Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Eco-friendly Synthesis of 2-Amino-4H-Chromene Catalysed by HRSPLAE and Anti-cancer Activity Studies

Author(s): Vasant T. Tonape, Aravind D. Kamath and Kantharaju Kamanna*

Volume 10, Issue 1, 2023

Published on: 29 December, 2022

Page: [34 - 57] Pages: 24

DOI: 10.2174/2213337210666221104101425

Price: $65

Abstract

Background: Several types of catalysts have been cited in the literature. However, the current work showed that a multi-component reaction involving aldehydes, malononitrile, and resorcinol or α/β-naphthol could produce 2-amino-4H-chromene in a more environmentally friendly manner. The reaction is optimized by both stirring and microwave methods, but the reaction carried out under microwave irradiation is found to be faster with easy separation of the product with high yield and purity. The catalyst is analyzed for the presence of elemental composition using Flame Photometry (FP) and SEM-EDX. The synthesis of 2-amino-4H-chromenes is catalyzed by the new, green catalyst HRSPLAE (Water Extract of Hibiscus Rosa Sinensis plant dry leaves ash) within 3-5 min. The final product is analyzed by FT-IR, 1H-, 13C-NMR, and mass spectrometry techniques and the product obtained is free from the use of chromatographic separation with isolation and yield of 80– 95%. Selected 2-amino-4H-chromene derivatives (4b and 4c) were screened for their anti-cancer and antimicrobial activity in vitro.

Methods: The agro-waste sourced from Hibiscus rosa-sinensis plant dry leaves ash is utilized for the preparation of HRSPLAE catalyst, which is employed for the synthesis of 2-amino-4H-chromene derivatives under microwave irradiation.

Results: 2-Amino-4H-chromene derivatives were obtained from aromatic aldehyde, malononitrile, and resorcinol or α/β naphthol catalyzed by HRSPLAE. They were comprehensively evaluated using flame emission spectrometry, SEM, and EDX.

Conclusion: HRSPLAE outperforms expensive catalysts. An efficient simpler workup without column chromatography for increased yield through a new unique green method for the synthesis of 2- amino-4H-chromene derivatives has been developed.

Graphical Abstract

[1]
Syamala, M. Recent progress in three-component reactions. An update. Org. Prep. Proced. Int., 2009, 41(1), 1-68.
[http://dx.doi.org/10.1080/00304940802711218]
[2]
Armstrong, R.W.; Combs, A.P.; Tempest, P.A.; Brown, S.D.; Keating, T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res., 1996, 29(3), 123-131.
[http://dx.doi.org/10.1021/ar9502083]
[3]
Kamijo, S.; Yamamoto, Y. Synthesis of allyl cyanamides and N-cyanoindoles via the palladium-catalyzed three-component coupling reaction. J. Am. Chem. Soc., 2002, 124(40), 11940-11945.
[http://dx.doi.org/10.1021/ja0272742] [PMID: 12358538]
[4]
Khafagy, M.M.; Abd El-Wahab, A.H.F.; Eid, F.A.; El-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco, 2002, 57(9), 715-722.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[5]
Hiramoto, K.; Nasuhara, A.; Michikoshi, K.; Kato, T.; Kikugawa, K. DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1997, 395(1), 47-56.
[http://dx.doi.org/10.1016/S1383-5718(97)00141-1] [PMID: 9465913]
[6]
Baghbanian, S.M.; Rezaei, N.; Tashakkorian, H. Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media. Green Chem., 2013, 15(12), 3446-3458.
[http://dx.doi.org/10.1039/c3gc41302k]
[7]
a) Martinez, A.G.; Marco, L.J. Friedlander reaction on 2-amino-3- cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran [2,3-b] quinoline, new tacrine analogs. Bioorg. Med. Chem. Lett., 1997, 7(24), 3165-3170.;
b) Smith, P.W.; Sollis, S.L.; Howes, P.D.; Cherry, P.C.; Starkey, I.D.; Cobley, K.N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R.J.; Morley, P.J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J. Med. Chem., 1998, 41(6), 787-797.
[http://dx.doi.org/10.1021/jm970374b] [PMID: 9526555]
[8]
Mohr, S.J.; Chirigos, M.A.; Fuhrman, F.S.; Pryor, J.W. Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res., 1975, 35(12), 3750-3754.
[PMID: 1192431]
[9]
Foye, W.O. Principles of Pharmaceutical Chemistry. Piccin: Padova, 1991, p. 416.;
b) Witte, B. E.C.; Neubert, P.; Roesch, A.; Ger, O.D.E. Chem. Abstr., 1986.104224915f
[10]
Konkoy, C.S.; Fisck, D.B.; Cai, S.X.; Lan, N.C.; Keana, J.F.W. PCT. Int. Appl. WO 0075123. 2000. Chem. Abstr., 2001.13429313a
[11]
Ellis, G.P.; Weissberger, A.; Taylor, E.C. The chemistry of heterocyclic compounds. Chromenes, Chromanes, and Chromeones; Wiley: New York, 1977, p. 13.
[http://dx.doi.org/10.1002/9780470187012]
[12]
Adbel Aziz Hafez, E.; Abdel Aziz Hafez, E.; Hilmy Elnagdi, M.; Ghani Ali Elagamey, A.; Mohamed Abdel Aziz El-Taweel, F. Nitriles in heterocyclic synthesis: Novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. heterocycles, 1987, 26(4), 903-907.
[http://dx.doi.org/10.3987/R-1987-04-0903]
[13]
Zhang, A.Q.; Zhang, M.; Chen, H.H.; Chen, J.; Chen, H.Y. Convenient method for synthesis of substituted 2‐Amino‐2‐chromenes. Synth. Commun., 2007, 37(2), 231-235.
[http://dx.doi.org/10.1080/00397910601033385]
[14]
Ren, Y.M.; Cai, C. Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium. Catal. Commun., 2008, 9(6), 1017-1020.
[http://dx.doi.org/10.1016/j.catcom.2007.10.002]
[15]
Kumar, D.; Reddy, V.B.; Mishra, B.G.; Rana, R.K.; Nadagouda, M.N.; Varma, R.S. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron, 2007, 63(15), 3093-3097.
[http://dx.doi.org/10.1016/j.tet.2007.02.019]
[16]
Kumar, B.S.; Srinivasulu, N.; Udupi, R.H.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Kumar, P.S. An efficient approach towards three component coupling of one pot reaction for synthesis of functionalized benzopyrans. J. Heterocycl. Chem., 2006, 43(6), 1691-1693.
[http://dx.doi.org/10.1002/jhet.5570430641]
[17]
Shanthi, G.; Perumal, P.T. An eco-friendly synthesis of 2-aminochromenes and indolyl chromenes catalyzed by InCl3 in aqueous media. Tetrahedron Lett., 2007, 48(38), 6785-6789.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.102]
[18]
Shaabani, A.; Ghadari, R.; Ghasemi, S.; Pedarpour, M.; Rezayan, A.H.; Sarvary, A.; Ng, S.W. Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives. J. Comb. Chem., 2009, 11(6), 956-959.
[http://dx.doi.org/10.1021/cc900101w] [PMID: 19772336]
[19]
Al-Matar, H.M.; Khalil, K.D.; Meier, H.; Kolshorn, H.; Elnagdi, M.H. Chitosan as heterogeneous catalyst in Michael additions: The reaction of cinnamonitriles with active methyls, active methylenes and phenols. ARKIVOC, 2008, 2008(16), 288-301.
[http://dx.doi.org/10.3998/ark.5550190.0009.g27]
[20]
Khurana, J.M.; Nand, B.; Saluja, P. DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo-[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron, 2010, 66(30), 5637-5641.
[http://dx.doi.org/10.1016/j.tet.2010.05.082]
[21]
Naimi-Jamal, M.R.; Mashkouri, S.; Sharifi, A. An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Mol. Divers., 2010, 14(3), 473-477.
[http://dx.doi.org/10.1007/s11030-010-9246-5] [PMID: 20373141]
[22]
Dekamin, M.G.; Eslami, M.; Maleki, A. Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. Tetrahedron, 2013, 69(3), 1074-1085.
[http://dx.doi.org/10.1016/j.tet.2012.11.068]
[23]
Eshghi, H.; Damavandi, S.; Zohuri, G.H. Efficient one-pot synthesis of 2-Amino-4H-chromenes catalyzed by ferric hydrogen sulfate and Zr-based catalysts of FI. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2011, 41(9), 1067-1073.
[http://dx.doi.org/10.1080/15533174.2011.591347]
[24]
Ren, Y.F.; Yang, B.; Liao, X.L. The amino side chains do matter chemoselectivity in the one-pot three-component synthesis of 2- amino-4H-chromenesby supramolecular catalysis with (ACDs) in water. Catal. Sci. Technol., 2016, 6, 4283-4293.
[http://dx.doi.org/10.1039/C5CY01888A]
[25]
Safari, J.; Javadian, L. Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem., 2015, 22, 341-348.
[http://dx.doi.org/10.1016/j.ultsonch.2014.02.002] [PMID: 24835021]
[26]
Safari, J.; Zarnegar, Z. Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery. J. Mol. Struct., 2014, 1072, 53-60.
[http://dx.doi.org/10.1016/j.molstruc.2014.04.023]
[27]
Pourian, E.; Javanshir, S.; Dolatkhah, Z.; Molaei, S.; Maleki, A. Ultrasonic-Assisted Preparation, Characterization, and Use of Novel Biocompatible Core/Shell Fe3O4 @GA@Isinglass in the Synthesis of 1,4-Dihydropyridine and 4H-Pyran Derivatives. ACS Omega, 2018, 3(5), 5012-5020.
[http://dx.doi.org/10.1021/acsomega.8b00379] [PMID: 31458714]
[28]
Ballini, R.; Bigi, F.; Conforti, M.L.; Santis, D.D.; Maggi, R.; Oppici, G.; Sartori, G. Multicomponent reactions under clay catalysis. Catal. Today, 2000, 60(3-4), 305-309.
[http://dx.doi.org/10.1016/S0920-5861(00)00347-3]
[29]
Ghorbani, M.; Noura, S.; Oftadeh, M.; Zolfigol, M.A.; Soleimani, M.H.; Behbodi, K. Preparation of neutral ionic liquid [2-Eim] OAc with dual catalytic-solvent system roles for the synthesis of 2-amino-3-cyano-7-hydroxy-4-(aryl)-4H-chromene derivatives. J. Mol. Liq., 2015, 212, 291-300.
[http://dx.doi.org/10.1016/j.molliq.2015.09.024]
[30]
Kundu, S.K.; Bhaumik, A. A triazine-based porous organic polymer: a novel heterogeneous basic organocatalyst for facile one-pot synthesis of 2-amino-4H-chromenes. RSC Advances, 2015, 5(41), 32730-32739.
[http://dx.doi.org/10.1039/C5RA00951K]
[31]
Chen, L.; Huang, X.J.; Li, Y.Q.; Zhou, M.Y.; Zheng, W.J. A one-pot multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by N,N-dimethylamino-functionalized basic ionic liquid catalysis under solvent-free condition. Monatsh. Chem., 2009, 140(1), 45-47.
[http://dx.doi.org/10.1007/s00706-008-0008-3]
[32]
Chen, L.; Li, Y.Q.; Huang, X.J.; Zheng, W.J. N,N -dimethylamino-functionalized basic ionic liquid catalyzed one-pot multicomponent reaction for the synthesis of 4 H -benzo[ b]pyran derivatives under solvent-free condition. Heteroatom Chem., 2009, 20(2), 91-94.
[http://dx.doi.org/10.1002/hc.20516]
[33]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[34]
