification and characterization of laccase from the white rot fungus Cerrena unicolor and its use in dye decolorization. J. Biotechnol., 2008, 136, S327.
[http://dx.doi.org/10.1016/j.jbiotec.2008.07.1947]
[131]
Fonseca, M.I.; Shimizu, E.; Zapata, P.D.; Villalba, L.L. Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzyme Microb. Technol., 2010, 46(6), 534-539.
[http://dx.doi.org/10.1016/j.enzmictec.2009.12.017] [PMID: 25919631]
[132]
Strong, P.J.; Claus, H. Laccase: A review of its past and its future in bioremediation. Crit. Rev. Environ. Sci. Technol., 2011, 41(4), 373-434.
[http://dx.doi.org/10.1080/10643380902945706]
[133]
Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; Trujillo-Roldán, M.A.; Valdez-Cruz, N.A. Laccases: structure, function, and potential application in water bioremediation. Microb. Cell Fact., 2019, 18(1), 200.
[http://dx.doi.org/10.1186/s12934-019-1248-0] [PMID: 31727078]
[134]
Baldrian, P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev., 2006, 30(2), 215-242.
[http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x] [PMID: 16472305]
[135]
Claus, H. Laccases: structure, reactions, distribution. Micron, 2004, 35(1-2), 93-96.
[http://dx.doi.org/10.1016/j.micron.2003.10.029] [PMID: 15036303]
[136]
Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J. Biol. Chem., 2002, 277(40), 37663-37669.
[http://dx.doi.org/10.1074/jbc.M204571200] [PMID: 12163489]
[137]
Choinowski, T.; Antorini, M.; Piontek, K. Crystal structure determination at room temperature of a laccase from Trametes versicolor in its oxidised form containing a full complement of copper ions. J. Biol. Chem., 2022, 277, 37663.
[138]
Shleev, S.; Tkac, J.; Christenson, A.; Ruzgas, T.; Yaropolov, A.I.; Whittaker, J.W.; Gorton, L. Direct electron transfer between copper-containing proteins and electrodes. Biosens. Bioelectron., 2005, 20(12), 2517-2554.
[http://dx.doi.org/10.1016/j.bios.2004.10.003] [PMID: 15854824]
[139]
Rodgers, C.J.; Blanford, C.F.; Giddens, S.R.; Skamnioti, P.; Armstrong, F.A.; Gurr, S.J. Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol., 2010, 28(2), 63-72.
[http://dx.doi.org/10.1016/j.tibtech.2009.11.001] [PMID: 19963293]
[140]
Festa, G.; Autore, F.; Fraternali, F.; Giardina, P.; Sannia, G. Development of new laccases by directed evolution: Functional and computational analyses. Proteins, 2008, 72(1), 25-34.
[http://dx.doi.org/10.1002/prot.21889] [PMID: 18186469]
[141]
Mehra, R.; Muschiol, J.; Meyer, A.S.; Kepp, K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep., 2018, 8(1), 17285.
[http://dx.doi.org/10.1038/s41598-018-35633-8] [PMID: 30470810]
[142]
Amaral, P.F.F.; Fernandes, D.L.A.; Tavares, A.P.M.; Xavier, A.B.M.R.; Cammarota, M.C. COutinho, J.A.P.; Coelho, M.A.Z. Decolorization of Dyes from textile wastewater by Trametes versicolor. Environ. Technol., 2004, 25(11), 1313-1320.
[http://dx.doi.org/10.1080/09593332508618376] [PMID: 15617445]
[143]
Rodríguez, E.; Pickard, M.A.; Vazquez-Duhalt, R. Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbiol., 1999, 38(1), 27-32.
[http://dx.doi.org/10.1007/PL00006767] [PMID: 9841778]
[144]
Suzuki, T.; Timofei, S.; Kurunczi, L.; Dietze, U.; Schüürmann, G. Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere, 2001, 45(1), 1-9.
[http://dx.doi.org/10.1016/S0045-6535(01)00074-1] [PMID: 11572582]
[145]
Legerská, B.; Chmelová, D.; Ondrejovič, M. Degradation of synthetic dyes by laccases - A mini-review. Nova Biotechnol. Chim., 2016, 15(1), 90-106.
[http://dx.doi.org/10.1515/nbec-2016-0010]
[146]
Tavares, A.P.M.; Cristóvão, R.O.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A. Optimisation of reactive textile dyes degradation by laccase-mediator system. J. Chem. Technol. Biotechnol., 2008, 83(12), 1609-1615.
[http://dx.doi.org/10.1002/jctb.1952]
[147]
Grassi, E.; Scodeller, P.; Filiel, N.; Carballo, R.; Levin, L. Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int. Biodeterior. Biodegradation, 2011, 65(4), 635-643.
[http://dx.doi.org/10.1016/j.ibiod.2011.03.007]
[148]
Gu, Y.; Yuan, L.; Jia, L.; Xue, P.; Yao, H. Recent developments of a co-immobilized laccase-mediator system: A review. RSC Advances, 2021, 11(47), 29498-29506.
[http://dx.doi.org/10.1039/D1RA05104K] [PMID: 35479547]
[149]
Fabbrini, M.; Galli, C.; Gentili, P. Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal., B Enzym., 2002, 16(5-6), 231-240.
[http://dx.doi.org/10.1016/S1381-1177(01)00067-4]
[150]
Xu, G.; Wang, J.; Yin, Q.; Fang, W.; Xiao, Y.; Fang, Z. Expression of a thermo- and alkali-philic fungal laccase in Pichia pastoris and its application. Protein Expr. Purif., 2019, 154, 16-24.
[http://dx.doi.org/10.1016/j.pep.2018.09.015] [PMID: 30248451]
[151]
Cristóvão, R.O.; Tavares, A.P.M.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A. Optimisation of reactive dye degradation by laccase using Box-Behnken design. Environ. Technol., 2008, 29(12), 1357-1364.
[http://dx.doi.org/10.1080/09593330802379615] [PMID: 19149357]
[152]
Telke, A.A.; Kadam, A.A.; Jagtap, S.S.; Jadhav, J.P.; Govindwar, S.P. Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol. Bioprocess Eng.; BBE, 2010, 15(4), 696-703.
[http://dx.doi.org/10.1007/s12257-009-3126-9]
[153]
Mani, P.; Fidal, V.T.; Bowman, K.; Breheny, M.; Chandra, T.S.; Keshavarz, T.; Kyazze, G. Degradation of Azo Dye (Acid Orange 7) in a microbial fuel cell: Comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Front. Energy Res., 2019, 7, 101.
[http://dx.doi.org/10.3389/fenrg.2019.00101]
[154]
Zeng, X.; Cai, Y.; Liao, X.; Zeng, X.; Luo, S.; Zhang, D. Anthraquinone dye assisted the decolorization of azo dyes by a novel Trametes trogii laccase. Process Biochem., 2012, 47(1), 160-163.
[http://dx.doi.org/10.1016/j.procbio.2011.10.019]
[155]
Iark, D.; Buzzo, A.J.R.; Garcia, J.A.A.; Côrrea, V.G.; Helm, C.V.; Corrêa, R.C.G.; Peralta, R.A.; Peralta Muniz Moreira, R.F.; Bracht, A.; Peralta, R.M. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour. Technol., 2019, 289, 121655.
[http://dx.doi.org/10.1016/j.biortech.2019.121655] [PMID: 31247524]
[156]
Navas, L.E.; Carballo, R.; Levin, L.; Berretta, M.F. Fast decolorization of azo dyes in alkaline solutions by a thermostable metaltolerant bacterial laccase and proposed degradation pathways. Extremophiles, 2020, 24(5), 705-719.
[http://dx.doi.org/10.1007/s00792-020-01186-w] [PMID: 32617733]
[157]
Pandi, A.; Marichetti Kuppuswami, G.; Numbi Ramudu, K.; Palanivel, S. A sustainable approach for degradation of leather dyes by a new fungal laccase. J. Clean. Prod., 2019, 211, 590-597.
[http://dx.doi.org/10.1016/j.jclepro.2018.11.048]
[158]
Si, J.; Cui, B.K.; Dai, Y.C. Decolorization of chemically different dyes by white-rot fungi in submerged cultures. Ann. Microbiol., 2013, 63, 1099-1108.
[http://dx.doi.org/10.1007/s13213-012-0567-8.”]
[159]
Azmi, W.; Sani, R.K.; Banerjee, U.C. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol., 1998, 22(3), 185-191.
[http://dx.doi.org/10.1016/S0141-0229(97)00159-2] [PMID: 9463944]
[160]
Yang, X.; Wu, Y.; Zhang, Y.; Yang, E.; Qu, Y.; Xu, H.; Chen, Y.; Irbis, C.; Yan, J. A Thermo-active laccase isoenzyme from Trametes trogii and its potential for dye decolorization at high temperature. Front. Microbiol., 2020, 11, 241.
[http://dx.doi.org/10.3389/fmicb.2020.00241] [PMID: 32140151]
[161]
Yan, J.; Chen, D.; Yang, E.; Niu, J.; Chen, Y.; Chagan, I. Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization. Int. Biodeterior. Biodegradation, 2014, 93, 186-194.
[http://dx.doi.org/10.1016/j.ibiod.2014.06.001]
[162]
Yang, J.; Yang, X.; Lin, Y.; Ng, T.B.; Lin, J.; Ye, X. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. PLoS One, 2015, 10(5), e0127714.
[http://dx.doi.org/10.1371/journal.pone.0127714] [PMID: 26020270]
[163]
Zhuo, R.; Zhang, J.; Yu, H.; Ma, F.; Zhang, X. The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways. Chemosphere, 2019, 234, 733-745.
[http://dx.doi.org/10.1016/j.chemosphere.2019.06.113] [PMID: 31234090]
[164]
Ghobadi Nejad, Z.; Borghei, S.M.; Yaghmaei, S. Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism. Int. J. Environ. Sci. Technol., 2019, 16(12), 7805-7816.
[http://dx.doi.org/10.1007/s13762-019-02226-5]
[165]
Osma, J.F.; Toca-Herrera, J.L.; Rodríguez-Couto, S. Transformation pathway of Remazol Brilliant Blue R by immobilised laccase. Bioresour. Technol., 2010, 101(22), 8509-8514.
[http://dx.doi.org/10.1016/j.biortech.2010.06.074] [PMID: 20609582]
[166]
Afreen, S.; Anwer, R.; Singh, R.K.; Fatma, T. Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi J. Biol. Sci., 2018, 25(7), 1446-1453.
[http://dx.doi.org/10.1016/j.sjbs.2016.01.015] [PMID: 30505194]
[167]
Mtibaà, R.; Barriuso, J.; de Eugenio, L.; Aranda, E.; Belbahri, L.; Nasri, M.; Martínez, M.J.; Mechichi, T. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int. J. Biol. Macromol., 2018, 120(Pt B), 1744-1751.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.175] [PMID: 30268749]
[168]
Tavares, A.P.M.; Cristóvão, R.O.; Gamelas, J.A.F.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A. Sequential decolourization of reactive textile dyes by laccase mediator system. J. Chem. Technol. Biotechnol., 2009, 84(3), 442-446.
[http://dx.doi.org/10.1002/jctb.2060]
[169]
Choi, K.Y. Discoloration of indigo dyes by eco-friendly biocatalysts. Dyes Pigments, 2021, 184, 108749.
[http://dx.doi.org/10.1016/j.dyepig.2020.108749]
[170]
Bento, R.M.F.; Almeida, M.R.; Bharmoria, P.; Freire, M.G.; Tavares, A.P.M. Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Separ. Purif. Tech., 2020, 235, 116191.
[http://dx.doi.org/10.1016/j.seppur.2019.116191]
[171]
Campos, R.; Kandelbauer, A.; Robra, K.H.; Cavaco-Paulo, A.; Gübitz, G.M. Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J. Biotechnol., 2001, 89(2-3), 131-139.
[http://dx.doi.org/10.1016/S0168-1656(01)00303-0] [PMID: 11500206]
[172]
Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 2013, 42(15), 6223-6235.
[http://dx.doi.org/10.1039/C3CS60075K] [PMID: 23532151]
[173]
Arica, M.Y.; Salih, B.; Celikbicak, O.; Bayramoglu, G. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI-ToF-MS. Chem. Eng. Res. Des., 2017, 128, 107-119.
[http://dx.doi.org/10.1016/j.cherd.2017.09.023]
[174]
Uber, T.M.; Buzzo, A.J.R.; Scaratti, G.; Amorim, S.M.; Helm, C.V.; Maciel, G.M.; Peralta, R.A.; Moreira, R.F.P.M.; Bracht, A.; Peralta, R.M. Comparative detoxification of Remazol Rrilliant Blue R by free and immobilized laccase of Oudemansiella canarii. Biocatal. Biotransform., 2022, 40(1), 17-28.
[http://dx.doi.org/10.1080/10242422.2020.1835873]
[175]
Shan, H.; Wang, X.; Ge, Y.; Li, Z. Homologous amino acids promoted co-immobilization of laccase and mediator onto geopolymer microspheres for enhancing degradation of dyes in water J. Hazard.Mater., 2022, 423(Pt A), 127-107.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127107] [PMID: 34523501]
[176]
Gao, Y.; Wang, M.; Shah, K.; Singh Kalra, S.; Rome, L.H.; Mahendra, S. Decolorization and detoxification of synthetic dye compounds by laccase immobilized in vault nanoparticles. Bioresour. Technol., 2022, 351, 127040.
[http://dx.doi.org/10.1016/j.biortech.2022.127040] [PMID: 35318145]
[177]
Uygun, M.; Asunción-Nadal, V.; Evli, S.; Uygun, D.A.; Jurado-Sánchez, B.; Escarpa, A. Dye removal by laccase-functionalized micromotors. Appl. Mater. Today, 2021, 23, 101045.
[http://dx.doi.org/10.1016/j.apmt.2021.101045]
[178]
Ulu, A.; Birhanli, E.; Boran, F.; Köytepe, S.; Yesilada, O.; Ateş, B. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int. J. Biol. Macromol., 2020, 150, 871-884.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.006] [PMID: 32027899]
[179]
Amari, A.; Alzahrani, F.M.; Alsaiari, N.S.; Katubi, K.M.; Rebah, F.B.; Tahoon, M.A. Magnetic metal organic framework immobilized laccase for wastewater decolorization. Processes (Basel), 2021, 9(5), 774.
[http://dx.doi.org/10.3390/pr9050774]
[180]
Alsaiari, N.S.; Amari, A.; Katubi, K.M.; Alzahrani, F.M.; Harharah, H.N.; Rebah, F.B.; Tahoon, M.A. The biocatalytic degradation of organic dyes using laccase immobilized magnetic nanoparticles. Appl. Sci. (Basel), 2021, 11(17), 8216.
[http://dx.doi.org/10.3390/app11178216]
[181]
Pandey, D.; Daverey, A.; Dutta, K.; Arunachalam, K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. Chemosphere, 2022, 297, 134126.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134126] [PMID: 35247449]
[182]
Peng, J.; Wu, E.; Lou, X.; Deng, Q.; Hou, X.; Lv, C.; Hu, Q. Anthraquinone removal by a metal-organic framework/polyvinyl alcohol cryogel-immobilized laccase: Effect and mechanism exploration. Chem. Eng. J., 2021, 418, 129473.
[http://dx.doi.org/10.1016/j.cej.2021.129473]
[183]
Tuncay, D.; Yagar, H. Decolorization of Reactive Blue-19 textile dye by Boletus edulis laccase immobilized onto rice husks. Int. J. Environ. Sci. Technol., 2020, 17(6), 3177-3188.
[http://dx.doi.org/10.1007/s13762-020-02641-z]
[184]
Zhai, R.; Chen, X.; Jin, M.; Hu, J. Synthesis of a polydopamaine nanoparticle/bacterial cellulose composite for use as a biocompatible matrix for laccase immobilization. Cellulose, 2019, 26(15), 8337-8349.
[http://dx.doi.org/10.1007/s10570-019-02588-6]
[185]
Ruxandra Leontieș, A.; Răducan, A.; Cristina Culiță, D.; Alexandrescu, E.; Moroșan, A.; Eduard Mihaiescu, D.; Aricov, L. Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation. Chem. Eng. J., 2022, 439, 135654.
[http://dx.doi.org/10.1016/j.cej.2022.135654]
[186]
Ariaeenejad, S.; Motamedi, E.; Salekdeh, G.H. Highly efficient removal of dyes from wastewater using nanocellulose from quinoa husk as a carrier for immobilization of laccase. Bioresour. Technol., 2022, 349, 126833.
[http://dx.doi.org/10.1016/j.biortech.2022.126833] [PMID: 35149184]
[187]
Cristóvão, R.O.; Tavares, A.P.M.; Brígida, A.I.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A.; Coelho, M.A.Z. Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J. Mol. Catal., B Enzym., 2011, 72(1-2), 6-12.
[http://dx.doi.org/10.1016/j.molcatb.2011.04.014]
[188]
Ferreira, A.M.; Valente, A.I.; Castro, L.S.; Coutinho, J.A.P.; Freire, M.G.; Tavares, A.P.M. Sustainable liquid supports for laccase immobilization and reuse: Degradation of dyes in aqueous biphasic systems. Biotechnol. Bioeng., 2021, 118(7), 2514-2523.
[http://dx.doi.org/10.1002/bit.27764] [PMID: 33764496]
[189]
Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv., 2003, 22(1-2), 161-187.
[http://dx.doi.org/10.1016/j.biotechadv.2003.08.011] [PMID: 14623049]
[190]
Khlifi, R.; Belbahri, L.; Woodward, S.; Ellouz, M.; Dhouib, A.; Sayadi, S.; Mechichi, T. Decolourization and detoxification of textile in-dustry wastewater by the laccase-mediator system. J. Hazard. Mater., 2010, 175(1-3), 802-808.
[http://dx.doi.org/10.1016/j.jhazmat.2009.10.079] [PMID: 19945786]
[191]
Benzina, O.; Daâssi, D.; Zouari-Mechichi, H.; Frikha, F.; Woodward, S.; Belbahri, L.; Rodriguez-Couto, S.; Mechichi, T. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system. Environ. Sci. Pollut. Res. Int., 2013, 20(8), 5177-5187.
[http://dx.doi.org/10.1007/s11356-013-1491-6] [PMID: 23361176]
[192]
Moreira, S.; Milagres, A.M.F.; Mussatto, S.I. Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Separ. Purif. Tech., 2014, 135, 183-189.
[http://dx.doi.org/10.1016/j.seppur.2014.08.017]
[193]
Yang, J.; Lin, Q.; Ng, T.B.; Ye, X.; Lin, J. Purification and characterization of a novel laccase from Cerrena sp. HYB07 with dye decolorizing ability. PLoS One, 2014, 9(10), e110834.
[http://dx.doi.org/10.1371/journal.pone.0110834] [PMID: 25356987]
[194]
Motamedi, E.; Kavousi, K.; Sadeghian Motahar, S.F.; Reza Ghaffari, M.; Sheykh Abdollahzadeh Mamaghani, A.; Hosseini Salekdeh, G.; Ariaeenejad, S. Efficient removal of various textile dyes from wastewater by novel thermo-halotolerant laccase. Bioresour. Technol., 2021, 337, 125468.
[http://dx.doi.org/10.1016/j.biortech.2021.125468] [PMID: 34320748]
[195]
Sondhi, S.; Kaur, R.; Kaur, S.; Kaur, P.S. Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int. J. Biol. Macromol., 2018, 117, 1093-1100.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.007] [PMID: 29885397]
[196]
Yavaşer, R.; Karagözler, A.A. Laccase immobilized polyacrylamide-alginate cryogel: A candidate for treatment of effluents. Process Biochem., 2021, 101, 137-146.
[http://dx.doi.org/10.1016/j.procbio.2020.11.021]
[197]
Navada, K.K.; Kulal, A. Enhanced production of laccase from gamma irradiated endophytic fungus: A study on biotransformation kinetics of aniline blue and textile effluent decolourisation. J. Environ. Chem. Eng., 2020, 8(2), 103550.
[http://dx.doi.org/10.1016/j.jece.2019.103550]
[198]
Mehandia, S.; Ahmad, S.; Sharma, S.C.; Arya, S.K. Decolorization and detoxification of textile effluent by immobilized laccase-ACS into chitosan-clay composite beads using a packed bed reactor system: An ecofriendly approach. J. Water Process Eng., 2022, 47, 102662.
[http://dx.doi.org/10.1016/j.jwpe.2022.102662]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy