Abstract
Background: Several types of catalysts have been cited in the literature. However, the current work showed that a multi-component reaction involving aldehydes, malononitrile, and resorcinol or α/β-naphthol could produce 2-amino-4H-chromene in a more environmentally friendly manner. The reaction is optimized by both stirring and microwave methods, but the reaction carried out under microwave irradiation is found to be faster with easy separation of the product with high yield and purity. The catalyst is analyzed for the presence of elemental composition using Flame Photometry (FP) and SEM-EDX. The synthesis of 2-amino-4H-chromenes is catalyzed by the new, green catalyst HRSPLAE (Water Extract of Hibiscus Rosa Sinensis plant dry leaves ash) within 3-5 min. The final product is analyzed by FT-IR, 1H-, 13C-NMR, and mass spectrometry techniques and the product obtained is free from the use of chromatographic separation with isolation and yield of 80– 95%. Selected 2-amino-4H-chromene derivatives (4b and 4c) were screened for their anti-cancer and antimicrobial activity in vitro.
Methods: The agro-waste sourced from Hibiscus rosa-sinensis plant dry leaves ash is utilized for the preparation of HRSPLAE catalyst, which is employed for the synthesis of 2-amino-4H-chromene derivatives under microwave irradiation.
Results: 2-Amino-4H-chromene derivatives were obtained from aromatic aldehyde, malononitrile, and resorcinol or α/β naphthol catalyzed by HRSPLAE. They were comprehensively evaluated using flame emission spectrometry, SEM, and EDX.
Conclusion: HRSPLAE outperforms expensive catalysts. An efficient simpler workup without column chromatography for increased yield through a new unique green method for the synthesis of 2- amino-4H-chromene derivatives has been developed.
Graphical Abstract
[http://dx.doi.org/10.1080/00304940802711218]
[http://dx.doi.org/10.1021/ar9502083]
[http://dx.doi.org/10.1021/ja0272742] [PMID: 12358538]
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[http://dx.doi.org/10.1016/S1383-5718(97)00141-1] [PMID: 9465913]
[http://dx.doi.org/10.1039/c3gc41302k]
b) Smith, P.W.; Sollis, S.L.; Howes, P.D.; Cherry, P.C.; Starkey, I.D.; Cobley, K.N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R.J.; Morley, P.J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J. Med. Chem., 1998, 41(6), 787-797.
[http://dx.doi.org/10.1021/jm970374b] [PMID: 9526555]
[PMID: 1192431]
b) Witte, B. E.C.; Neubert, P.; Roesch, A.; Ger, O.D.E. Chem. Abstr., 1986.104224915f
[http://dx.doi.org/10.1002/9780470187012]
[http://dx.doi.org/10.3987/R-1987-04-0903]
[http://dx.doi.org/10.1080/00397910601033385]
[http://dx.doi.org/10.1016/j.catcom.2007.10.002]
[http://dx.doi.org/10.1016/j.tet.2007.02.019]
[http://dx.doi.org/10.1002/jhet.5570430641]
[http://dx.doi.org/10.1016/j.tetlet.2007.07.102]
[http://dx.doi.org/10.1021/cc900101w] [PMID: 19772336]
[http://dx.doi.org/10.3998/ark.5550190.0009.g27]
[http://dx.doi.org/10.1016/j.tet.2010.05.082]
[http://dx.doi.org/10.1007/s11030-010-9246-5] [PMID: 20373141]
[http://dx.doi.org/10.1016/j.tet.2012.11.068]
[http://dx.doi.org/10.1080/15533174.2011.591347]
[http://dx.doi.org/10.1039/C5CY01888A]
[http://dx.doi.org/10.1016/j.ultsonch.2014.02.002] [PMID: 24835021]
[http://dx.doi.org/10.1016/j.molstruc.2014.04.023]
[http://dx.doi.org/10.1021/acsomega.8b00379] [PMID: 31458714]
[http://dx.doi.org/10.1016/S0920-5861(00)00347-3]
[http://dx.doi.org/10.1016/j.molliq.2015.09.024]
[http://dx.doi.org/10.1039/C5RA00951K]
[http://dx.doi.org/10.1007/s00706-008-0008-3]
[http://dx.doi.org/10.1002/hc.20516]
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[http://dx.doi.org/10.2174/1570193X1202150225152213]
[http://dx.doi.org/10.1016/j.tetlet.2014.03.047]
[http://dx.doi.org/10.1016/j.catcom.2008.12.051]
[http://dx.doi.org/10.1039/b916015a];
b) Li, M.; Chen, C.; He, F.; Gu, Y. Multicomponent reactions of 1,3cyclohexanediones and formaldehyde in glycerol: Stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal., 2010, 352(2-3), 519-530.
[http://dx.doi.org/10.1002/adsc.200900770];
c) Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12(9), 1493-1513.
[http://dx.doi.org/10.1039/c004654j];
d) Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem., 2011, 13(8), 2204-2211.
[http://dx.doi.org/10.1039/c1gc15411g];
e) Gu, Y.; Jérôme, F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753];
f) Sun, S.; Bai, R.; Gu, Y. From waste biomass to solid support: lignosulfonate as a cost-effective and renewable supporting material for catalysis. Chemistry, 2014, 20(2), 549-558.
[http://dx.doi.org/10.1002/chem.201303364] [PMID: 24307475]
[http://dx.doi.org/10.1897/02-472] [PMID: 14551990]
[http://dx.doi.org/10.1039/b907013n]
[http://dx.doi.org/10.1039/C4GC01719F]
[http://dx.doi.org/10.1016/0961-9534(95)00058-5]
[http://dx.doi.org/10.1016/j.tetlet.2016.04.041]
[http://dx.doi.org/10.1016/j.tetlet.2016.05.048]
[http://dx.doi.org/10.1016/j.tetlet.2016.07.021]
[http://dx.doi.org/10.1039/C5RA21354A]
[http://dx.doi.org/10.1039/C5RA20133K]
[http://dx.doi.org/10.1039/C6RA00454G]
[http://dx.doi.org/10.1002/aoc.3646]
[http://dx.doi.org/10.1590/S0100-40422008000400020]
[http://dx.doi.org/10.1039/b418675c] [PMID: 15795781]
[http://dx.doi.org/10.1080/00397911.2010.537423]
[http://dx.doi.org/10.1080/17518250701787830]
[http://dx.doi.org/10.5012/bkcs.2009.30.11.2532]
[http://dx.doi.org/10.1039/c1gc15245a]
[http://dx.doi.org/10.1080/00397911.2010.525334]
[http://dx.doi.org/10.1039/c3dt50947h] [PMID: 23760225]
[http://dx.doi.org/10.1007/s11164-017-3003-7]
[http://dx.doi.org/10.1039/C6RA28779D]
[http://dx.doi.org/10.1016/j.catcom.2007.07.010]
b) Solhy, A.; Sebti, S.; Tahir, R.; Sebti, J.; Ould Abba, M.; Bousmina, M.; Zahouily, M. Remarkable catalytic activity of sodiummodified-hydroxyapatite in the synthesis of α-hydroxyphosphonates. Curr. Org. Chem., 2010, 14(14), 1517-1522.;
c) Magar, R.L.; Thorat, P.B.; Jadhav, V.B.; Tekale, S.U.; Dake, S.A.; Patil, B.R.; Pawar, R.P. Silica gel supported polyamine: a versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. J. Mole. Catal Chem., 2013, 374, 118-124.;
d) Cheng, T.; Zhang, D.; Li, H.; Liu, G. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem., 2014, 16(7), 3401-3427.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[http://dx.doi.org/10.1016/j.nanoso.2017.06.002]
[http://dx.doi.org/10.14233/ajchem.2018.21296]
[http://dx.doi.org/10.1016/j.ajem.2012.06.025] [PMID: 22944553]
[http://dx.doi.org/10.1139/G08-072] [PMID: 18956020]
[http://dx.doi.org/10.5267/j.ccl.2017.3.003]
[http://dx.doi.org/10.1016/S1872-2067(12)60727-X]
[http://dx.doi.org/10.4103/pm.pm_649_18]
[http://dx.doi.org/10.1007/s43450-020-00008-6]