Sanchez, L.M.; Thomas, H.J.; Romanelli, G.P. suitable multicomponent organic synthesis using heteropolycompounds as catalysts. Mini Rev. Org. Chem., 2015, 12(2), 115-126.
[http://dx.doi.org/10.2174/1570193X1202150225152213]
[35]
Guha, N.R.; Bhattacherjee, D.; Das, P. Solid supported rhodium(0) nanoparticles: an efficient catalyst for chemo- and regio-selective transfer hydrogenation of nitroarenes to anilines under microwave irradiation. Tetrahedron Lett., 2014, 55, 2912-2916.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.047]
[36]
Prieto, E.D.J.M.; Rivas, B.; Sanchez, J. Natural polymer grafted with synthetic monomer by microwave for water treatment - A review. Cienc. En. Desarro, 2013, 4, 219.
[37]
Badamali, S.K.; Luque, R.; Clark, J.H.; Breeden, S.W. Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15. Catal. Commun., 2009, 10(6), 1010-1013.
[http://dx.doi.org/10.1016/j.catcom.2008.12.051]
[38]
a) He, F.; Li, P.; Gu, Y.; Li, G. Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem., 2009, 11(11), 1767.
[http://dx.doi.org/10.1039/b916015a];
b) Li, M.; Chen, C.; He, F.; Gu, Y. Multicomponent reactions of 1,3cyclohexanediones and formaldehyde in glycerol: Stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal., 2010, 352(2-3), 519-530.
[http://dx.doi.org/10.1002/adsc.200900770];
c) Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12(9), 1493-1513.
[http://dx.doi.org/10.1039/c004654j];
d) Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem., 2011, 13(8), 2204-2211.
[http://dx.doi.org/10.1039/c1gc15411g];
e) Gu, Y.; Jérôme, F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753];
f) Sun, S.; Bai, R.; Gu, Y. From waste biomass to solid support: lignosulfonate as a cost-effective and renewable supporting material for catalysis. Chemistry, 2014, 20(2), 549-558.
[http://dx.doi.org/10.1002/chem.201303364] [PMID: 24307475]
[39]
Makkar, R.S.; Rockne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 2003, 22(10), 2280-2292.
[http://dx.doi.org/10.1897/02-472] [PMID: 14551990]
[40]
Leitner, W. Green Solvents-progress in science and application. Green Chem., 2009, 11(5), 603-603.
[http://dx.doi.org/10.1039/b907013n]
[41]
Comerford, J.W.; Ingram, I.D.V.; North, M.; Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem., 2015, 17(4), 1966-1987.
[http://dx.doi.org/10.1039/C4GC01719F]
[42]
Jenkins, B.M.; Bakker, R.R.; Wei, J.B. On the properties of washed straw. Biomass Bioenergy, 1996, 10(4), 177-200.
[http://dx.doi.org/10.1016/0961-9534(95)00058-5]
[43]
Konwar, M.; Ali, A.A.; Sarma, D. A green protocol for peptide bond formation in WEB. Tetrahedron Lett., 2016, 57(21), 2283-2285.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.041]
[44]
Surneni, N.; Barua, N.C.; Saikia, B. Application of natural feedstock extract: the Henry reaction. Tetrahedron Lett., 2016, 57(25), 2814-2817.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.048]
[45]
Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Lett., 2016, 57(33), 3760-3763.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.021]
[46]
Saikia, E.; Bora, S.J.; Chetia, B. H2O2 in WERSA: an efficient green protocol for ipso-hydroxylation of aryl/heteroarylboronic acid. RSC Advances, 2015, 5(124), 102723-102726.
[http://dx.doi.org/10.1039/C5RA21354A]
[47]
Saikia, B.; Borah, P. A new avenue to the Dakin reaction in H2O2-WERSA. RSC Advances, 2015, 5(128), 105583-105586.
[http://dx.doi.org/10.1039/C5RA20133K]
[48]
Sarmah, M.; Dewan, A.; Mondal, M.; Thakur, A.J.; Bora, U. Analysis of the water extract of waste papaya bark ash and its implications as an in situ base in the ligand-free recyclable Suzuki–Miyaura coupling reaction. RSC Advances, 2016, 6(34), 28981-28985.
[http://dx.doi.org/10.1039/C6RA00454G]
[49]
Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. In situ generation of palladium nanoparticles using agro waste and their use as catalyst for copper-, amine- and ligand-free Sonogashira reaction. Appl. Organomet. Chem., 2017, 31(7)e3646
[http://dx.doi.org/10.1002/aoc.3646]
[50]
Deka, D.C.; Taukdar, N.N. Chemical and spectroscopic investigation of Kolakhar and its commercial importance. Indian J. Tradit. Knowl., 2007, 6, 72-98.
[51]
Ferraz, H.M.C.; Bianco, G.G.; Bombonato, F.I.; Andrade, L.H.; Porto, A.L.M. Bioreduction of substituted a-tetralones promoted by Daucus carota root. Quim. Nova, 2008, 31(4), 813-817.
[http://dx.doi.org/10.1590/S0100-40422008000400020]
[52]
Lakshmi, C.S.; Reddy, G.R.; Rao, A.B. Asymmetric reduction of heteroaryl methyl ketones using Daucus carota. Green Sus. Chem, 2011, 1(4), 117-122.
[53]
Li, F.; Cui, J.; Qian, X.; Zhang, R.; Xiao, Y. Highly chemoselective reduction of aromatic nitro compounds to the corresponding hydroxylamines catalysed by plant cells from a grape (Vitis vinifera L.). Chem. Commun. (Camb.), 2005, 14(14), 1901-1903.
[http://dx.doi.org/10.1039/b418675c] [PMID: 15795781]
[54]
Bertini, L.M.; Lemos, T.L.G.; Alves, L.A.; Jose, F.Q.; Monte, Q.; Marcos, C.F.; de Oliveira, F.; Conceiçao, M. Soybean (Glycine max) as a versatile biocatalyst for organic synthesis. Afr. J. Biotechnol., 2012, 11(30), 7766-7770.
[55]
Deshmukh, M.B.; Patil, S.S.; Jadhav, S.D.; Pawar, P.B. Green approach for Knoevenagel condensation of aromatic aldehydes with an active methylene group. Synth. Commun., 2012, 42(8), 1177-1183.
[http://dx.doi.org/10.1080/00397911.2010.537423]
[56]
Alfa, L.A.; Bertinia, L.M.; Bizerraa, A.M.C.; Mattosa, M.C.; Montea, F.J.Q.; Lemosa, T.L.G. Zingiber officinale (GINGER) as an enzyme source for the reduction of carbonyl compounds. Quim. Nova, 2015, 38(4), 483-487.
[57]
Jayachandran, B.; Phukan, P.; Daniel, T.; Sudalai, A. Natural kaolinitic clay: a remarkable catalyst for highly regioselective chlorination of arenes with Cl2 and SO2Cl2. Indian J. Chem., 2006, 45B, 972-975.
[58]
Khezri, S.H.; Mohammad-Vali, M.; Eftekhari-Sis, B.; Hashemi, M.M.; Baniasadi, M.H. The efficient synthesis of carbon–carbon double bonds via Knoevenagel condensation using red mud packed in a column. Green Chem. Lett. Rev., 2007, 1(1), 61-64.
[http://dx.doi.org/10.1080/17518250701787830]
[59]
Gadekar, L.S.; Katkar, S.S.; Mane, S.R.; Arbad, B.R.; Lande, M.K. Scolecite catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. Bull. Korean Chem. Soc., 2009, 30(11), 2532-2534.
[http://dx.doi.org/10.5012/bkcs.2009.30.11.2532]
[60]
Habibi, D.; Nasrollahzadeh, M.; Kamali, T.A. Green synthesis of the 1-substituted 1H-1,2,3,4-tetrazoles by application of the natrolite zeolite as a new and reusable heterogeneous catalyst. Green Chem., 2011, 13(12), 3499-3504.
[http://dx.doi.org/10.1039/c1gc15245a]
[61]
Borse, B.N.; Shukla, S.R.; Sonawane, Y.A. Simple, efficient, and green method for synthesis of trisubstituted electrophilic alkenes using lipase as a biocatalyst. Synth. Commun., 2012, 42(3), 412-423.
[http://dx.doi.org/10.1080/00397911.2010.525334]
[62]
Kundu, S.K.; Mondal, J.; Bhaumik, A. Tungstic acid functionalized mesoporous SBA-15: A novel heterogeneous catalyst for facile one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. Dalton Trans., 2013, 42(29), 10515-10524.
[http://dx.doi.org/10.1039/c3dt50947h] [PMID: 23760225]
[63]
Fareghi-Alamdari, R.; Zekri, N.; Mansouri, F. Enhancement of catalytic activity in the synthesis of 2-amino-4H-chromene derivatives using both copper- and cobalt-incorporated magnetic ferrite nanoparticles. Res. Chem. Intermed., 2017, 43(11), 6537-6551.
[http://dx.doi.org/10.1007/s11164-017-3003-7]
[64]
Shinde, S.; Damate, S.; Morbale, S.; Patil, M.; Patil, S.S. Aegle marmelos in heterocyclization: greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes. RSC Advances, 2017, 7(12), 7315-7328.
[http://dx.doi.org/10.1039/C6RA28779D]
[65]
Gong, K.; Wang, H.L.; Fang, D.; Liu, Z.L. Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media. Catal. Commun., 2008, 9(5), 650-653.
[http://dx.doi.org/10.1016/j.catcom.2007.07.010]
[66]
a) Kidwai, M.; Saxena, S.; Rahman Khan, M.K.; Thukral, S.S.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.;
b) Solhy, A.; Sebti, S.; Tahir, R.; Sebti, J.; Ould Abba, M.; Bousmina, M.; Zahouily, M. Remarkable catalytic activity of sodiummodified-hydroxyapatite in the synthesis of α-hydroxyphosphonates. Curr. Org. Chem., 2010, 14(14), 1517-1522.;
c) Magar, R.L.; Thorat, P.B.; Jadhav, V.B.; Tekale, S.U.; Dake, S.A.; Patil, B.R.; Pawar, R.P. Silica gel supported polyamine: a versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. J. Mole. Catal Chem., 2013, 374, 118-124.;
d) Cheng, T.; Zhang, D.; Li, H.; Liu, G. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem., 2014, 16(7), 3401-3427.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[67]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects, 2017, 11, 25-31.
[http://dx.doi.org/10.1016/j.nanoso.2017.06.002]
[68]
Kantharaju, K.; Hiremath, P.B.; Khatavi, S.Y. WEB: A green and an efficient catalyst for Knoevenagel condensation under grindstone method. Indian J. Chem., 2019, 58B, 706-713.
[69]
Kantharaju, K.; Hiremath, P.B. One-Pot, green approach synthesis of 2-aryl substituted benzimidazole derivatives catalyzed by water extract of papaya bark ash. Asian J. Chem., 2018, 30(7), 1634-1638.
[http://dx.doi.org/10.14233/ajchem.2018.21296]
[70]
Kantharaju, K.; Hiremath, P.B. A green catalytic system for the Knoevenagel condensation using WEPBA. Int. J. Eng. Tech. Sci. and Res, 2017, 4(9), 807-813.
[71]
Amini, A.; Kariman, H.; Arhami Dolatabadi, A.; Hatamabadi, H.R.; Derakhshanfar, H.; Mansouri, B.; Safari, S.; Eqtesadi, R. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am. J. Emerg. Med., 2013, 31(1), 236-239.
[http://dx.doi.org/10.1016/j.ajem.2012.06.025] [PMID: 22944553]
[72]
Gong, L.; Pachner, M.; Kalai, K.; Lelley, T. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome, 2008, 51(11), 878-887.
[http://dx.doi.org/10.1139/G08-072] [PMID: 18956020]
[73]
Ghasemian, Z.A.; Sheikh, S.; Lari, J.; Vahedi, H. Synthesis of ethyl-3-amino-1-aryl-1H-benzo[f]chromeme-2-carboxylate derivatives promoted by DMAP. Curr. Chem. Lett., 2017, 6(3), 117-124.
[http://dx.doi.org/10.5267/j.ccl.2017.3.003]
[74]
Ghashang, M.; Mansoor, S.S.; Aswin, K. Thiourea dioxide: An efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4,3-b]pyran derivatives in water. Chin. J. Catal., 2014, 35(1), 127-133.
[http://dx.doi.org/10.1016/S1872-2067(12)60727-X]
[75]
Aciduman, A.; ilgili, O.; Şems, Ş.; Ismail, C.; Zahire-i, H.; Arezmşahi, A.; Unlu, A.; Xvi, Y. Sections on geriatrics and gerontology in turkish translation Kanun'l-Ilac ve Şifa u'l-Emraz Li-Kulli Mizac. 2014. Available from: https://www.rsm.ac.uk/sections/geriatrics-and-gerontology-section/
[76]
Nagashree, S.; Karthik, C.S.; Sudarshan, B.L.; Mallesha, L.; Spoorthy, H.P.; Sanjay, K.R.; Mallu, P. In vitro antimicrobial activity of new 2-amino-4-chloropyridine derivatives: A structure-activity relationship study. J. Pharm. Res., 2015, 9(8), 509-516.
[77]
Henkelman, S.G.; Rakhorst, J.; John, B.; Willemvan, O. Standardization of incubation conditions for hemolysis testing of biomaterials. Mater. Sci. Eng., 2009, 29(1), 1650-1654.
[78]
Sanjay, K.R.; Sudarshan, B.L.; Maheshwar, P.K.; Priya, P.S. Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source. Pharmacogn. Mag., 2019, 15(64), 228.
[http://dx.doi.org/10.4103/pm.pm_649_18]
[79]
Lakshmegowda, S.B.; Rajesh, S.K.; Kandikattu, H.K.; Nallamuthu, I.; Khanum, F. In vitro and in vivo studies on hexane fraction of Nitzschia palea, a freshwater diatom for oxidative damage protective and anti-inflammatory response. Rev. Bras. Farmacogn., 2020, 30(2), 189-201.
[http://dx.doi.org/10.1007/s43450-020-00008-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy