Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Hydroxycoumarins and some Flavonoids from Pistacia atlantica Desf. as Multi-targets Inhibitors for Alzheimer’s Disease: Molecular Docking and ADMET Studies

Author(s): Meriem Lamrani*, Talia Serseg, Khedidja Benarous, Ibrahim Sifi and Mohamed Yousfi

Volume 19, Issue 3, 2023

Published on: 06 January, 2023

Page: [176 - 191] Pages: 16

DOI: 10.2174/1573409919666221104093218

Price: $65

conference banner
Abstract

Objective: The present study aimed to identify new selective inhibitors for acetylcholinesterase, butyrylcholinesterase, monoacylglycerol lipase, beta-secretase, and Asparagine endopeptidase, the targets enzymes in Alzheimer’s disease.

Methods: The inhibitory effect of P. atlantica Desf. methanol extracts against AChE were determined using Ellman’s method. The molecular docking study is achieved using Autodock Vina. The structures of the molecules 3-methoxycarpachromene, masticadienonic acid, 7-ethoxycoumarin, 3′,5,7- trihydroxy-4′-methoxyflavanone and 5,6,7,4′-tetrahydroxyflavonol-3-O-rutinoside and the five enzymes were obtained from the PubChem database and Protein databank. ADMET parameters were checked to confirm their pharmacokinetics using swiss-ADME and ADMET-SAR servers.

Results: P. atlantica Desf. methanol extracts showed a notable inhibitory effect against AChE (IC50 = 0.26 ± 0.004 mg/ml). The molecular docking results of 3-methoxycarpachromene, masticadienonic acid, 7-ethoxycoumarin, 3′,5,7-trihydroxy-4′-methoxyflavanone and 5,6,7,4′-tetrahydroxyflavonol-3-Orutinoside with the five enzymes show significant affinities of these molecules towards Alzheimer disease targets, where they could form several interactions, such as hydrogen bonds and hydrophobic interactions with the studied enzymes. The shortest hydrogen bond is 1.7 A° between masticadienonic acid and Arg128 of the active site of BACE, while the lowest free energy is -11.2 of the complex 5,6,7,4′-tetrahydroxyflavonol-3-O-rutinoside –HuBchE. To the best of our knowledge, these molecules' potential anti-Alzheimer disease effect is studied in this paper for the first time.

Conclusion: The docking studies of this work show that 3-methoxycarpachromene and masticadienonic acid, 7-ethoxycoumarin, 3′,5,7-Trihydroxy-4′-methoxyflavanone and 5,6,7,4′-tetrahydroxyflavonol- 3-O-rutinoside have good affinities towards the enzymes involved in Alzheimer pathology, which confirm the ability of these molecules to inhibit the studied enzymes namely: HuAChE, HuBChE, BACE, MAGL, and AEP. These molecules might become drug candidates to prevent Alzheimer's disease.

Graphical Abstract

[1]
Kent, S.A.; Spires-Jones, T.L.; Durrant, C.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol., 2020, 140(4), 417-447.
[http://dx.doi.org/10.1007/s00401-020-02196-w] [PMID: 32728795]
[2]
Jalbert, J.J.; Daiello, L.A.; Lapane, K.L. Dementia of the Alzheimer type. Epidemiol. Rev., 2008, 30(1), 15-34.
[http://dx.doi.org/10.1093/epirev/mxn008] [PMID: 18635578]
[3]
Atlam, F.; Awad, M.; Salama, R. Factors influencing the potency of alzheimer inhibitors: Computational and docking studies. Am. J. Alzheimers Dis. Other Demen., 2018, 33(3), 166-175.
[http://dx.doi.org/10.1177/1533317517749207] [PMID: 29301410]
[4]
Yaojun, J.; Kin Yip, T. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2021, 17(3), 543-549.
[PMID: 32985485]
[5]
Cummings, J.; Aisen, P.S.; DuBois, B.; Frölich, L.; Jack, C.R., Jr; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: The path to 2025. Alzheimers Res. Ther., 2016, 8(1), 39.
[http://dx.doi.org/10.1186/s13195-016-0207-9] [PMID: 27646601]
[6]
van der Kant, R.; Goldstein, L.S.B.; Ossenkoppele, R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci., 2020, 21(1), 21-35.
[http://dx.doi.org/10.1038/s41583-019-0240-3] [PMID: 31780819]
[7]
Kumar, A.; Singh, A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front. Pharmacol., 2015, 6, 206.
[http://dx.doi.org/10.3389/fphar.2015.00206] [PMID: 26441662]
[8]
Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement., 2016, 12(6), 719-732.
[http://dx.doi.org/10.1016/j.jalz.2016.02.010] [PMID: 27179961]
[9]
Briggs, C.A.; Chakroborty, S.; Stutzmann, G.E. Emerging pathways driving early synaptic pathology in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 988-997.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.088] [PMID: 27659710]
[10]
Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[11]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[12]
Sinha, S.; Anderson, J.P.; Barbour, R.; Basi, G.S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H.F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Lieberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S.M.; Wang, S.; Walker, D.; Zhao, J.; McConlogue, L.; John, V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature, 1999, 402(6761), 537-540.
[http://dx.doi.org/10.1038/990114] [PMID: 10591214]
[13]
Ghosh, A.K.; Brindisi, M.; Tang, J. Developing β‐secretase inhibitors for treatment of Alzheimer’s disease. J. Neurochem., 2012, 120(s1)(Suppl. 1), 71-83.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07476.x] [PMID: 22122681]
[14]
Fowler, C.J. Monoacylglycerol lipase - a target for drug development? Br. J. Pharmacol., 2012, 166(5), 1568-1585.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01950.x] [PMID: 22428756]
[15]
Mulvihill, M.M.; Nomura, D.K. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci., 2013, 92(8-9), 492-497.
[http://dx.doi.org/10.1016/j.lfs.2012.10.025] [PMID: 23142242]
[16]
Kim, N.; Lee, H.J. Target enzymes considered for the treatment of Alzheimer’s disease and Parkinson’s disease. BioMed Res. Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/2010728] [PMID: 33224974]
[17]
Chen, J.M.; Dando, P.M.; Rawlings, N.D.; Brown, M.A.; Young, N.E.; Stevens, R.A.; Hewitt, E.; Watts, C.; Barrett, A.J. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J. Biol. Chem., 1997, 272(12), 8090-8098.
[http://dx.doi.org/10.1074/jbc.272.12.8090] [PMID: 9065484]
[18]
Zhang, Z.; Song, M.; Liu, X.; Kang, S.S.; Kwon, I.S.; Duong, D.M.; Seyfried, N.T.; Hu, W.T.; Liu, Z.; Wang, J.Z.; Cheng, L.; Sun, Y.E.; Yu, S.P.; Levey, A.I.; Ye, K. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat. Med., 2014, 20(11), 1254-1262.
[http://dx.doi.org/10.1038/nm.3700] [PMID: 25326800]
[19]
Geromichalos, G.D.; Lamari, F.N.; Papandreou, M.A.; Trafalis, D.F.; Margarity, M.; Papageorgiou, A.; Sinakos, Z. Saffron as a source of novel acetylcholinesterase inhibitors: Molecular docking and in vitro enzymatic studies. J. Agric. Food Chem., 2012, 60(24), 6131-6138.
[20]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[21]
Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y.P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep., 2012, 2(5), 1329-1339.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[22]
Alptüzün, V.; Prinz, M.; Hörr, V.; Scheiber, J.; Radacki, K.; Fallarero, A.; Vuorela, P.; Engels, B.; Braunschweig, H.; Erciyas, E.; Holzgrabe, U. Interaction of (benzylidene-hydrazono)-1,4-dihydro-pyridines with β-amyloid, acetylcholine, and butyrylcholine esterases. Bioorg. Med. Chem., 2010, 18(5), 2049-2059.
[http://dx.doi.org/10.1016/j.bmc.2010.01.002] [PMID: 20149667]
[23]
Şenol, F.S.; Orhan, İ.; Yilmaz, G.; Çiçek, M.; Şener, B. Acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibition studies and antioxidant activities of 33 Scutellaria L. taxa from Turkey. Food Chem. Toxicol., 2010, 48(3), 781-788.
[http://dx.doi.org/10.1016/j.fct.2009.12.004] [PMID: 20026160]
[24]
Schneider, L.S. Treatment of Alzheimer’s disease with cholinesterase inhibitors. Clin. Geriatr. Med., 2001, 17(2), 337-358.
[http://dx.doi.org/10.1016/S0749-0690(05)70072-0] [PMID: 11375139]
[25]
Pilotto, A.; Franceschi, M.; D’Onofrio, G.; Bizzarro, A.; Mangialasche, F.; Cascavilla, L.; Paris, F.; Matera, M.G.; Pilotto, A.; Daniele, A.; Mecocci, P.; Masullo, C.; Dallapiccola, B.; Seripa, D. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology, 2009, 73(10), 761-767.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bbe3] [PMID: 19738170]
[26]
Pradeepkiran, J.; Reddy, P. Structure based design and molecular docking studies for phosphorylated tau inhibitors in Alzheimer’s disease. Cells, 2019, 8(3), 260.
[http://dx.doi.org/10.3390/cells8030260] [PMID: 30893872]
[27]
Mahjoub, F.; Akhavan Rezayat, K.; Yousefi, M.; Mohebbi, M.; Salari, R. Pistacia atlantica Desf. A review of its traditional uses, phytochemicals and pharmacology. J. Med. Life, 2018, 11(3), 180-186.
[http://dx.doi.org/10.25122/jml-2017-0055] [PMID: 30364651]
[28]
Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. ScientificWorldJ., 2013, 2013, 1-33.
[http://dx.doi.org/10.1155/2013/219815] [PMID: 24453812]
[29]
Nachvak, S.M.; Hosseini, S.; Nili‐Ahmadabadi, A.; Dastan, D.; Rezaei, M. Chemical composition and antioxidant activity of Pistacia atlantica subsp. Kurdica from Awraman. J. Rep. Pharm. Sci., 2018, 7, 222-230.
[30]
Toul, F.; Moussouni, S.; Ghembaza, N.; Zitouni, A.; Djendar, A.; Atik-Bekkara, F.; Kokkalou, E. Identification of phenolic compounds in the buds of Algerian Pistacia atlantica desf. Subsp. atlantica by antioxidant activity guided fractionation. J. Complement. Integr. Med., 2021, 34480843.
[31]
Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pis-tacia lentiscus var. Chia. Biomed. Chromatogr., 2005, 19(4), 285-311.
[http://dx.doi.org/10.1002/bmc.454] [PMID: 15651084]
[32]
Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. Chia. Biomed. Chromatogr., 2005, 19(8), 586-605.
[http://dx.doi.org/10.1002/bmc.484] [PMID: 15770609]
[33]
Rodriguez-Garcia, A.; Hosseini, S.; Martinez-Chapa, M.O.; Cordell, G.A. Multi-target activities of selected alkaloids and terpenoids. Organic Chemistry, 2017, 14(4), 272-279.
[34]
Giner-Larza, E.M.; Máñez, S.; Giner, R.M.; Recio, M.C.; Prieto, J.M.; Cerdá-Nicolás, M.; Ríos, J.L. Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Med., 2002, 68(4), 311-315.
[http://dx.doi.org/10.1055/s-2002-26749] [PMID: 11988853]
[35]
Sharifi, M.S.; Hazell, S.L. Isolation, analysis and antimicrobial activity of the acidic fractions of Mastic, Kurdica, Mutica and Cabolica gums from genus Pistacia. Glob. J. Health Sci., 2011, 4(1), 217-228.
[http://dx.doi.org/10.5539/gjhs.v4n1p217] [PMID: 22980113]
[36]
Olivera Ortega, A.G.; Soto Hernández, M.; Martínez Vázquez, M.; Terrazas Salgado, T.; Solares Arenas, F. Phytochemical study of cuachalalate (Amphiptherygium adstringens, Schiede ex Schlecht). J. Ethnopharmacol., 1999, 68(1-3), 109-113.
[http://dx.doi.org/10.1016/S0378-8741(99)00047-1]
[37]
Adams, M.; Plitzko, I.; Kaiser, M.; Brun, R.; Hamburger, M. HPLC-profiling for antiplasmodial compounds-3-Methoxycarpachromene from Pistacia atlantica. Phytochem. Lett., 2009, 2(4), 159-162.
[http://dx.doi.org/10.1016/j.phytol.2009.05.006]
[38]
Taguchi, L.; Pinheiro, N.M.; Olivo, R.; Grecco, S.S.; Choqueta-Toledo, A.; Lopes, F.D.Q.T.S.; Martins, F.A.; Tiberio, I.F.L.C.; Lago, H.G.; Prado, C.M. 5,6,7-Trihydroxy-4´-methoxy-flavanone from Baccharis retusa (asteraceae) attenuates elastase-induced emphysema in mice. Am. J. Respir. Crit. Care Med., 2012, 185, A6551.
[39]
Gamez, E.J.C.; Luyengi, L.; Lee, S.K.; Zhu, L.F.; Zhou, B.N.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Antioxidant flavonoid glycosides from Daphniphyllum calycinum. J. Nat. Prod., 1998, 61(5), 706-708.
[http://dx.doi.org/10.1021/np9800203] [PMID: 9599286]
[40]
Chávez, I.O.; Apan, T.R.; Martínez-Vázquez, M. Cytotoxic activity and effect on nitric oxide production of tirucallane-type triterpenes. J. Pharm. Pharmacol., 2010, 57(9), 1087-1091.
[http://dx.doi.org/10.1211/jpp.57.9.0003] [PMID: 16105229]
[41]
Talia, S.; Benarous, K.; Lamrani, M.; Yousfi, M. Lepidine B from lepidium sativum seeds as multi-functional anti- alzheimer’s disease agent: In vitro and in silico studies. Curr. Computeraided Drug Des., 2021, 17(3), 360-377.
[http://dx.doi.org/10.2174/1573409916666200302120305] [PMID: 32116197]
[42]
Gacemi, S.; Benarous, K.; Imperial, S.; Yousfi, M.; Lepidine, B.; Lepidine, B. & E as new target inhibitors from lepidium sativum seeds against four enzymes of the pathogen Candida albicans: In vitro and in silico studies. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 127-138.
[http://dx.doi.org/10.2174/1871530319666190415141520] [PMID: 30987578]
[43]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activ-ity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[44]
Tel, G.; Apaydın, M.; Duru, M.E.; Öztürk, M. Antioxidant and cholinesterase inhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Anal. Methods, 2012, 5(3), 495-504.
[http://dx.doi.org/10.1007/s12161-011-9275-4]
[45]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[46]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[47]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[48]
Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; Marco-Contelles, J. Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 75, 82-95.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.028] [PMID: 24530494]
[49]
Bartolini, M.; Pistolozzi, M.; Andrisano, V.; Egea, J.; López, M.G.; Iriepa, I.; Moraleda, I.; Gálvez, E.; Marco-Contelles, J.; Samadi, A. Chemical and pharmacological studies on enantiomerically pure p-methoxytacripyrines, promising multi-target-directed ligands for the treatment of Alzheimer’s disease. ChemMedChem, 2011, 6(11), 1990-1997.
[http://dx.doi.org/10.1002/cmdc.201100239] [PMID: 21990269]
[50]
Chioua, M.; Buzzi, E.; Moraleda, I.; Iriepa, I.; Maj, M.; Wnorowski, A.; Giovannini, C.; Tramarin, A.; Portali, F.; Ismaili, L. Tacripyrim-idines, the first tacrine dihydropyrimidine hybrids, as multi-target directed ligands for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 155, 839-846.
[51]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[52]
Dearden, J.C. in silico prediction of ADMET properties: How far have we come? Expert Opin. Drug Metab. Toxicol., 2007, 3(5), 635-639.
[http://dx.doi.org/10.1517/17425255.3.5.635] [PMID: 17916052]
[53]
Saccoliti, F.; Angiulli, G.; Pupo, G.; Pescatori, L.; Madia, V.N.; Messore, A.; Colotti, G.; Fiorillo, A.; Scipione, L.; Gramiccia, M.; Di Muc-cio, T.; Di Santo, R.; Costi, R.; Ilari, A. Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 304-310.
[http://dx.doi.org/10.1080/14756366.2016.1250755] [PMID: 28098499]
[54]
Peksel, A.; Arisan, I.; Yanardag, R. Radical scavenging and anti-acetylcholinesterase activities of aqueous extract of wild pistachio (Pista-cia atlantica Desf.) leaves. Food Sci. Biotechnol., 2013, 22(2), 515-522.
[http://dx.doi.org/10.1007/s10068-013-0109-6]
[55]
Gomathi, R.; Manian, S. Analgesic and acetylcholinesterase inhibition potential of polyphenols from Scolopia crenata (Flacourtiaceae): An endemic medicinal plant of India. Ind. Crops Prod., 2015, 73, 134-143.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.090]
[56]
Peksel, A.; Arisan-Atac, I.; Yanardag, R. Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia atlantica desf. Leaves. J. Food Biochem., 2010.
[http://dx.doi.org/10.1111/j.1745-4514.2009.00290.x]
[57]
Benamar, H.; Marouf, A.; Bennaceur, M. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. J. Herbs Spices Med. Plants, 2018, 24(3), 229-244.
[http://dx.doi.org/10.1080/10496475.2018.1446204]
[58]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem., 2021, 60, 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004] [PMID: 34147204]
[59]
Zhang, Y.; Kua, J.; McCammon, J.A. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study. J. Am. Chem. Soc., 2002, 124(35), 10572-10577.
[http://dx.doi.org/10.1021/ja020243m] [PMID: 12197759]
[60]
Gerlits, O.; Ho, K.Y.; Cheng, X.; Blumenthal, D.; Taylor, P.; Kovalevsky, A.; Radić, Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem. Biol. Interact., 2019, 309, 108698.
[http://dx.doi.org/10.1016/j.cbi.2019.06.011] [PMID: 31176713]
[61]
Dubey, B.N.; Bashary, R.; Mehta, M.; Satija, S.; Khurana, N.; Sharma, N.; Khatik, G.L. Identification of possible molecular targets of potential anti-alzheimer drugs by predicting their binding affinities using molecular docking technique. Inter. J. Green Pharm., 2018, 12(2), 16-21.
[62]
Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem., 2003, 278(42), 41141-41147.
[http://dx.doi.org/10.1074/jbc.M210241200] [PMID: 12869558]
[63]
Nachon, F.; Ehret-Sabatier, L.; Loew, D.; Colas, C.; van Dorsselaer, A.; Goeldner, M. Trp82 and Tyr332 are involved in two quaternary ammonium binding domains of human butyrylcholinesterase as revealed by photoaffinity labeling with [3H]DDF. Biochemistry, 1998, 37(29), 10507-10513.
[http://dx.doi.org/10.1021/bi980536l] [PMID: 9671522]
[64]
Altamimi, A.S.A.; Bawa, S.; Athar, F.; Hassan, M.Q.; Riadi, Y.; Afzal, O. Pyrrolidin?2?one linked benzofused heterocycles as novel small molecule monoacylglycerol lipase inhibitors and antinociceptive agents. Chem. Biol. Drug Des., 2020, 96(6), 1418-1432.
[http://dx.doi.org/10.1111/cbdd.13751] [PMID: 32575154]
[65]
Begum, S.; Begum, A.; Koganti, B. Synthesis and evaluation of central antinociceptive activity of ring substituted chalcones; molecular docking studies with monoacylglycerol lipase (MAGL) enzyme. Orient. J. Chem., 2018, 34(4), 1890-1897.
[http://dx.doi.org/10.13005/ojc/3404024]
[66]
Hattori, Y.; Aoyama, K.; Maeda, J.; Arimura, N.; Takahashi, Y.; Sasaki, M.; Fujinaga, M.; Seki, C.; Nagai, Y.; Kawamura, K.; Yamasaki, T.; Zhang, M.R.; Higuchi, M.; Koike, T. Design, synthesis, and evaluation of (4 r)-1-{3-[2-(18f) fluoro-4- methylpyridin-3-yl] phenyl}-4-[4-(1, 3-thiazol-2- ylcarbonyl) piperazin-1-yl] pyrrolidin-2-one ([18f] t-401) as a novel positron-emission tomography imaging agent for monoacylglycerol lipase. J. Med. Chem., 2019, 62(5), 2362-2375.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01576] [PMID: 30753069]
[67]
Mirsafian, H.; Mat Ripen, A.; Merican, A.F.; Mohamad, S.B. Amino acid sequence and structural comparison of BACE1 and BACE2 using evolutionary trace method. Scientific World J., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/482463] [PMID: 25254246]
[68]
Johansson, P.; Kaspersson, K.; Gurrell, I.K.; Bäck, E.; Eketjäll, S.; Scott, C.W.; Cebers, G.; Thorne, P.; McKenzie, M.J.; Beaton, H.; Davey, P.; Kolmodin, K.; Holenz, J.; Duggan, M.E.; Budd Haeberlein, S.; Bürli, R.W. Toward β-secretase-1 inhibitors with improved isoform selectivity. J. Med. Chem., 2018, 61(8), 3491-3502.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01716] [PMID: 29617572]
[69]
Dall, E.; Brandstetter, H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc. Natl. Acad. Sci. USA, 2013, 110(27), 10940-10945.
[http://dx.doi.org/10.1073/pnas.1300686110] [PMID: 23776206]
[70]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[71]
Maamri, S.; Benarous, K.; Yousfi, M. Identification of 3-methoxycarpachromene and masticadienonic acid as new target inhibitors against trypanothione reductase from Leishmania infantum using molecular docking and ADMET prediction. Molecules, 2021, 26(11), 3335.
[http://dx.doi.org/10.3390/molecules26113335] [PMID: 34206087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy