Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthesis of Aryl/Heteroaryl Selenides Using Transition Metals Catalyzed Cross Coupling and C─H Activation

Author(s): Debasish Kundu*, Atanu Mahata and Totan Roy

Volume 26, Issue 15, 2022

Published on: 21 November, 2022

Page: [1470 - 1484] Pages: 15

DOI: 10.2174/1385272827666221103104321

Price: $65

Abstract

Aryl and heteroaryl selenides are an important class of organic compounds and their synthesis has been widely studied all over the world in the last two decades. Transition metals catalysed cross-coupling and directed C─H activation in unactivated arenes in the presence of diselenides/aryl selenols are found to be the most important tools for their synthesis. In recent years different transition metal catalysts were found to be effective to perform C─Se crosscoupling in both aryl and heteroaryl rings. The present review article covers all the recent advances made in the last ten years in the field of the synthesis of aryl and heteroaryl selenides through homogeneous and heterogeneous transition metals catalyzed cross-coupling reactions and directed selenylation via C─H bond activations.

Graphical Abstract

[1]
dos Santos, E.A.; Hamel, E.; Bai, R.; Burnett, J.C.; Tozatti, C.S.S.; Bogo, D.; Perdomo, R.T.; Antunes, A.M.M.; Marques, M.M.; Matos, M.F.C.; de Lima, D.P. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg. Med. Chem. Lett., 2013, 23(16), 4669-4673.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.009] [PMID: 23810282]
[2]
Millois, C.; Diaz, P. Solution-phase synthesis of diaryl selenides using polymer-supported borohydride. Org. Lett., 2000, 2(12), 1705-1708.
[http://dx.doi.org/10.1021/ol0058184] [PMID: 10880206]
[3]
Back, T.G.; Moussa, Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl omega-hydroxyalkyl selenides. J. Am. Chem. Soc., 2003, 125(44), 13455-13460.
[http://dx.doi.org/10.1021/ja0357588] [PMID: 14583041]
[4]
Andersson, C.M.; Hallberg, A.; Högberg, T. Advances in the development of pharmaceutical antioxidants. Adv. Drug Res., 1996, 28, 65-180.
[http://dx.doi.org/10.1016/S0065-2490(96)80004-9]
[5]
Clark, L.C.; Combs, G.F.; Turnbull, B.W. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA, 1996, 276(24), 1957-1963.
[http://dx.doi.org/10.1001/jama.1996.03540240035027] [PMID: 8971064]
[6]
Engman, L.; Cotgreave, I.; Angulo, M.; Taylor, C.W.; Paine-Murrieta, G.D.; Powis, G. Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents. Anticancer Res., 1997, 17(6D), 4599-4605.
[PMID: 9494575]
[7]
Goudgaon, N.M.; Naguib, F.N.M.; el Kouni, M.H.; Schinazi, R.F. Phenylselenenyl- and phenylthio-substituted pyrimidines as inhibitors of dihydrouracil dehydrogenase and uridine phosphorylase. J. Med. Chem., 1993, 36(26), 4250-4254.
[http://dx.doi.org/10.1021/jm00078a015] [PMID: 8277507]
[8]
Nedel, F.; Campos, V.F.; Alves, D.; McBride, A.J.A.; Dellagostin, O.A.; Collares, T.; Savegnago, L.; Seixas, F.K. Substituted diaryl diselenides: Cytotoxic and apoptotic effect in human colon adenocarcinoma cells. Life Sci., 2012, 91(9-10), 345-352.
[http://dx.doi.org/10.1016/j.lfs.2012.07.023] [PMID: 22884807]
[9]
Manna, D.; Roy, G.; Mugesh, G. Antithyroid drugs and their analogues: Synthesis, structure, and mechanism of action. Acc. Chem. Res., 2013, 46(11), 2706-2715.
[http://dx.doi.org/10.1021/ar4001229] [PMID: 23883148]
[10]
Prochnow, T.; Back, D.F.; Zeni, G. Iron(III) chloride and diorganyl diselenide-promoted nucleophilic closures of 1-benzyl-2-alkynylbenzenes in the preparation of 9-(organoselanyl)-5H-benzo[7]annulenes. Adv. Synth. Catal., 2016, 358(7), 1119-1129.
[http://dx.doi.org/10.1002/adsc.201501055]
[11]
Potapov, V.A. Organic diselenides, ditellurides, polyselenides and polytellurides. Synthesis and reactions.PATAI’S Chemistry of Functional Groups; Rappoport, Z., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2013.
[http://dx.doi.org/10.1002/9780470682531.pat0716]
[12]
Wirth, T. Organoselenium chemistry.Topics in Current Chemistry; Springer-Verlag: Heidelberg, 2000, Vol. 208, .
[13]
Paulmier, C. Selenium reagents and intermediates in organic synthesis. In: Chemistry Series 4; Baldwin, J.E., Ed.; Pergamon Press: Oxford, 1986.
[14]
Liotta, D. Organoselenium Chemistry; Wiley: New York, 1987.
[15]
Devillanova, F.A. Handbook of Chalcogen Chemistry: New Perspectives in S, Se and Te; Royal Society of Chemistry: Cambridge, 2006.
[16]
Alberto, E.E.; Braga, A.L. Selenium and tellurium chemistry: From small molecules to biomolecules and materials; Springer-Verlag: Berlin, Heidelberg, 2011.
[17]
Suzuki, H.; Abe, H.; Osuka, A. Copper(I) iodide-facilitated nucleophilic substitutions of nonactivated aryl iodides with areneselenolates. Chem. Lett., 1981, 10(1), 151-152.
[http://dx.doi.org/10.1246/cl.1981.151]
[18]
Testaferri, L.; Tiecco, M.; Tingoli, M.; Chianelli, D.; Montanucci, M. Simple syntheses of aryl alkyl thioethers and of aromatic thiols from unactivated aryl halides and efficient methods for selective dealkylation of aryl alkyl ethers and thioethers. Synthesis, 1983, 1983(9), 751-755.
[http://dx.doi.org/10.1055/s-1983-30501]
[19]
Grieco, P.A.; Gilman, S.; Nishizawa, M. Organoselenium chemistry. A facile one-step synthesis of alkyl aryl selenides from alcohols. J. Org. Chem., 1976, 41(8), 1485-1486.
[http://dx.doi.org/10.1021/jo00870a052]
[20]
Ricordi, V.G.; Freitas, C.S.; Perin, G.; Lenardão, E.J.; Jacob, R.G.; Savegnago, L.; Alves, D. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem., 2012, 14, 1030-1034.
[21]
Kundu, D.; Ahammed, S.; Ranu, B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: A general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem., 2012, 14(7), 2024-2030.
[http://dx.doi.org/10.1039/c2gc35328h]
[22]
Zheng, B.; Gong, Y.; Xu, H.J. Copper-catalyzed C–Se coupling of diphenyl diselenide with arylboronic acids at room temperature. Tetrahedron, 2013, 69(26), 5342-5347.
[http://dx.doi.org/10.1016/j.tet.2013.04.124]
[23]
Mukherjee, N.; Chatterjee, T.; Ranu, B.C. Reaction under ball-milling: Solvent-, ligand-, and metal-free synthesis of unsymmetrical diaryl chalcogenides. J. Org. Chem., 2013, 78(21), 11110-11114.
[http://dx.doi.org/10.1021/jo402071b] [PMID: 24116379]
[24]
Kundu, D.; Mukherjee, N.; Ranu, B.C. A general and green procedure for the synthesis of organochalcogenides by CuFe2O4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400. RSC Advances, 2013, 3(1), 117-125.
[http://dx.doi.org/10.1039/C2RA22415A]
[25]
Saba, S.; Botteselle, G.V.; Godoi, M.; Frizon, T.E.A.; Galetto, F.Z.; Rafique, J.; Braga, A.L. Copper-catalyzed synthesis of unsymmetrical diorganyl chalcogenides (Te/Se/S) from boronic acids under solvent-free conditions. Molecules, 2017, 22, 1367-1379.
[http://dx.doi.org/10.3390/molecules22081367] [PMID: 28820487]
[26]
Müller, T.; Ackermann, L. Nickel-catalyzed C−H chalcogenation of anilines. Chemistry, 2016, 22(40), 14151-14154.
[http://dx.doi.org/10.1002/chem.201603092] [PMID: 27501081]
[27]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V.; Khrustalev, V.N. Microwave-assisted synthesis of diaryl selenides. Elucidation of Cu(I)-catalyzed reaction mechanism. Chem. Lett., 2010, 39(7), 720-722.
[http://dx.doi.org/10.1246/cl.2010.720]
[28]
Fukuzawa, S.; Tanihara, D.; Kikuchi, S. Palladium-catalyzed coupling reaction of diaryl dichalcogenide with aryl bromide leading to the synthesis of unsymmetrical aryl chalcogenide. Synlett, 2006, 2006(13), 2145-2147.
[http://dx.doi.org/10.1055/s-2006-949607]
[29]
Bhasin, K.K.; Doomra, S.; Kaur, G.; Arora, E.; Singh, N.; Nagpal, Y.; Kumar, R. Rishu; Klapoetke, T.M.; Mehta, S.K. Synthesis of unsymmetrical pyridyl aryl selenides by the reductive cleavage of Se─Se bond. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(4), 992-997.
[http://dx.doi.org/10.1080/10426500801900980]
[30]
Wang, H.; Chen, S.; Liu, G.; Guan, H.; Zhong, D.; Cai, J.; Zheng, Z.; Mao, J.; Walsh, P.J. Synthesis of diaryl selenides via palladium-catalyzed debenzylative cross-coupling of aryl benzyl selenides with aryl bromides. Organometallics, 2018, 37(21), 4086-4091.
[http://dx.doi.org/10.1021/acs.organomet.8b00644]
[31]
Wang, M.; Ren, K.; Wang, L. Iron-catalyzed ligand-free carbon-selenium (or Tellurium) coupling of arylboronic acids with diselenides and ditellurides. Adv. Synth. Catal., 2009, 351(10), 1586-1594.
[http://dx.doi.org/10.1002/adsc.200900095]
[32]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V. Tributyltin aryl selenides as efficient arylselenating agents. Synthesis of diaryl and aryl organyl selenides. Russ. J. Org. Chem., 2001, 37(10), 1463-1475.
[http://dx.doi.org/10.1023/A:1013460213633]
[33]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V. Tributylstannyl aryl selenides as efficient arylselenating agents in the synthesis of seleno esters. Russ. J. Org. Chem., 2001, 37(12), 1703-1709.
[http://dx.doi.org/10.1023/A:1013913816069]
[34]
Ranu, B.C.; Mandal, T.; Samanta, S. Indium(I) iodide-mediated cleavage of diphenyl diselenide. An efficient one-pot procedure for the synthesis of unsymmetrical diorganyl selenides. Org. Lett., 2003, 5(9), 1439-1441.
[http://dx.doi.org/10.1021/ol034178c] [PMID: 12713293]
[35]
Kundu, D.; Ahammed, S.; Ranu, B.C. Visible light photocatalyzed direct conversion of aryl-/heteroarylamines to selenides at room temperature. Org. Lett., 2014, 16(6), 1814-1817.
[http://dx.doi.org/10.1021/ol500567t] [PMID: 24621272]
[36]
Dey, A.; Hajra, A. Iodine-catalyzed selenylation of 2 H -indazole. J. Org. Chem., 2019, 84(22), 14904-14910.
[http://dx.doi.org/10.1021/acs.joc.9b02199] [PMID: 31618021]
[37]
Liu, J.; Tian, M.; Li, Y.; Shan, X.; Li, A.; Lu, K.; Fagnoni, M.; Protti, S.; Zhao, X. Metal‐free synthesis of unsymmetrical aryl selenides and tellurides via visible light‐driven activation of arylazo sulfones. Eur. J. Org. Chem., 2020, 2020(47), 7358-7367.
[http://dx.doi.org/10.1002/ejoc.202001386]
[38]
Kumar, S.; Sharma, N.; Maurya, I.K.; Bhasin, A.K.K.; Wangoo, N. Brandāo, P. Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a]pyridine based organoselenium compounds. Eur. J. Med. Chem., 2016, 123, 916-924.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.076] [PMID: 27565415]
[39]
Saba, S.; Rafique, J.; Franco, M.S.; Schneider, A.R.; Espíndola, L.; Silva, D.O. Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: A metal free approach. Org. Biomol. Chem., 2018, 16, 880-885.
[http://dx.doi.org/10.1039/C7OB03177G] [PMID: 29340417]
[40]
Thirunavukkarasu, V.S.; Kozhushkov, S.I.; Ackermann, L. C–H nitrogenation and oxygenation by ruthenium catalysis. Chem. Commun. (Camb.), 2014, 50(1), 29-39.
[http://dx.doi.org/10.1039/C3CC47028H] [PMID: 24212194]
[41]
Bu, Q.; Kuniyil, R.; Shen, Z. Gońka, E.; Ackermann, L. Insights into ruthenium(II/IV)‐catalyzed distal C−H oxygenation by weak coordination. Chemistry, 2020, 26(69), 16450-16454.
[http://dx.doi.org/10.1002/chem.202003062] [PMID: 32596872]
[42]
Conde, A.; Mar Díaz-Requejo, M.; Pérez, P.J. Direct, copper-catalyzed oxidation of aromatic C–H bonds with hydrogen peroxide under acid-free conditions. Chem. Commun. (Camb.), 2011, 47(28), 8154-8156.
[http://dx.doi.org/10.1039/c1cc12804c] [PMID: 21681295]
[43]
Louillat, M.L.; Patureau, F.W. Oxidative C–H amination reactions. Chem. Soc. Rev., 2014, 43(3), 901-910.
[http://dx.doi.org/10.1039/C3CS60318K] [PMID: 24217419]
[44]
Kim, H.; Chang, S. Transition-metal-mediated direct C–H amination of hydrocarbons with amine reactants: The most desirable but challenging C–N bond-formation approach. ACS Catal., 2016, 6(4), 2341-2351.
[http://dx.doi.org/10.1021/acscatal.6b00293]
[45]
Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C–H amination: Scope, mechanism, and applications. Chem. Rev., 2017, 117(13), 9247-9301.
[http://dx.doi.org/10.1021/acs.chemrev.6b00644] [PMID: 28051855]
[46]
Das, R.; Kapur, M. Transition-metal-catalyzed C−H functionalization reactions of π-deficient heterocycles. Asian J. Org. Chem., 2018, 7(7), 1217-1235.
[http://dx.doi.org/10.1002/ajoc.201800204]
[47]
Liu, W.; Groves, J.T. Manganese catalyzed C–H halogenation. Acc. Chem. Res., 2015, 48(6), 1727-1735.
[http://dx.doi.org/10.1021/acs.accounts.5b00062] [PMID: 26042637]
[48]
Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. Palladium-catalyzed aromatic C-H halogenation with hydrogen halides by means of electrochemical oxidation. J. Am. Chem. Soc., 2009, 131(32), 11310-11311.
[http://dx.doi.org/10.1021/ja9049228] [PMID: 19637871]
[49]
Iwasaki, M.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Chelate-assisted direct selenation of aryl C-H bonds with diselenides catalyzed by palladium. Org. Lett., 2014, 16(18), 4920-4923.
[http://dx.doi.org/10.1021/ol502439m] [PMID: 25207677]
[50]
Gensch, T.; Hopkinson, M.N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C–H activation: Examples and concepts. Chem. Soc. Rev., 2016, 45(10), 2900-2936.
[http://dx.doi.org/10.1039/C6CS00075D] [PMID: 27072661]
[51]
Shu, S.; Fan, Z.; Yao, Q.; Zhang, A. Ru(II)-catalyzed direct C(sp2)–H activation/selenylation of arenes with selenyl chlorides. J. Org. Chem., 2016, 81(13), 5263-5269.
[http://dx.doi.org/10.1021/acs.joc.6b00634] [PMID: 27104776]
[52]
Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Palladium-catalyzed peri-selective chalcogenation of naphthylamines with diaryl disulfides and diselenides via C-H bond cleavage. J. Org. Chem., 2014, 79(23), 11330-11338.
[http://dx.doi.org/10.1021/jo502274t] [PMID: 25399697]
[53]
Iwasaki, M.; Nishihara, Y. Palladium-catalysed direct thiolation and selenation of aryl C–H bonds assisted by directing groups. Dalton Trans., 2016, 45(39), 15278-15284.
[http://dx.doi.org/10.1039/C6DT02167K] [PMID: 27530276]
[54]
Inamoto, K.; Arai, Y.; Hiroya, K.; Doi, T. Palladium-catalysed direct synthesis of benzo[b]thiophenes from thioenols. Chem. Commun. (Camb.), 2008, (43), 5529-5531.
[http://dx.doi.org/10.1039/b811362a] [PMID: 18997941]
[55]
Kajiwara, R.; Takamatsu, K.; Hirano, K.; Miura, M. Copper-mediated regioselective C–H sulfenylation and selenation of phenols with phenanthroline bidentate auxiliary. Org. Lett., 2020, 22(15), 5915-5919.
[http://dx.doi.org/10.1021/acs.orglett.0c02012] [PMID: 32672467]
[56]
Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. Copper-catalyzed thiolation of the di- or trimethoxybenzene arene C-H bond with disulfides. J. Org. Chem., 2010, 75(19), 6732-6735.
[http://dx.doi.org/10.1021/jo1014849] [PMID: 20822119]
[57]
Samanta, R.; Antonchick, A.P. Palladium-catalyzed double C-H activation directed by sulfoxides in the synthesis of dibenzothiophenes. Angew. Chem. Int. Ed., 2011, 50(22), 5217-5220.
[http://dx.doi.org/10.1002/anie.201100775] [PMID: 21506222]
[58]
Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Heterogeneously catalyzed direct C-H thiolation of heteroarenes. Angew. Chem. Int. Ed., 2015, 54(19), 5772-5776.
[http://dx.doi.org/10.1002/anie.201411997] [PMID: 25783208]
[59]
Jafarpour, F.; Rahiminejadan, S.; Hazrati, H. Triethanolamine-mediated palladium-catalyzed regioselective C-2 direct arylation of free NH-pyrroles. J. Org. Chem., 2010, 75(9), 3109-3112.
[http://dx.doi.org/10.1021/jo902739n] [PMID: 20384290]
[60]
Arockiam, P.B.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem. Rev., 2012, 112(11), 5879-5918.
[http://dx.doi.org/10.1021/cr300153j] [PMID: 22934619]
[61]
Fang, H.; Dou, Y.; Ge, J.; Chhabra, M.; Sun, H.; Zhang, P.; Zheng, Y.; Zhu, Q. Regioselective and direct azidation of anilines via Cu(II)-catalyzed C–H functionalization in water. J. Org. Chem., 2017, 82(20), 11212-11217.
[http://dx.doi.org/10.1021/acs.joc.7b01594] [PMID: 28922913]
[62]
Daniels, M.H.; Armand, J.R.; Tan, K.L. Sequential regioselective C–H functionalization of thiophenes. Org. Lett., 2016, 18(14), 3310-3313.
[http://dx.doi.org/10.1021/acs.orglett.6b01205] [PMID: 27388746]
[63]
Yin, D.W.; Liu, G. Palladium-catalyzed regioselective C–H functionalization of arenes substituted by two N-heterocycles and application in late-stage functionalization. J. Org. Chem., 2018, 83(7), 3987-4001.
[http://dx.doi.org/10.1021/acs.joc.8b00322] [PMID: 29533615]
[64]
He, Y.T.; Mao, Y.J.; Hao, H.Y.; Xu, Z.Y.; Lou, S.J.; Xu, D.Q. Cu-catalyzed regioselective C–H alkylation of benzimidazoles with aromatic alkenes. Org. Lett., 2020, 22(21), 8250-8255.
[http://dx.doi.org/10.1021/acs.orglett.0c02864] [PMID: 33075228]
[65]
Chen, Y.; Hu, L.; Liang, L.; Guo, F.; Yang, Y.; Zhou, B. Ruthenium(II)-catalyzed regioselective ortho C–H allenylation of electron-rich aniline and phenol derivatives. J. Org. Chem., 2020, 85(4), 2048-2058.
[http://dx.doi.org/10.1021/acs.joc.9b02787] [PMID: 31913039]
[66]
Dhawa, U.; Kaplaneris, N.; Ackermann, L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org. Chem. Front., 2021, 8(17), 4886-4913.
[http://dx.doi.org/10.1039/D1QO00727K]
[67]
Larock, R.C. Comprehensive organic transformations: A guide to functional group preparations, 2nd ed; Wiley, 2010.
[68]
Petrone, D.A.; Ye, J.; Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev., 2016, 116(14), 8003-8104.
[http://dx.doi.org/10.1021/acs.chemrev.6b00089] [PMID: 27341176]
[69]
Li, Y.; Wang, H.; Li, X.; Chen, T.; Zhao, D. CuS/Fe: A novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides. Tetrahedron, 2010, 66(45), 8583-8586.
[http://dx.doi.org/10.1016/j.tet.2010.09.061]
[70]
Dandapat, A.; Korupalli, C.; Prasad, D.J.C.; Singh, R.; Sekar, G. An efficient copper(I) iodide catalyzed synthesis of diaryl selenides through CAr–Se bond formation using solvent acetonitrile as ligand. Synthesis, 2011, 14, 2297-2302.
[71]
Chatterjee, T.; Ranu, B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem., 2013, 78(14), 7145-7153.
[http://dx.doi.org/10.1021/jo401062k] [PMID: 23786642]
[72]
Movassagh, B.; Hosseinzadeh, Z. A highly efficient copper-catalyzed synthesis of unsymmetrical diaryl- and aryl alkyl chalcogenides from aryl iodides and diorganyl disulfides and diselenides. Synlett, 2015, 27(5), 777-781.
[http://dx.doi.org/10.1055/s-0035-1561268]
[73]
Chaugule, A.A.; Pawar, A.A.; Tamboli, A.H.; Bandal, H.A.; Chung, W.J.; Kim, H. Ionic liquid based Cu2S@C catalyst for effective coupling of diaryl diselenide with aryl halides under ligand-free conditions. Chem. Eng. J., 2018, 351, 490-497.
[http://dx.doi.org/10.1016/j.cej.2018.06.081]
[74]
Zhao, R.; Yan, C.; Jiang, Y.; Cai, M. Efficient heterogeneous copper-catalysed C–Se coupling of aryl iodides with symmetrical diselenides towards unsymmetrical monoselenides. J. Chem. Res., 2018, 42(11), 584-588.
[http://dx.doi.org/10.3184/174751918X15409874473285]
[75]
Lawson, J.R.; Melen, R.L. Recent developments and applications of Lewis acidic boron reagents. In: Organometallic Chemistry; , 2017; 41, pp. 1-2.
[76]
Sivaev, I.B.; Bregadze, V.I. Lewis acidity of boron compounds. Coord. Chem. Rev., 2014, 270-271, 75-88.
[http://dx.doi.org/10.1016/j.ccr.2013.10.017]
[77]
Yu, H.; Lee, R.; Kim, H.; Lee, D. Lewis acid-promoted regio- and diastereoselective cross-coupling of aryl-substituted 1,2-diols and boronic acids. J. Org. Chem., 2019, 84(6), 3566-3578.
[http://dx.doi.org/10.1021/acs.joc.9b00209] [PMID: 30786205]
[78]
Nelson, W.M. Green Solvents for Chemistry: Perspectives and Practice; Oxford University Press: Oxford, 2003.
[79]
Roy, S.; Chatterjee, T.; Banerjee, B.; Salam, N.; Bhaumik, A.; Islam, S.M. Cu(II) anchored nitrogen-rich covalent imine network (Cu II -CIN-1): An efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent. RSC Advances, 2014, 4(86), 46075-46083.
[http://dx.doi.org/10.1039/C4RA08909J]
[80]
Roy, S.; Chatterjee, T.; Islam, S.M. Solvent selective phenyl selenylation and phenyl tellurylation of aryl boronic acids catalyzed by Cu(II) grafted functionalized polystyrene. Tetrahedron Lett., 2015, 56(6), 779-783.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.055]
[81]
Zhao, H.; Jiang, Y.; Chen, Q.; Cai, M. A highly efficient and reusable MCM-41-immobilized bipyridine copper(I) catalyst for the C–Se coupling of organoboronic acids with diaryl diselenides. New J. Chem., 2015, 39(3), 2106-2115.
[http://dx.doi.org/10.1039/C4NJ01687D]
[82]
Goldani, B.; Ricordi, V.G.; Seus, N.; Lenardão, E.J.; Schumacher, R.F.; Alves, D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J. Org. Chem., 2016, 81(22), 11472-11476.
[http://dx.doi.org/10.1021/acs.joc.6b02108] [PMID: 27731643]
[83]
Sahania, J.; Jayarama, R.V.; Burange, A.S. C-Se cross-coupling of arylboronic acids and diphenyldiselenides over non precikakious transition metal (Fe, Cu and Ni) complexes. Mol. Cat, 2018, 450, 14-18.
[84]
Yu, S.; Wan, B.; Li, X. Rh(III)-catalyzed selenylation of arenes with selenenyl chlorides/diselenides via C-H activation. Org. Lett., 2015, 17(1), 58-61.
[http://dx.doi.org/10.1021/ol503231p] [PMID: 25515149]
[85]
Arun, V.; Mahanty, K.; De Sarkar, S. Nickel‐catalyzed dehydrogenative couplings. ChemCatChem, 2019, 11(9), 2243-2259.
[http://dx.doi.org/10.1002/cctc.201900254]
[86]
Mishra, A.A.; Subhedar, D.; Bhanage, B.M. Nickel, cobalt and palladium catalysed C—H functionalization of un-activated C(sp3)—H bond. Chem. Rec., 2018, 18, 1-30.
[PMID: 30238681]
[87]
Rosen, B.M.; Quasdorf, K.W.; Wilson, D.A.; Zhang, N.; Resmerita, A.M.; Garg, N.K.; Percec, V. Nickel-catalyzed cross-couplings involving carbon-oxygen bonds. Chem. Rev., 2011, 111(3), 1346-1416.
[http://dx.doi.org/10.1021/cr100259t] [PMID: 21133429]
[88]
Mandal, A.; Sahoo, H.; Baidya, M. Copper-catalyzed 8-aminoquinoline-directed selenylation of arene and heteroarene C–H bonds. Org. Lett., 2016, 18(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.6b01420] [PMID: 27309343]
[89]
Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G.S.; Baidya, M. Ruthenium(II)-catalyzed ortho-C–H chalcogenation of benzoic acids via weak O-coordination: Synthesis of chalcogenoxanthones. Org. Lett., 2017, 19(9), 2430-2433.
[http://dx.doi.org/10.1021/acs.orglett.7b00996] [PMID: 28429594]
[90]
Braña, M.F.; Gradillas, A.; Ovalles, A.G.; López, B.; Acero, N.; Llinares, F.; Mingarro, D.M. Synthesis and biological activity of N,N-dialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone derivatives. Bioorg. Med. Chem., 2006, 14(1), 9-16.
[http://dx.doi.org/10.1016/j.bmc.2005.09.059] [PMID: 16263294]
[91]
Tripathy, R.; Ghose, A.; Singh, J.; Bacon, E.R.; Angeles, T.S.; Yang, S.X.; Albom, M.S.; Aimone, L.D.; Herman, J.L.; Mallamo, J.P. 1,2,3-Thiadiazole substituted pyrazolones as potent KDR/VEGFR-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(6), 1793-1798.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.054] [PMID: 17239587]
[92]
Ma, W.; Dong, H.; Wang, D.; Ackermann, L. Late-stage diversification of non-steroidal anti-inflammatory drugs by transition metal-catalyzed C-H alkenylations, thiolations and selenylations. Adv. Synth. Catal., 2017, 359(6), 966-973.
[http://dx.doi.org/10.1002/adsc.201600937]
[93]
Weng, Z.; Fang, X.; He, M.; Gu, L.; Lin, J.; Li, Z.; Ma, W. Ruthenium catalyzed C–H selenylations of aryl acetic amides and esters via weak coordination. Org. Lett., 2019, 21(16), 6310-6314.
[http://dx.doi.org/10.1021/acs.orglett.9b02196] [PMID: 31380652]
[94]
Funk, C.D. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat. Rev. Drug Discov., 2005, 4(8), 664-672.
[http://dx.doi.org/10.1038/nrd1796] [PMID: 16041318]
[95]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[96]
Ashok, P.; Lu, C.L.; Chander, S.; Zheng, Y.T.; Murugesan, S. Design, synthesis, and biological evaluation of 1-(thiophen-2-yl)-9 H -pyrido[3,4- b]indole derivatives as Anti-HIV-1 agents. Chem. Biol. Drug Des., 2015, 85(6), 722-728.
[http://dx.doi.org/10.1111/cbdd.12456] [PMID: 25328020]
[97]
Gehrcke, M.; Giuliani, L.M.; Ferreira, L.M.; Barbieri, A.V.; Sari, M.H.M.; da Silveira, E.F.; Azambuja, J.H.; Nogueira, C.W.; Braganhol, E.; Cruz, L. Enhanced photostability, radical scavenging and antitumor activity of indole-3-carbinol-loaded rose hip oil nanocapsules. Mater. Sci. Eng. C, 2017, 74, 279-286.
[http://dx.doi.org/10.1016/j.msec.2016.12.006] [PMID: 28254296]
[98]
Prakash, B.; Amuthavalli, A.; Edison, D.; Sivaramkumar, M.S.; Velmurugan, R. Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Med. Chem. Res., 2018, 27(1), 321-331.
[http://dx.doi.org/10.1007/s00044-017-2065-9]
[99]
Abraham, R.; Prakash, P.; Mahendran, K.; Ramanathan, M. A novel series of N-acyl substituted indole-linked benzimidazoles and naphthoimidazoles as potential anti inflammatory, anti biofilm and anti microbial agents. Microb. Pathog., 2018, 114, 409-413.
[http://dx.doi.org/10.1016/j.micpath.2017.12.021] [PMID: 29233780]
[100]
Luz, E.Q.; Seckler, D.; Araújo, J.S.; Angst, L.; Lima, D.B.; Maluf Rios, E.A.; Ribeiro, R.R.; Rampon, D.S. Fe(III)-Catalyzed direct C3 chalcogenylation of indole: The effect of iodide ions. Tetrahedron, 2019, 75(9), 1258-1266.
[http://dx.doi.org/10.1016/j.tet.2019.01.037]
[101]
Qiao, H.; Sun, B.; Yu, Q.; Huang, Y.Y.; Zhou, Y.; Zhang, F.L. Palladium-catalyzed direct ortho-C–H selenylation of benzaldehydes using benzidine as a transient directing group. Org. Lett., 2019, 21(17), 6914-6918.
[http://dx.doi.org/10.1021/acs.orglett.9b02530] [PMID: 31448617]
[102]
Nguyen, H.; Daugulis, O. N -aminopyridinium ylide-directed, copper-promoted chalcogenation of arene C–H bonds. J. Org. Chem., 2020, 85(20), 13069-13079.
[http://dx.doi.org/10.1021/acs.joc.0c01757] [PMID: 33000944]
[103]
Sattar, M.; Shareef, M.; Patidar, K.; Kumar, S. Copper-catalyzed 8-aminoquinoline assisted aryl chalcogenation of ferroceneamide with aryl disulfides, diselenides, and ditellurides. J. Org. Chem., 2018, 83(15), 8241-8249.
[http://dx.doi.org/10.1021/acs.joc.8b00974] [PMID: 29878778]
[104]
Kundu, D.; Roy, A.; Panja, S.; Singh, R.K. Microwave-assisted cobalt-copper dual catalyzed ligand free C-Se cross-coupling. Curr. Microw. Chem., 2020, 7(2), 157-163.
[http://dx.doi.org/10.2174/2213335607666200212101502]
[105]
Kundu, D.; Roy, A.; Singha, A.; Panja, S. Nickel-copper Co-catalyzed sustainable synthesis of diaryl-chalcogenides. Curr. Green Chem., 2021, 8(2), 147-156.
[http://dx.doi.org/10.2174/2213346108999210111224631]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy