Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Microfluidic Paper-based Device for Medicinal Diagnosis

Author(s): Atchara Lomae, Pattarachaya Preechakasedkit, Kanyapat Teekayupak, Yosita Panraksa, Jutiporn Yukird, Orawon Chailapakul* and Nipapan Ruecha*

Volume 22, Issue 27, 2022

Published on: 15 November, 2022

Page: [2282 - 2313] Pages: 32

DOI: 10.2174/1568026623666221103103211

Price: $65

Abstract

Background: The demand for point-of-care testing (POCT) devices has rapidly grown since they offer immediate test results with ease of use, makingthem suitable for home self-testing patients and caretakers. However, the POCT development has faced the challenges of increased cost and limited resources. Therefore, the paper substrate as a low-cost material has been employed to develop a cost-effective POCT device, known as “Microfluidic paper-based analytical devices (μPADs)”. This device is gaining attention as a promising tool for medicinal diagnostic applications owing to its unique features of simple fabrication, low cost, enabling manipulation flow (capillarydriven flow), the ability to store reagents, and accommodating multistep assay requirements.

Objective: This review comprehensively examines the fabrication methods and device designs (2D/3D configuration) and their advantages and disadvantages, focusing on updated μPADs applications for motif identification.

Methods: The evolution of paper-based devices, starting from the traditional devices of dipstick and lateral flow assay (LFA) with μPADs, has been described. Patterned structure fabrication of each technique has been compared among the equipment used, benefits, and drawbacks. Microfluidic device designs, including 2D and 3D configurations, have been introduced as well as their modifications. Various designs of μPADs have been integrated with many powerful detection methods such as colorimetry, electrochemistry, fluorescence, chemiluminescence, electrochemiluminescence, and SER-based sensors for medicinal diagnosis applications.

Conclusion: The μPADs potential to deal with commercialization in terms of the state-of-the-art of μPADs in medicinal diagnosis has been discussed. A great prototype, which is currently in a reallife application breakthrough, has been updated.

« Previous
Graphical Abstract

[1]
Sher, M.; Zhuang, R.; Demirci, U.; Asghar, W. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn., 2017, 17(4), 351-366.
[http://dx.doi.org/10.1080/14737159.2017.1285228] [PMID: 28103450]
[2]
Meredith, N.A.; Quinn, C.; Cate, D.M.; Reilly, T.H., III; Volckens, J.; Henry, C.S. Paper-based analytical devices for environmental analy-sis. Analyst (Lond.), 2016, 141(6), 1874-1887.
[http://dx.doi.org/10.1039/C5AN02572A] [PMID: 26901771]
[3]
Manisha, H.; Priya Shwetha, P.D.; Prasad, K.S. Low-Cost paper Analytical Devices for Environmental and Biomedical Sensing Applica-tions. In: Environmental, Chemical and Medical Sensors; Bhattacharya, S.; Agarwal, A.K.; Chanda, N.; Pandey, A.; Sen, A.K., Eds.; Springer Singapore: Singapore, 2018; pp. 315-341.
[http://dx.doi.org/10.1007/978-981-10-7751-7_14]
[4]
Busa, L.S.A.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines (Basel), 2016, 7(5), 86.
[http://dx.doi.org/10.3390/mi7050086]
[5]
Ayong, L.S.; Tume, C.B.; Wembe, F.E.; Simo, G.; Asonganyi, T.; Lando, G.; Ngu, J.L. Development and evaluation of an antigen detection dipstick assay for the diagnosis of human onchocerciasis. Trop. Med. Int. Health, 2005, 10(3), 228-233.
[http://dx.doi.org/10.1111/j.1365-3156.2004.01384.x] [PMID: 15730506]
[6]
Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem., 2009, 393(2), 569-582.
[http://dx.doi.org/10.1007/s00216-008-2287-2] [PMID: 18696055]
[7]
Ghosh, R.; Gopalakrishnan, S.; Savitha, R.; Renganathan, T.; Pushpavanam, S. Fabrication of laser printed microfluidic paper-based ana-lytical devices (LP-µPADs) for point-of-care applications. Sci. Rep., 2019, 9(1), 7896.
[http://dx.doi.org/10.1038/s41598-019-44455-1] [PMID: 31133720]
[8]
Hawkes, R.; Niday, E.; Gordon, J. A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem., 1982, 119(1), 142-147.
[http://dx.doi.org/10.1016/0003-2697(82)90677-7] [PMID: 7072935]
[9]
Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioas-says. Angew. Chem. Int. Ed., 2007, 46(8), 1318-1320.
[http://dx.doi.org/10.1002/anie.200603817] [PMID: 17211899]
[10]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[11]
Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wågberg, L.; Hu, L. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844), 47-56.
[http://dx.doi.org/10.1038/s41586-020-03167-7] [PMID: 33536649]
[12]
Xue, P.; Kang, Y. Paper-Based Sensors and Microfluidic Chips. In: Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer New York: New York, NY, 2015; pp. 2647-2655.
[http://dx.doi.org/10.1007/978-1-4614-5491-5_1712]
[13]
Komatsu, T.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Characteristics of microfluidic paper-based analytical devices fabricated by four different methods. Anal. Sci., 2018, 34(1), 39-44.
[http://dx.doi.org/10.2116/analsci.34.39] [PMID: 29321455]
[14]
Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem., 2021, 336, 129681.
[http://dx.doi.org/10.1016/j.snb.2021.129681]
[15]
Ozer, T.; McMahon, C.; Henry, C.S. Advances in paper-based analytical devices. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2020, 13(1), 85-109.
[http://dx.doi.org/10.1146/annurev-anchem-061318-114845] [PMID: 31986055]
[16]
Gong, M.M.; Sinton, D. Turning the Page: Advancing paper-based microfluidics for broad diagnostic application. Chem. Rev., 2017, 117(12), 8447-8480.
[http://dx.doi.org/10.1021/acs.chemrev.7b00024] [PMID: 28627178]
[17]
Vuljanić, D.; Dukić, L.; Šimundić, A-M.; Vogrinc, Ž.; Grzunov, A.; Maradin, I.; Vlašić Tanasković, J.; Leniček Krleža, J.; Saračević, A.; Špoljarić, V.; Dojder, A. Analytical verification of 12 most commonly used urine dipsticks in Croatia: comparability, repeatability and ac-curacy. Biochem. Med. (Zagreb), 2019, 29(1), 123-132.
[http://dx.doi.org/10.11613/BM.2019.010708] [PMID: 30799977]
[18]
Lisa, M.; Chouhan, R.S.; Vinayaka, A.C.; Manonmani, H.K.; Thakur, M.S. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: An organochlorine pesticide. Biosens. Bioelectron., 2009, 25(1), 224-227.
[http://dx.doi.org/10.1016/j.bios.2009.05.006] [PMID: 19576759]
[19]
Dadzie, I.; Quansah, E.; Puopelle Dakorah, M.; Abiade, V.; Takyi-Amuah, E.; Adusei, R. The effectiveness of dipstick for the detection of urinary tract infection. Can. J. Infect. Dis. Med. Microbiol., 2019, 2019, 8642628.
[http://dx.doi.org/10.1155/2019/8642628] [PMID: 31781317]
[20]
Rajerison, M.; Dartevelle, S.; Ralafiarisoa, L.A.; Bitam, I.; Tuyet, D.T.N.; Andrianaivoarimanana, V.; Nato, F.; Rahalison, L. Development and evaluation of two simple, rapid immunochromatographic tests for the detection of Yersinia pestis antibodies in humans and reservoirs. PLoS Negl. Trop. Dis., 2009, 3(4), e421.
[http://dx.doi.org/10.1371/journal.pntd.0000421] [PMID: 19399164]
[21]
Swetha Ramesh, B.S.S. Dipstick screening for urinary tract infection in adolescent school girls: Evaluation of self screening ability. J. Clin. Diagn. Res., 2019, 13(12), EC06-EC10.
[http://dx.doi.org/10.7860/jcdr/2019/42931.13390]
[22]
Carrell, C.; Kava, A.; Nguyen, M.; Menger, R.; Munshi, Z.; Call, Z.; Nussbaum, M.; Henry, C. Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng., 2019, 206, 45-54.
[http://dx.doi.org/10.1016/j.mee.2018.12.002]
[23]
Rahbar, M.; Zou, S.; Baharfar, M.; Liu, G. A customized microfluidic paper-based platform for colorimetric immunosensing: Demonstrat-ed via hCG assay for pregnancy test. Biosensors (Basel), 2021, 11(12), 474.
[http://dx.doi.org/10.3390/bios11120474] [PMID: 34940231]
[24]
Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip, 2017, 17(7), 1206-1249.
[http://dx.doi.org/10.1039/C6LC01577H] [PMID: 28251200]
[25]
Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2018, 102, 27-32.
[http://dx.doi.org/10.1016/j.bios.2017.10.051] [PMID: 29107857]
[26]
Preechakasedkit, P.; Ngamrojanavanich, N.; Khongchareonporn, N.; Chailapakul, O. Novel ractopamine–protein carrier conjugation and its application to the lateral flow strip test for ractopamine detection in animal feed. J. Zhejiang Univ. Sci. B, 2019, 20(2), 193-204.
[http://dx.doi.org/10.1631/jzus.B1800112] [PMID: 30666851]
[27]
Zhang, Y.; Liu, X.; Wang, L.; Yang, H.; Zhang, X.; Zhu, C.; Wang, W.; Yan, L.; Li, B. Improvement in detection limit for lateral flow assay of biomacromolecules by test-zone pre-enrichment. Sci. Rep., 2020, 10(1), 9604.
[http://dx.doi.org/10.1038/s41598-020-66456-1] [PMID: 32541787]
[28]
Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano, 2021, 15(3), 3593-3611.
[http://dx.doi.org/10.1021/acsnano.0c10035] [PMID: 33607867]
[29]
Liu, Z.; Qu, Z.; Tang, R.; He, X.; Yang, H.; Bai, D.; Xu, F. An improved detection limit and working range of lateral flow assays based on a mathematical model. Analyst (Lond.), 2018, 143(12), 2775-2783.
[http://dx.doi.org/10.1039/C8AN00179K] [PMID: 29782027]
[30]
Liu, C.; Gomez, F.A.; Miao, Y.; Cui, P.; Lee, W. A colorimetric assay system for dopamine using microfluidic paper-based analytical de-vices. Talanta, 2019, 194, 171-176.
[http://dx.doi.org/10.1016/j.talanta.2018.10.039] [PMID: 30609518]
[31]
Ellerbee, A.K.; Phillips, S.T.; Siegel, A.C.; Mirica, K.A.; Martinez, A.W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G.M. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal. Chem., 2009, 81(20), 8447-8452.
[http://dx.doi.org/10.1021/ac901307q] [PMID: 19722495]
[32]
Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem., 2015, 87(1), 19-41.
[http://dx.doi.org/10.1021/ac503968p] [PMID: 25375292]
[33]
Han, T.; Jin, Y.; Geng, C.; Aziz, A.R.; Zhang, Y.; Deng, S.; Ren, H.; Liu, B. Microfluidic paper-based analytical devices in clinical applica-tions. Chromatographia, 2020, 83(6), 693-701.
[http://dx.doi.org/10.1007/s10337-020-03892-1]
[34]
Altundemir, S.; Uguz, A.K.; Ulgen, K. A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 2017, 11(4), 041501-041501.
[http://dx.doi.org/10.1063/1.4991504] [PMID: 28936274]
[35]
Chiang, C.K.; Kurniawan, A.; Kao, C.Y.; Wang, M.J. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Talanta, 2019, 194, 837-845.
[http://dx.doi.org/10.1016/j.talanta.2018.10.104] [PMID: 30609613]
[36]
Yu, L.; Shi, Z.Z. Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®. Lab Chip, 2015, 15(7), 1642-1645.
[http://dx.doi.org/10.1039/C5LC00044K] [PMID: 25710591]
[37]
Zhang, H.; Smith, E.; Zhang, W.; Zhou, A. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric de-tection in artificial urine. Biomed. Microdevices, 2019, 21(3), 48.
[http://dx.doi.org/10.1007/s10544-019-0388-7] [PMID: 31183565]
[38]
Shibata, H.; Hiruta, Y.; Citterio, D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst, 2019, 144(4), 1178-1186.
[http://dx.doi.org/10.1039/C8AN02146E] [PMID: 30560965]
[39]
Mahmud, M.; Blondeel, E.; Kaddoura, M.; MacDonald, B. Features in microfluidic paper-based devices made by laser cutting: How small can they be? Micromachines, 2018, 9(5), 220.
[http://dx.doi.org/10.3390/mi9050220] [PMID: 30424153]
[40]
Mathaweesansurn, A.; Thongrod, S.; Khongkaew, P.; Phechkrajang, C.M.; Wilairat, P.; Choengchan, N. Simple and fast fabrication of mi-crofluidic paper-based analytical device by contact stamping for multiple-point standard addition assay: Application to direct analysis of urinary creatinine. Talanta, 2020, 210, 120675.
[http://dx.doi.org/10.1016/j.talanta.2019.120675] [PMID: 31987195]
[41]
Kasetsirikul, S.; Clack, K.; Shiddiky, M.J.A.; Nguyen, N.T. Rapid, simple and inexpensive fabrication of paper-based analytical devices by parafilm(®) hot pressing. Micromachines, 2021, 13(1), 48.
[http://dx.doi.org/10.3390/mi13010048] [PMID: 35056213]
[42]
Cai, L.; Xu, C.; Lin, S.; Luo, J.; Wu, M.; Yang, F. A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics, 2014, 8(5), 056504.
[http://dx.doi.org/10.1063/1.4898096] [PMID: 25584119]
[43]
Raj, N.; Breedveld, V.; Hess, D.W. Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching. Lab Chip, 2019, 19(19), 3337-3343.
[http://dx.doi.org/10.1039/C9LC00746F] [PMID: 31501838]
[44]
Noviana, E.; Ozer, T.; Carrell, C.S.; Link, J.S.; McMahon, C.; Jang, I.; Henry, C.S. Microfluidic paper-based analytical devices: From de-sign to applications. Chem. Rev., 2021, 121(19), 11835-11885.
[http://dx.doi.org/10.1021/acs.chemrev.0c01335] [PMID: 34125526]
[45]
de Oliveira, R.A.G.; Camargo, F.; Pesquero, N.C.; Faria, R.C. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. Anal. Chim. Acta, 2017, 957, 40-46.
[http://dx.doi.org/10.1016/j.aca.2017.01.002] [PMID: 28107832]
[46]
Boonkaew, S.; Chaiyo, S.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. An origami paper-based electrochemical immunoas-say for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Mikrochim. Acta, 2019, 186(3), 153.
[http://dx.doi.org/10.1007/s00604-019-3245-8] [PMID: 30712159]
[47]
Rattanarat, P.; Dungchai, W.; Cate, D.; Volckens, J.; Chailapakul, O.; Henry, C.S. Multilayer paper-based device for colorimetric and elec-trochemical quantification of metals. Anal. Chem., 2014, 86(7), 3555-3562.
[http://dx.doi.org/10.1021/ac5000224] [PMID: 24576180]
[48]
Li, L.; Zhang, Y.; Ge, S.; Zhang, L.; Cui, K.; Zhao, P.; Yan, M.; Yu, J. Triggerable H2O2-cleavable switch of paper-based biochips endows precision of chemometer/ratiometric electrochemical quantification of analyte in high-efficiency point-of-care testing. Anal. Chem., 2019, 91(15), 10273-10281.
[http://dx.doi.org/10.1021/acs.analchem.9b02459] [PMID: 31287288]
[49]
Liu, Y.; Cui, K.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. A self-powered origami paper analytical device with a pop-up structure for dual-mode electrochemical sensing of ATP assisted by glucose oxidase-triggered reaction. Biosens. Bioelectron., 2020, 148, 111839.
[http://dx.doi.org/10.1016/j.bios.2019.111839] [PMID: 31706177]
[50]
Das, D.; Dsouza, A.; Kaur, N.; Soni, S.; Toley, B.J. Paper stacks for uniform rehydration of dried reagents in paper microfluidic devices. Sci. Rep., 2019, 9(1), 15755.
[http://dx.doi.org/10.1038/s41598-019-52202-9] [PMID: 31673060]
[51]
Ding, J.; Li, B.; Chen, L.; Qin, W. A three-dimensional origami paper-based device for potentiometric biosensing. Angew. Chem. Int. Ed., 2016, 55(42), 13033-13037.
[http://dx.doi.org/10.1002/anie.201606268] [PMID: 27634584]
[52]
Martinez, AW; Phillips, ST; Whitesides, GM Whitesides GM: Three-dimensional microfluidic devices fabricated in layered paper and tape. roc Natl Acad Sci U S A, 2008, 105(50), 19606, 19611.
[http://dx.doi.org/10.1073/pnas.0810903105]
[53]
Yukird, J.; Soum, V.; Kwon, O.S.; Shin, K.; Chailapakul, O.; Rodthongkum, N. 3D paper-based microfluidic device: a novel dual-detection platform of bisphenol A. Analyst (Lond.), 2020, 145(4), 1491-1498.
[http://dx.doi.org/10.1039/C9AN01738K] [PMID: 31872825]
[54]
Fu, L.M.; Wang, Y.N. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt. Chem., 2018, 107, 196-211.
[http://dx.doi.org/10.1016/j.trac.2018.08.018]
[55]
Li, F.; Wang, X.; Liu, J.; Hu, Y.; He, J. Double-layered microfluidic paper-based device with multiple colorimetric indicators for multi-plexed detection of biomolecules. Sens. Actuat. Biol. Chem., 2019, 288, 266-273.
[http://dx.doi.org/10.1016/j.snb.2019.02.116]
[56]
Punnoy, P.; Preechakasedkit, P.; Aumnate, C.; Rodthongkum, N.; Potiyaraj, P.; Ruecha, N. Polyvinyl alcohol/starch modified cotton thread surface as a novel colorimetric glucose sensor. Mater. Lett., 2021, 299, 130076.
[http://dx.doi.org/10.1016/j.matlet.2021.130076]
[57]
Ruecha, N.; Soatthiyanon, N.; Aumnate, C.; Boonyongmaneerat, Y.; Rodthongkum, N. Kenaf cellulose-based 3D printed device: A novel colorimetric sensor for Ni(II). Cellulose, 2020, 27(9), 5211-5222.
[http://dx.doi.org/10.1007/s10570-020-03141-6]
[58]
Nery, E.W.; Kubota, L.T. Sensing approaches on paper-based devices: a review. Anal. Bioanal. Chem., 2013, 405(24), 7573-7595.
[http://dx.doi.org/10.1007/s00216-013-6911-4] [PMID: 23604524]
[59]
Patel, S.; Jamunkar, R.; Sinha, D. Monisha; Patle, T.K.; Kant, T.; Dewangan, K.; Shrivas, K. Recent development in nanomaterials fabri-cated paper-based colorimetric and fluorescent sensors: A review. Trends Environ. Anal. Chem., 2021, 31, e00136.
[http://dx.doi.org/10.1016/j.teac.2021.e00136]
[60]
Yamada, K.; Citterio, D.; Henry, C.S. “Dip-and-read” paper-based analytical devices using distance-based detection with color screening. Lab Chip, 2018, 18(10), 1485-1493.
[http://dx.doi.org/10.1039/C8LC00168E] [PMID: 29693672]
[61]
Nguyen, Q.H.; Kim, M.I. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. Trends Analyt. Chem., 2020, 132, 116038.
[http://dx.doi.org/10.1016/j.trac.2020.116038] [PMID: 32958969]
[62]
Ozer, T.; Henry, C.S. Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. Trends Analyt. Chem., 2021, 144, 116424.
[http://dx.doi.org/10.1016/j.trac.2021.116424] [PMID: 34462612]
[63]
Kim, H.M.; Kim, J.; Bock, S.; An, J.; Choi, Y.S.; Pham, X.H.; Cha, M.G.; Seong, B.; Kim, W.; Kim, Y.H.; Song, H.; Kim, J.W.; Park, S.; Lee, S.H.; Rho, W.Y.; Lee, S.; Jeong, D.H.; Lee, H.Y.; Jun, B.H-H. Silver-assembled silica nanoparticles in lateral flow immunoassay for visual inspection of prostate-specific antigen. Sensors (Basel), 2021, 21(12), 4099.
[http://dx.doi.org/10.3390/s21124099] [PMID: 34203603]
[64]
Neris, N.M.; Guevara, R.D.; Gonzalez, A.; Gomez, F.A. 3D Multilayered paper‐ and thread/paper‐based microfluidic devices for bioas-says. Electrophoresis, 2019, 40(2), 296-303.
[http://dx.doi.org/10.1002/elps.201800383] [PMID: 30383293]
[65]
Noiphung, J.; Nguyen, M.P.; Punyadeera, C.; Wan, Y.; Laiwattanapaisal, W.; Henry, C.S. Development of paper-based analytical devices for minimizing the viscosity effect in human saliva. Theranostics, 2018, 8(14), 3797-3807.
[http://dx.doi.org/10.7150/thno.24941] [PMID: 30083260]
[66]
Shen, Y.; Shen, G. Signal-enhanced lateral flow immunoassay with dual gold nanoparticle conjugates for the detection of hepatitis B sur-face antigen. ACS Omega, 2019, 4(3), 5083-5087.
[http://dx.doi.org/10.1021/acsomega.8b03593]
[67]
Wen, T.; Huang, C.; Shi, F.J.; Zeng, X.Y.; Lu, T.; Ding, S.N.; Jiao, Y.J. Development of a lateral flow immunoassay strip for rapid detec-tion of IgG antibody against SARS-CoV-2 virus. Analyst (Lond.), 2020, 145(15), 5345-5352.
[http://dx.doi.org/10.1039/D0AN00629G] [PMID: 32568341]
[68]
Galanis, P.P.; Katis, I.N.; He, P.J.W.; Iles, A.H.; Kumar, A.J.U.; Eason, R.W.; Sones, C.L. Laser-patterned paper-based flow-through filters and lateral flow immunoassays to enable the detection of C-reactive protein. Talanta, 2022, 238(Pt 2), 123056.
[http://dx.doi.org/10.1016/j.talanta.2021.123056] [PMID: 34801912]
[69]
Panraksa, Y.; Apilux, A.; Jampasa, S.; Puthong, S.; Henry, C.S.; Rengpipat, S.; Chailapakul, O. A facile one-step gold nanoparticles en-hancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection. Sens. Actuators B Chem., 2021, 329, 129241.
[http://dx.doi.org/10.1016/j.snb.2020.129241]
[70]
Misawa, K.; Yamamoto, T.; Hiruta, Y.; Yamazaki, H.; Citterio, D. Text-displaying semiquantitative competitive lateral flow immunoassay relying on inkjet-printed patterns. ACS Sens., 2020, 5(7), 2076-2085.
[http://dx.doi.org/10.1021/acssensors.0c00637] [PMID: 32575982]
[71]
Dalirirad, S.; Han, D.; Steckl, A.J. Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega, 2020, 5(51), 32890-32898.
[http://dx.doi.org/10.1021/acsomega.0c03223] [PMID: 33403250]
[72]
Belsare, S.; Coté, G. Development of a colorimetric paper fluidic dipstick assay for measurement of glycated albumin to monitor gesta-tional diabetes at the point-of-care. Talanta, 2021, 223(Pt 1), 121728.
[http://dx.doi.org/10.1016/j.talanta.2020.121728] [PMID: 33303171]
[73]
Tang, R.; Alam, N.; Li, M.; Xie, M.; Ni, Y. Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid. Carbohydr. Polym., 2021, 268, 118259.
[http://dx.doi.org/10.1016/j.carbpol.2021.118259] [PMID: 34127229]
[74]
Chailapakul, O.; Siangproh, W.; Jampasa, S.; Chaiyo, S.; Teengam, P.; Yakoh, A.; Pinyorospathum, C. Chapter Two - Paper-Based Sensors for the Application of Biological Compound Detection. In: Comprehensive Analytical Chemistry; Merkoçi, A., Ed.; Elsevier, 2022; Vol. 89, pp. 31-62.
[http://dx.doi.org/10.1016/bs.coac.2020.03.002]
[75]
Choobbari, M.L.; Rad, M.B.; Jahanshahi, A.; Ghourchian, H. A sample volume independent paper microfluidic device for quantifying glucose in real human plasma. Microfluid. Nanofluidics, 2020, 24(9), 74.
[http://dx.doi.org/10.1007/s10404-020-02382-y]
[76]
Kim, S.; Kim, D.; Kim, S. Simultaneous quantification of multiple biomarkers on a self-calibrating microfluidic paper-based analytic de-vice. Anal. Chim. Acta, 2020, 1097, 120-126.
[http://dx.doi.org/10.1016/j.aca.2019.10.068] [PMID: 31910951]
[77]
Cai, Y.; Niu, J.C.; Du, X.L.; Fang, F.; Wu, Z.Y. Novel field amplification for sensitive colorimetric detection of microalbuminuria on a paper-based analytical device. Anal. Chim. Acta, 2019, 1080, 146-152.
[http://dx.doi.org/10.1016/j.aca.2019.06.051] [PMID: 31409464]
[78]
Rossini, E.L.; Milani, M.I.; Carrilho, E.; Pezza, L.; Pezza, H.R. Simultaneous determination of renal function biomarkers in urine using a validated paper-based microfluidic analytical device. Anal. Chim. Acta, 2018, 997, 16-23.
[http://dx.doi.org/10.1016/j.aca.2017.10.018] [PMID: 29149990]
[79]
Razavi, F.; Khajehsharifi, H. A colorimetric paper-based sensor with nanoporous SBA-15 for simultaneous determination of histidine and cysteine in urine samples. Chem. Pap., 2021, 75(7), 3401-3410.
[http://dx.doi.org/10.1007/s11696-021-01548-4]
[80]
Phoonsawat, K.; Khachornsakkul, K.; Ratnarathorn, N.; Henry, C.S.; Dungchai, W. Distance-based paper device for a naked-eye albumin-to-alkaline phosphatase ratio assay. ACS Sens., 2021, 6(8), 3047-3055.
[http://dx.doi.org/10.1021/acssensors.1c01058] [PMID: 34308636]
[81]
Tseng, C.C.; Kung, C.T.; Chen, R.F.; Tsai, M.H.; Chao, H.R.; Wang, Y.N.; Fu, L.M. Recent advances in microfluidic paper-based assay devices for diagnosis of human diseases using saliva, tears and sweat samples. Sens. Actuat. Biol. Chem., 2021, 342, 130078.
[http://dx.doi.org/10.1016/j.snb.2021.130078]
[82]
Kitchawengkul, N.; Prakobkij, A.; Anutrasakda, W.; Yodsin, N.; Jungsuttiwong, S.; Chunta, S.; Amatatongchai, M.; Jarujamrus, P. Mimick-ing peroxidase-like activity of nitrogen-doped carbon dots (N-CDs) coupled with a laminated three-dimensional microfluidic paper-based analytical device (laminated 3D-μPAD) for smart sensing of total cholesterol from whole blood. Anal. Chem., 2021, 93(18), 6989-6999.
[http://dx.doi.org/10.1021/acs.analchem.0c05459] [PMID: 33909416]
[83]
Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem., 2017, 89(10), 5428-5435.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[84]
Park, J.; Park, J.K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detec-tion of C-reactive protein based on programmed reagent loading. Sens. Actuat. Biol. Chem., 2017, 246, 1049-1055.
[http://dx.doi.org/10.1016/j.snb.2017.02.150]
[85]
Chen, C.A.; Yuan, H.; Chen, C.W.; Chien, Y.S.; Sheng, W.H.; Chen, C.F. An electricity- and instrument-free infectious disease sensor based on a 3D origami paper-based analytical device. Lab Chip, 2021, 21(10), 1908-1915.
[http://dx.doi.org/10.1039/D1LC00079A] [PMID: 34008628]
[86]
Zhang, H.; Chen, Z.; Dai, J.; Zhang, W.; Jiang, Y.; Zhou, A. A low-cost mobile platform for whole blood glucose monitoring using colori-metric method. Microchem. J., 2021, 162, 105814.
[http://dx.doi.org/10.1016/j.microc.2020.105814]
[87]
Lewińska, I.; Speichert, M.; Granica, M.; Tymecki, Ł. Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sens. Actuat. Biol. Chem., 2021, 340, 129915.
[http://dx.doi.org/10.1016/j.snb.2021.129915]
[88]
Tseng, C.C.; Yang, R.J.; Ju, W.J.; Fu, L.M. Microfluidic paper-based platform for whole blood creatinine detection. Chem. Eng. J., 2018, 348, 117-124.
[http://dx.doi.org/10.1016/j.cej.2018.04.191]
[89]
Park, C.; Kim, H.R.; Kim, S.K.; Jeong, I.K.; Pyun, J.C.; Park, S. Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood. ACS Appl. Mater. Interfaces, 2019, 11(40), 36428-36434.
[http://dx.doi.org/10.1021/acsami.9b13644] [PMID: 31512861]
[90]
Laurenciano, C.J.D.; Tseng, C.C.; Chen, S.J.; Lu, S.Y.; Tayo, L.L.; Fu, L.M. Microfluidic colorimetric detection platform with sliding hy-brid PMMA/paper microchip for human urine and blood sample analysis. Talanta, 2021, 231, 122362.
[http://dx.doi.org/10.1016/j.talanta.2021.122362] [PMID: 33965028]
[91]
Niu, J.; Bao, Z.; Wei, Z.; Li, J.X.; Gao, B.; Jiang, X.; Li, F. A three-dimensional paper-based isoelectric focusing device for direct analysis of proteins in physiological samples. Anal. Chem., 2021, 93(8), 3959-3967.
[http://dx.doi.org/10.1021/acs.analchem.0c04883] [PMID: 33595273]
[92]
Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem., 2009, 81(14), 5821-5826.
[http://dx.doi.org/10.1021/ac9007573] [PMID: 19485415]
[93]
Patel, B.A. Amperometry and potential step techniques. Electrochem. Bioanal., 2020, 2020, 9-26.
[http://dx.doi.org/10.1016/B978-0-12-821203-5.00009-9]
[94]
Lomae, A.; Nantaphol, S.; Kondo, T.; Chailapakul, O.; Siangproh, W.; Panchompoo, J. Simultaneous determination of β-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modified BDD electrode. J. Electroanal. Chem. (Lausanne), 2019, 840, 439-448.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.003]
[95]
Charoenkitamorn, K.; Chailapakul, O.; Siangproh, W. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta, 2015, 132, 416-423.
[http://dx.doi.org/10.1016/j.talanta.2014.09.020] [PMID: 25476326]
[96]
Panraksa, Y.; Siangproh, W.; Khampieng, T.; Chailapakul, O.; Apilux, A. Paper-based amperometric sensor for determination of acetyl-cholinesterase using screen-printed graphene electrode. Talanta, 2018, 178, 1017-1023.
[http://dx.doi.org/10.1016/j.talanta.2017.08.096] [PMID: 29136790]
[97]
Dossi, N.; Toniolo, R.; Impellizzieri, F.; Tubaro, F.; Bontempelli, G.; Terzi, F.; Piccin, E. A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil. Anal. Chim. Acta, 2017, 950, 41-48.
[http://dx.doi.org/10.1016/j.aca.2016.11.030] [PMID: 27916128]
[98]
Ruiz-Vega, G.; Kitsara, M.; Pellitero, M.A.; Baldrich, E.; del Campo, F.J. Electrochemical lateral flow devices: towards rapid immunomag-netic assays. ChemElectroChem, 2017, 4(4), 880-889.
[http://dx.doi.org/10.1002/celc.201600902]
[99]
Nantaphol, S.; Kava, A.A.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Anal. Chim. Acta, 2019, 1056, 88-95.
[http://dx.doi.org/10.1016/j.aca.2019.01.026] [PMID: 30797465]
[100]
Torul, H.; Yarali, E.; Eksin, E.; Ganguly, A.; Benson, J.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-based electrochemical biosen-sors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparti-cle electrodes. Biosensors (Basel), 2021, 11(7), 236.
[http://dx.doi.org/10.3390/bios11070236] [PMID: 34356708]
[101]
Srisomwat, C.; Yakoh, A.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Amplification-free DNA sensor for the one-step detection of the hepatitis B virus using an automated paper-based lateral flow electrochemical device. Anal. Chem., 2021, 93(5), 2879-2887.
[http://dx.doi.org/10.1021/acs.analchem.0c04283] [PMID: 33326737]
[102]
Viswanathan, S.; Radecka, H.; Radecki, J. Electrochemical biosensors for food analysis. Monatsh. Chem., 2009, 140(8), 891-899.
[http://dx.doi.org/10.1007/s00706-009-0143-5]
[103]
Bell, J.G.; Mousavi, M.P.S.; Abd El-Rahman, M.K.; Tan, E.K.W.; Homer-Vanniasinkam, S.; Whitesides, G.M. Paper-based potentiometric sensing of free bilirubin in blood serum. Biosens. Bioelectron., 2019, 126, 115-121.
[http://dx.doi.org/10.1016/j.bios.2018.10.055] [PMID: 30396018]
[104]
Ruecha, N.; Chailapakul, O.; Suzuki, K.; Citterio, D. Fully inkjet-printed paper-based potentiometric ion-sensing devices. Anal. Chem., 2017, 89(19), 10608-10616.
[http://dx.doi.org/10.1021/acs.analchem.7b03177] [PMID: 28849646]
[105]
Dolai, S.; Tabib-Azar, M. Whole virus detection using aptamers and paper‐based sensor potentiometry. Med. Devices Sens., 2020, 3(6), e10112.
[http://dx.doi.org/10.1002/mds3.10112] [PMID: 32838210]
[106]
Prodromidis, M.I. Impedimetric immunosensors-A review. Electrochim. Acta, 2010, 55(14), 4227-4233.
[http://dx.doi.org/10.1016/j.electacta.2009.01.081]
[107]
Miura, D.; Asano, R. Biosensors: Immunosensors. Encycloped. Sens. Biosens., 2023, 1, 298-314.
[http://dx.doi.org/10.1016/B978-0-12-822548-6.00008-X]
[108]
Yarali, E.; Eksin, E.; Torul, H.; Ganguly, A.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Impedimetric detection of miRNA biomarkers using paper-based electrodes modified with bulk crystals or nanosheets of molybdenum disulfide. Talanta, 2022, 241, 123233.
[http://dx.doi.org/10.1016/j.talanta.2022.123233] [PMID: 35074681]
[109]
Ganguly, A.; Ebrahimzadeh, T.; Zimmern, P.E.; De Nisco, N.J.; Prasad, S. Label free, lateral flow prostaglandin E2 electrochemical im-munosensor for urinary tract infection diagnosis. Chemosensors (Basel), 2021, 9(9), 271.
[http://dx.doi.org/10.3390/chemosensors9090271]
[110]
Caratelli, V.; Ciampaglia, A.; Guiducci, J.; Sancesario, G.; Moscone, D.; Arduini, F. Precision medicine in Alzheimer’s disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosens. Bioelectron., 2020, 165, 112411.
[http://dx.doi.org/10.1016/j.bios.2020.112411] [PMID: 32729530]
[111]
Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Advances, 2019, 9(10), 5674-5681.
[http://dx.doi.org/10.1039/C8RA09157A] [PMID: 35515907]
[112]
Boonkaew, S.; Yakoh, A.; Chuaypen, N.; Tangkijvanich, P.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. Biosens. Bioelectron., 2021, 193, 113543.
[http://dx.doi.org/10.1016/j.bios.2021.113543] [PMID: 34416431]
[113]
Boonkaew, S.; Teengam, P.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. Cost-effective paper-based electrochemical im-munosensor using a label-free assay for sensitive detection of ferritin. Analyst (Lond.), 2020, 145(14), 5019-5026.
[http://dx.doi.org/10.1039/D0AN00564A] [PMID: 32520014]
[114]
Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron., 2021, 176, 112912.
[http://dx.doi.org/10.1016/j.bios.2020.112912] [PMID: 33358057]
[115]
Zhou, C.; Cui, K.; Liu, Y.; Hao, S.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive microfluidic paper-based electrochemical/visual analytical de-vice via signal amplification of Pd@hollow Zn/Co core-shell ZIF67/ZIF8 nanoparticles for prostate-specific antigen detection. Anal. Chem., 2021, 93(13), 5459-5467.
[http://dx.doi.org/10.1021/acs.analchem.0c05134] [PMID: 33755444]
[116]
Wang, Y.; Sun, S.; Luo, J.; Xiong, Y.; Ming, T.; Liu, J.; Ma, Y.; Yan, S.; Yang, Y.; Yang, Z.; Reboud, J.; Yin, H.; Cooper, J.M.; Cai, X. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst. Nanoeng., 2020, 6(1), 32.
[http://dx.doi.org/10.1038/s41378-020-0146-2] [PMID: 34567646]
[117]
Ming, T.; Cheng, Y.; Xing, Y.; Luo, J.; Mao, G.; Liu, J.; Sun, S.; Kong, F.; Jin, H.; Cai, X. Electrochemical microfluidic paper-based ap-tasensor platform based on a biotin-streptavidin system for label-free detection of biomarkers. ACS Appl. Mater. Interfaces, 2021, 13(39), 46317-46324.
[http://dx.doi.org/10.1021/acsami.1c12716] [PMID: 34546713]
[118]
Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; Yin, H.; Cai, X. Label-free microfluidic paper-based electrochem-ical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens. Bioelectron., 2019, 136, 84-90.
[http://dx.doi.org/10.1016/j.bios.2019.04.032] [PMID: 31039491]
[119]
Srisomwat, C.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sens. Actuat. Biol. Chem., 2020, 316, 128077.
[http://dx.doi.org/10.1016/j.snb.2020.128077]
[120]
Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multi-plexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuat. Biol. Chem., 2021, 330, 129336.
[http://dx.doi.org/10.1016/j.snb.2020.129336]
[121]
Qi, J.; Li, B.; Zhou, N.; Wang, X.; Deng, D.; Luo, L.; Chen, L. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens. Bioelectron., 2019, 142, 111533.
[http://dx.doi.org/10.1016/j.bios.2019.111533] [PMID: 31377573]
[122]
Cui, K.; Zhou, C.; Zhang, B.; Zhang, L.; Liu, Y.; Hao, S.; Tang, X.; Huang, Y.; Yu, J. Enhanced catalytic activity induced by the nanostruc-turing effect in Pd decoration onto doped ceria enabling an origami paper analytical device for high performance of amyloid-beta bioassay. ACS Appl. Mater. Interfaces, 2021, 13(29), 33937-33947.
[http://dx.doi.org/10.1021/acsami.1c09760] [PMID: 34279896]
[123]
Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Hao, S.; Ge, S.; Yu, J. Bi2S3@MoS2 nanoflowers on cellulose fibers combined with octahedral CeO2 for dual-mode microfluidic paper-based miRNA-141 sensors. ACS Appl. Mater. Interfaces, 2021, 13(28), 32780-32789.
[http://dx.doi.org/10.1021/acsami.1c07669] [PMID: 34228452]
[124]
Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Xu, M.; Ge, S.; Wang, Y.; Yu, J. Ultrasensitive lab-on-paper device via Cu/Co double-doped CeO2 nanospheres as signal amplifiers for electrochemical/visual sensing of miRNA-155. Sens. Actuat. Biol. Chem., 2020, 321, 128499.
[http://dx.doi.org/10.1016/j.snb.2020.128499]
[125]
Yakoh, A.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. 3D capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications. ACS Sens., 2019, 4(5), 1211-1221.
[http://dx.doi.org/10.1021/acssensors.8b01574] [PMID: 30969113]
[126]
Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal. Chim. Acta, 2018, 1044, 102-109.
[http://dx.doi.org/10.1016/j.aca.2018.07.045] [PMID: 30442390]
[127]
Ruecha, N.; Shin, K.; Chailapakul, O.; Rodthongkum, N. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens. Actuat. Biol. Chem., 2019, 279, 298-304.
[http://dx.doi.org/10.1016/j.snb.2018.10.024]
[128]
Fava, E.L.; Silva, T.A.; Prado, T.M.; Moraes, F.C.; Faria, R.C.; Fatibello-Filho, O. Electrochemical paper-based microfluidic device for high throughput multiplexed analysis. Talanta, 2019, 203, 280-286.
[http://dx.doi.org/10.1016/j.talanta.2019.05.081] [PMID: 31202339]
[129]
Fava, E.L.; Martimiano do Prado, T.; Almeida Silva, T.; Cruz de Moraes, F.; Censi Faria, R.; Fatibello-Filho, O. New disposable electro-chemical paper‐based microfluidic device with multiplexed electrodes for biomarkers determination in urine Sample. Electroanalysis, 2020, 32(5), 1075-1083.
[http://dx.doi.org/10.1002/elan.201900641]
[130]
Qin, X.; Liu, J.; Zhang, Z.; Li, J.; Yuan, L.; Zhang, Z.; Chen, L. Microfluidic paper-based chips in rapid detection: Current status, challeng-es, and perspectives. Trends Analyt. Chem., 2021, 143, 116371.
[http://dx.doi.org/10.1016/j.trac.2021.116371]
[131]
Gao, X.; Zhou, X.; Ma, Y.; Qian, T.; Wang, C.; Chu, F. Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the “on-off-on” fluorescence principle. Appl. Surf. Sci., 2019, 469, 911-916.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.095]
[132]
Álvarez-Diduk, R.; Orozco, J.; Merkoçi, A. Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Sci. Rep., 2017, 7(1), 976.
[http://dx.doi.org/10.1038/s41598-017-01134-3] [PMID: 28428623]
[133]
Copur, F.; Bekar, N.; Zor, E.; Alpaydin, S.; Bingol, H. Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots. Sens. Actuators B Chem., 2019, 279, 305-312.
[http://dx.doi.org/10.1016/j.snb.2018.10.026]
[134]
Apilux, A.; Siangproh, W.; Insin, N.; Chailapakul, O.; Prachayasittikul, V. Paper-based thioglycolic acid (TGA)-capped CdTe QD device for rapid screening of organophosphorus and carbamate insecticides. Anal. Methods, 2017, 9(3), 519-527.
[http://dx.doi.org/10.1039/C6AY02883G]
[135]
Teengam, P.; Nisab, N.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Fluorescent paper-based DNA sensor using pyrrol-idinyl peptide nucleic acids for hepatitis C virus detection. Biosens. Bioelectron., 2021, 189, 113381.
[http://dx.doi.org/10.1016/j.bios.2021.113381] [PMID: 34090155]
[136]
He, M.; Shang, N.; Zhu, Q.; Xu, J. Paper-based upconversion fluorescence aptasensor for the quantitative detection of immunoglobulin E in human serum. Anal. Chim. Acta, 2021, 1143, 93-100.
[http://dx.doi.org/10.1016/j.aca.2020.11.036] [PMID: 33384135]
[137]
He, K.; Zhan, X.; Liu, L.; Ruan, X.; Wu, Y. Ratiometric fluorescent paper-based sensor based on CdTe quantum dots and graphite carbon nitride hybrid for visual and rapid determination of Cu2+ in drinks. Photochem. Photobiol., 2020, 96(5), 1154-1160.
[http://dx.doi.org/10.1111/php.13271] [PMID: 32242937]
[138]
Chen, H.; Hu, O.; Fan, Y.; Xu, L.; Zhang, L.; Lan, W.; Hu, Y.; Xie, X.; Ma, L.; She, Y.; Fu, H. Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chem., 2020, 327, 127075.
[http://dx.doi.org/10.1016/j.foodchem.2020.127075] [PMID: 32446026]
[139]
Wilkins, M.D.; Turner, B.L.; Rivera, K.R.; Menegatti, S.; Daniele, M. Quantum dot enabled lateral flow immunoassay for detection of cardiac biomarker NT-proBNP. Sens. Biosensing Res., 2018, 21, 46-53.
[http://dx.doi.org/10.1016/j.sbsr.2018.10.002]
[140]
Tang, J.; Wu, L.; Lin, J.; Zhang, E.; Luo, Y. Development of quantum dot‐based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin‐6. J. Clin. Lab. Anal., 2021, 35(5), e23752.
[http://dx.doi.org/10.1002/jcla.23752] [PMID: 33760265]
[141]
Chen, J.; Huang, Z.; Meng, H.; Zhang, L.; Ji, D.; Liu, J.; Yu, F.; Qu, L.; Li, Z. A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sens. Actuat. Biol. Chem., 2018, 260, 770-777.
[http://dx.doi.org/10.1016/j.snb.2018.01.101]
[142]
Liu, J.; Ji, D.; Meng, H.; Zhang, L.; Wang, J.; Huang, Z.; Chen, J.; Li, J.; Li, Z. A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip. Sens. Actuat. Biol. Chem., 2018, 262, 486-492.
[http://dx.doi.org/10.1016/j.snb.2018.02.040]
[143]
Wang, C.; Shi, D.; Wan, N.; Yang, X.; Liu, H.; Gao, H.; Zhang, M.; Bai, Z.; Li, D.; Dai, E.; Rong, Z.; Wang, S. Development of spike pro-tein-based fluorescence lateral flow assay for the simultaneous detection of SARS-CoV-2 specific IgM and IgG. Analyst (Lond.), 2021, 146(12), 3908-3917.
[http://dx.doi.org/10.1039/D1AN00304F] [PMID: 33970172]
[144]
Ao, L.; Liao, T.; Huang, L.; Lin, S.; Xu, K.; Ma, J.; Qiu, S.; Wang, X.; Zhang, Q. Sensitive and simultaneous detection of multi-index lung cancer biomarkers by an NIR-II fluorescence lateral-flow immunoassay platform. Chem. Eng. J., 2022, 436, 135204.
[http://dx.doi.org/10.1016/j.cej.2022.135204]
[145]
Rong, Z.; Wang, Q.; Sun, N.; Jia, X.; Wang, K.; Xiao, R.; Wang, S. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal. Chim. Acta, 2019, 1055, 140-147.
[http://dx.doi.org/10.1016/j.aca.2018.12.043] [PMID: 30782365]
[146]
Hemmilä, I.; Dakubu, S.; Mukkala, V.M.; Siitari, H.; Lövgren, T. Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem., 1984, 137(2), 335-343.
[http://dx.doi.org/10.1016/0003-2697(84)90095-2] [PMID: 6375455]
[147]
Saha, A.K.; Kross, K.; Kloszewski, E.D.; Upson, D.A.; Toner, J.L.; Snow, R.A.; Black, C.D.V.; Desai, V.C. Time-resolved fluorescence of a new europium-chelate complex: demonstration of highly sensitive detection of protein and DNA samples. J. Am. Chem. Soc., 1993, 115(23), 11032-11033.
[http://dx.doi.org/10.1021/ja00076a088]
[148]
Wang, Z.; Yuan, J.; Matsumoto, K. Synthesis and fluorescence properties of the europium(III) chelate of a polyacid derivative of terpyri-dine. Luminescence, 2005, 20(4-5), 347-351.
[http://dx.doi.org/10.1002/bio.843] [PMID: 16134223]
[149]
Wang, Q.; Nchimi Nono, K.; Syrjänpää, M.; Charbonnière, L.J.; Hovinen, J.; Härmä, H. Stable and highly fluorescent europium(III) che-lates for time-resolved immunoassays. Inorg. Chem., 2013, 52(15), 8461-8466.
[http://dx.doi.org/10.1021/ic400384f] [PMID: 23837738]
[150]
Shao, X.Y.; Wang, C.R.; Xie, C.M.; Wang, X.G.; Liang, R.L.; Xu, W.W. Rapid and sensitive lateral flow immunoassay method for procalci-tonin (PCT) based on time-resolved immunochromatography. Sensors (Basel), 2017, 17(3), 480.
[http://dx.doi.org/10.3390/s17030480] [PMID: 28264502]
[151]
Huang, D.; Ying, H.; Jiang, D.; Liu, F.; Tian, Y.; Du, C.; Zhang, L.; Pu, X. Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay. Anal. Biochem., 2020, 588, 113468.
[http://dx.doi.org/10.1016/j.ab.2019.113468] [PMID: 31585097]
[152]
Wang, D.; He, S.; Wang, X.; Yan, Y.; Liu, J.; Wu, S.; Liu, S.; Lei, Y.; Chen, M.; Li, L.; Zhang, J.; Zhang, L.; Hu, X.; Zheng, X.; Bai, J.; Zhang, Y.; Zhang, Y.; Song, M.; Tang, Y. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng., 2020, 4(12), 1150-1158.
[http://dx.doi.org/10.1038/s41551-020-00655-z] [PMID: 33273714]
[153]
Lee, K.W.; Kim, K.R.; Chun, H.J.; Jeong, K.Y.; Hong, D.K.; Lee, K.N.; Yoon, H.C. Time-resolved fluorescence resonance energy transfer-based lateral flow immunoassay using a raspberry-type europium particle and a single membrane for the detection of cardiac troponin I. Biosens. Bioelectron., 2020, 163, 112284.
[http://dx.doi.org/10.1016/j.bios.2020.112284] [PMID: 32421632]
[154]
Ulep, T.H.; Yoon, J.Y. Challenges in paper-based fluorogenic optical sensing with smartphones. Nano Converg., 2018, 5(1), 14-14.
[http://dx.doi.org/10.1186/s40580-018-0146-1] [PMID: 29755926]
[155]
Kim, K.R.; Han, Y.D.; Chun, H.J.; Lee, K.W.; Hong, D-K.; Lee, K-N.; C. Yoon, H. C. Yoon H: Encapsulation-stabilized, europium contain-ing nanoparticle as a probe for time-resolved luminescence detection of cardiac troponin I. Biosensors (Basel), 2017, 7(4), E48.
[http://dx.doi.org/10.3390/bios7040048] [PMID: 29057816]
[156]
Preechakasedkit, P.; Osada, K.; Katayama, Y.; Ruecha, N.; Suzuki, K.; Chailapakul, O.; Citterio, D. Gold nanoparticle core–europium(III) chelate fluorophore-doped silica shell hybrid nanocomposites for the lateral flow immunoassay of human thyroid stimulating hormone with a dual signal readout. Analyst (Lond.), 2018, 143(2), 564-570.
[http://dx.doi.org/10.1039/C7AN01799E] [PMID: 29260807]
[157]
Chen, Y.; Chen, Q.; Han, M.; Liu, J.; Zhao, P.; He, L.; Zhang, Y.; Niu, Y.; Yang, W.; Zhang, L. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens. Bioelectron., 2016, 79, 430-434.
[http://dx.doi.org/10.1016/j.bios.2015.12.062] [PMID: 26741531]
[158]
Niedbala, R.S.; Feindt, H.; Kardos, K.; Vail, T.; Burton, J.; Bielska, B.; Li, S.; Milunic, D.; Bourdelle, P.; Vallejo, R. Detection of analytes by immunoassay using up-converting phosphor technology. Anal. Biochem., 2001, 293(1), 22-30.
[http://dx.doi.org/10.1006/abio.2001.5105] [PMID: 11373074]
[159]
Yang, X.; Liu, L.; Hao, Q.; Zou, D.; Zhang, X.; Zhang, L.; Li, H.; Qiao, Y.; Zhao, H.; Zhou, L. Development and evaluation of up-converting phosphor technology-based lateral flow assay for quantitative detection of NT-proBNP in blood. PLoS One, 2017, 12(2), e0171376.
[http://dx.doi.org/10.1371/journal.pone.0171376] [PMID: 28151978]
[160]
You, M.; Lin, M.; Gong, Y.; Wang, S.; Li, A.; Ji, L.; Zhao, H.; Ling, K.; Wen, T.; Huang, Y.; Gao, D.; Ma, Q.; Wang, T.; Ma, A.; Li, X.; Xu, F. Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 2017, 11(6), 6261-6270.
[http://dx.doi.org/10.1021/acsnano.7b02466] [PMID: 28482150]
[161]
Ji, T.; Xu, X.; Wang, X.; Zhou, Q.; Ding, W.; Chen, B.; Guo, X.; Hao, Y.; Chen, G. Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples. Sens. Actuat. Biol. Chem., 2019, 282, 309-316.
[http://dx.doi.org/10.1016/j.snb.2018.11.074]
[162]
Cho, J.H.; Kim, M.H.; Mok, R.S.; Jeon, J.W.; Lim, G.S.; Chai, C.Y.; Paek, S.H. Two-dimensional paper chromatography-based fluorescent immunosensor for detecting acute myocardial infarction markers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 967, 139-146.
[http://dx.doi.org/10.1016/j.jchromb.2014.07.026] [PMID: 25089959]
[163]
Guo, X.; Zong, L.; Jiao, Y.; Han, Y.; Zhang, X.; Xu, J.; Li, L.; Zhang, C.; Liu, Z.; Ju, Q.; Liu, J.; Xu, Z.; Yu, H.D.; Huang, W. Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nanowires. Anal. Chem., 2019, 91(14), 9300-9307.
[http://dx.doi.org/10.1021/acs.analchem.9b02557] [PMID: 31241314]
[164]
Jiao, Y.; Du, C.; Zong, L.; Guo, X.; Han, Y.; Zhang, X.; Li, L.; Zhang, C.; Ju, Q.; Liu, J.; Yu, H.D.; Huang, W. 3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sens. Actuat. Biol. Chem., 2020, 306, 127239.
[http://dx.doi.org/10.1016/j.snb.2019.127239]
[165]
Zhu, Y.; Tong, X.; Wei, Q.; Cai, G.; Cao, Y.; Tong, C.; Shi, S.; Wang, F. 3D origami paper-based ratiometric fluorescent microfluidic de-vice for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase. Biosens. Bioelectron., 2022, 196, 113691.
[http://dx.doi.org/10.1016/j.bios.2021.113691] [PMID: 34637993]
[166]
Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta, 2000, 51(3), 415-439.
[http://dx.doi.org/10.1016/S0039-9140(99)00294-5] [PMID: 18967873]
[167]
Zhang, Z.; Zhang, S.; Zhang, X. Recent developments and applications of chemiluminescence sensors. Anal. Chim. Acta, 2005, 541(1-2), 37-46.
[http://dx.doi.org/10.1016/j.aca.2004.11.069] [PMID: 29569553]
[168]
Hao, M.; Liu, N.; Ma, Z. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst (Lond.), 2013, 138(15), 4393-4397.
[http://dx.doi.org/10.1039/c3an00451a] [PMID: 23732463]
[169]
Wang, J.; Li, W.; Ban, L.; Du, W.; Feng, X.; Liu, B.F. A paper-based device with an adjustable time controller for the rapid determination of tumor biomarkers. Sens. Actuators B Chem., 2018, 254, 855-862.
[http://dx.doi.org/10.1016/j.snb.2017.07.192]
[170]
Guo, X.; Guo, Y.; Liu, W.; Chen, Y.; Chu, W. Fabrication of paper-based microfluidic device by recycling foamed plastic and the applica-tion for multiplexed measurement of biomarkers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 223, 117341.
[http://dx.doi.org/10.1016/j.saa.2019.117341] [PMID: 31319269]
[171]
Chu, W.; Chen, Y.; Liu, W.; Zhao, M.; Li, H. Paper-based chemiluminescence immunodevice with temporal controls of reagent transport technique. Sens. Actuat. Biol. Chem., 2017, 250, 324-332.
[http://dx.doi.org/10.1016/j.snb.2017.04.126]
[172]
Chen, Y.; Chu, W.; Liu, W.; Guo, X.; Jin, Y.; Li, B. Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Mikrochim. Acta, 2018, 185(3), 187.
[http://dx.doi.org/10.1007/s00604-018-2726-5] [PMID: 29594707]
[173]
Han, G-R. Kim, M-G Highly sensitive chemiluminescence-based lateral flow immunoassay for cardiac troponin I detection in human se-rum. Sensors, 2020, 20(9), s20092593.
[http://dx.doi.org/10.3390/s20092593]
[174]
Roda, A.; Cavalera, S.; Di Nardo, F.; Calabria, D.; Rosati, S.; Simoni, P.; Colitti, B.; Baggiani, C.; Roda, M.; Anfossi, L. Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease. Biosens. Bioelectron., 2021, 172, 112765.
[http://dx.doi.org/10.1016/j.bios.2020.112765] [PMID: 33126179]
[175]
Liu, D.; Ju, C.; Han, C.; Shi, R.; Chen, X.; Duan, D.; Yan, J.; Yan, X. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron., 2021, 173, 112817.
[http://dx.doi.org/10.1016/j.bios.2020.112817] [PMID: 33221508]
[176]
Calabria, D.; Zangheri, M.; Trozzi, I.; Lazzarini, E.; Pace, A.; Mirasoli, M.; Guardigli, M. Smartphone-based chemiluminescent origami µPAD for the rapid assessment of glucose blood levels. Biosensors (Basel), 2021, 11(10), 381.
[http://dx.doi.org/10.3390/bios11100381] [PMID: 34677337]
[177]
Li, F.; Liu, J.; Guo, L.; Wang, J.; Zhang, K.; He, J.; Cui, H. High-resolution temporally resolved chemiluminescence based on double-layered 3D microfluidic paper-based device for multiplexed analysis. Biosens. Bioelectron., 2019, 141, 111472.
[http://dx.doi.org/10.1016/j.bios.2019.111472] [PMID: 31272061]
[178]
Yang, R.; Li, F.; Zhang, W.; Shen, W.; Yang, D.; Bian, Z.; Cui, H. Chemiluminescence immunoassays for simultaneous detection of three heart disease biomarkers using magnetic carbon composites and three-dimensional microfluidic paper-based device. Anal. Chem., 2019, 91(20), 13006-13013.
[http://dx.doi.org/10.1021/acs.analchem.9b03066] [PMID: 31525898]
[179]
Li, F.; Guo, L.; Hu, Y.; Li, Z.; Liu, J.; He, J.; Cui, H. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta, 2020, 207, 120346.
[http://dx.doi.org/10.1016/j.talanta.2019.120346] [PMID: 31594588]
[180]
Deng, J.; Yang, M.; Wu, J.; Zhang, W.; Jiang, X. A self-contained chemiluminescent lateral flow assay for point-of-care testing. Anal. Chem., 2018, 90(15), 9132-9137.
[http://dx.doi.org/10.1021/acs.analchem.8b01543] [PMID: 30004664]
[181]
Han, G.R.; Ki, H.; Kim, M.G. Automated, universal, and mass-producible paper-based lateral flow biosensing platform for high-performance point-of-care testing. ACS Appl. Mater. Interfaces, 2020, 12(1), 1885-1894.
[http://dx.doi.org/10.1021/acsami.9b17888] [PMID: 31813220]
[182]
Chinnadayyala, S.R.; Park, J.; Le, H.T.N.; Santhosh, M.; Kadam, A.N.; Cho, S. Recent advances in microfluidic paper-based electrochemi-luminescence analytical devices for point-of-care testing applications. Biosens. Bioelectron., 2019, 126, 68-81.
[http://dx.doi.org/10.1016/j.bios.2018.10.038] [PMID: 30391911]
[183]
Bhaiyya, M.; Pattnaik, P.K.; Goel, S. A brief review on miniaturized electrochemiluminescence devices: From fabrication to applications. Curr. Opin. Electrochem., 2021, 30, 100800.
[http://dx.doi.org/10.1016/j.coelec.2021.100800]
[184]
Babamiri, B.; Bahari, D.; Salimi, A. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions. Biosens. Bioelectron., 2019, 142, 111530.
[http://dx.doi.org/10.1016/j.bios.2019.111530] [PMID: 31398687]
[185]
Chen, Y.; Wang, J.; Liu, Z.; Wang, X.; Li, X.; Shan, G. A simple and versatile paper-based electrochemiluminescence biosensing platform for hepatitis B virus surface antigen detection. Biochem. Eng. J., 2018, 129, 1-6.
[http://dx.doi.org/10.1016/j.bej.2017.10.012]
[186]
Sun, X.; Li, B.; Tian, C.; Yu, F.; Zhou, N.; Zhan, Y.; Chen, L. Rotational paper-based electrochemiluminescence immunodevices for sensi-tive and multiplexed detection of cancer biomarkers. Anal. Chim. Acta, 2018, 1007, 33-39.
[http://dx.doi.org/10.1016/j.aca.2017.12.005] [PMID: 29405986]
[187]
Liu, C.; Wang, D.; Zhang, C. A novel paperfluidic closed bipolar electrode-electrochemiluminescence sensing platform: Potential for mul-tiplex detection at crossing-channel closed bipolar electrodes. Sens. Actuat. Biol. Chem., 2018, 270, 341-352.
[http://dx.doi.org/10.1016/j.snb.2018.04.180]
[188]
Boobphahom, S.; Nguyet Ly, M.; Soum, V.; Pyun, N.; Kwon, O.S.; Rodthongkum, N.; Shin, K. Recent advances in microfluidic paper-based analytical devices toward high-throughput screening. Molecules, 2020, 25(13), 2970.
[http://dx.doi.org/10.3390/molecules25132970] [PMID: 32605281]
[189]
Zhang, X.; Ding, S.N. Graphite paper-based bipolar electrode electrochemiluminescence sensing platform. Biosens. Bioelectron., 2017, 94, 47-55.
[http://dx.doi.org/10.1016/j.bios.2017.02.033] [PMID: 28257974]
[190]
Yang, H.; Zhang, Y.; Li, L.; Zhang, L.; Lan, F.; Yu, J. Sudoku-like lab-on-paper cyto-device with dual enhancement of electrochemilumi-nescence intermediates strategy. Anal. Chem., 2017, 89(14), 7511-7519.
[http://dx.doi.org/10.1021/acs.analchem.7b01194] [PMID: 28635254]
[191]
Cao, L.; Han, G.C.; Xiao, H.; Chen, Z.; Fang, C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal. Chim. Acta, 2020, 1096, 34-43.
[http://dx.doi.org/10.1016/j.aca.2019.10.049] [PMID: 31883589]
[192]
Wang, F.; Liu, Y.; Fu, C.; Li, N.; Du, M.; Zhang, L.; Ge, S.; Yu, J. Paper-based bipolar electrode electrochemiluminescence platform for detection of multiple miRNAs. Anal. Chem., 2021, 93(3), 1702-1708.
[http://dx.doi.org/10.1021/acs.analchem.0c04307] [PMID: 33369382]
[193]
Wang, F.; Fu, C.; Huang, C.; Li, N.; Wang, Y.; Ge, S.; Yu, J. Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosens. Bioelectron., 2020, 150, 111917.
[http://dx.doi.org/10.1016/j.bios.2019.111917] [PMID: 31784310]
[194]
Wang, D.; Liu, C.; Liang, Y.; Su, Y.; Shang, Q.; Zhang, C. A simple and sensitive paper-based bipolar electrochemiluminescence biosensor for detection of oxidase-substrate biomarkers in serum. J. Electrochem. Soc., 2018, 165(9), B361-B369.
[http://dx.doi.org/10.1149/2.0551809jes]
[195]
Szaniawska, A.; Kudelski, A. Applications of surface-enhanced raman scattering in biochemical and medical analysis. Front Chem., 2021, 9, 664134.
[http://dx.doi.org/10.3389/fchem.2021.664134] [PMID: 34026727]
[196]
Marques, A.C.; Águas, H.; Martins, R.; Costa-Silva, B.; Sales, M.G.; Fortunato, E. Surface-enhanced raman scattering paper-based analyti-cal devices; Anal. Dev. Chem. Anal. Diagnos, 2022, pp. 117-167.
[http://dx.doi.org/10.1016/B978-0-12-820534-1.00001-3]
[197]
Hoang, T.X.; Phan, L.M.T.; Vo, T.A.T.; Cho, S. Advanced signal-amplification strategies for paper-based analytical devices: A compre-hensive review. Biomedicines, 2021, 9(5), 540.
[http://dx.doi.org/10.3390/biomedicines9050540] [PMID: 34066112]
[198]
Hu, S.W.; Qiao, S.; Pan, J.B.; Kang, B.; Xu, J.J.; Chen, H.Y. A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta, 2018, 179, 9-14.
[http://dx.doi.org/10.1016/j.talanta.2017.10.038] [PMID: 29310319]
[199]
Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuat. Biol. Chem., 2019, 285, 462-469.
[http://dx.doi.org/10.1016/j.snb.2019.01.090]
[200]
Lu, D.; Ran, M.; Liu, Y.; Xia, J.; Bi, L.; Cao, X. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer–associated serum biomarkers. Anal. Bioanal. Chem., 2020, 412(26), 7099-7112.
[http://dx.doi.org/10.1007/s00216-020-02843-x] [PMID: 32737551]
[201]
Li, C.; Liu, Y.; Zhou, X.; Wang, Y. A paper-based SERS assay for sensitive duplex cytokine detection towards the atherosclerosis-associated disease diagnosis. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(16), 3582-3589.
[http://dx.doi.org/10.1039/C9TB02469G] [PMID: 31872850]
[202]
Mabbott, S.; Fernandes, S.C.; Schechinger, M.; Cote, G.L.; Faulds, K.; Mace, C.R.; Graham, D. Detection of cardiovascular disease associ-ated miR-29a using paper-based microfluidics and surface enhanced Raman scattering. Analyst (Lond.), 2020, 145(3), 983-991.
[http://dx.doi.org/10.1039/C9AN01748H] [PMID: 31829323]
[203]
Geng, Z.Q.; Zheng, J.J.; Li, Y.P.; Chen, Y.; Wang, P.; Han, C.Q.; Yang, G.H.; Qu, L.L. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection. Talanta, 2020, 220, 121340.
[http://dx.doi.org/10.1016/j.talanta.2020.121340] [PMID: 32928387]
[204]
Verma, M.; Naqvi, T.K.; Tripathi, S.K.; Kulkarni, M.M.; Eswara Prasad, N.; Dwivedi, P.K. Plasmonic paper based flexible SERS biosensor for highly sensitive detection of lactic and uric acid. IEEE Trans. Nanobiosci., 2021, 21(2), 294-300.
[http://dx.doi.org/10.1109/TNB.2021.3124055]
[205]
Su, Z.; Liu, H.; Chen, Y.; Gu, C.; Wei, G.; Jiang, T. Stable and sensitive SERS-based immunoassay enabled by core-shell immunoprobe and paper-based immunosubstrate. Sens. Actuators B, 2021, 347, 130606.
[http://dx.doi.org/10.1016/j.snb.2021.130606]
[206]
Han, S.; Zhang, C.; Lin, S.; Sha, X.; Hasi, W. Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 251, 119463.
[http://dx.doi.org/10.1016/j.saa.2021.119463] [PMID: 33493937]
[207]
Tegegne, W.A.; Su, W.N.; Beyene, A.B.; Huang, W.H.; Tsai, M.C.; Hwang, B.J. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Microchem. J., 2021, 168, 106349.
[http://dx.doi.org/10.1016/j.microc.2021.106349]
[208]
Lim, W.Y.; Goh, C.H.; Thevarajah, T.M.; Goh, B.T.; Khor, S.M. Using SERS-based microfluidic paper-based device (μPAD) for calibra-tion-free quantitative measurement of AMI cardiac biomarkers. Biosens. Bioelectron., 2020, 147, 111792.
[http://dx.doi.org/10.1016/j.bios.2019.111792] [PMID: 31678828]
[209]
Müller, R.H.; Clegg, D.L. Automatic paper chromatography. Anal. Chem., 1949, 21(9), 1123-1125.
[http://dx.doi.org/10.1021/ac60033a032]
[210]
Reyes, D.R.; van Heeren, H.; Guha, S.; Herbertson, L.; Tzannis, A.P.; Ducrée, J.; Bissig, H.; Becker, H. Accelerating innovation and com-mercialization through standardization of microfluidic-based medical devices. Lab Chip, 2021, 21(1), 9-21.
[http://dx.doi.org/10.1039/D0LC00963F] [PMID: 33289737]
[211]
Wang, H.L.; Chu, C.H.; Tsai, S.J.; Yang, R.J. Aspartate aminotransferase and alanine aminotransferase detection on paper-based analytical devices with inkjet printer-sprayed reagents. Micromachines (Basel), 2016, 7(1), 9.
[http://dx.doi.org/10.3390/mi7010009] [PMID: 30407381]
[212]
Jain, S.; Rajasingham, R.; Noubary, F.; Coonahan, E.; Schoeplein, R.; Baden, R.; Curry, M.; Afdhal, N.; Kumar, S.; Pollock, N.R. Perfor-mance of an optimized paper-based test for rapid visual measurement of alanine aminotransferase (ALT) in fingerstick and venipuncture samples. PLoS One, 2015, 10(5), e0128118.
[http://dx.doi.org/10.1371/journal.pone.0128118] [PMID: 26020244]
[213]
Lee, S.; Aranyosi, A.J.; Wong, M.D.; Hong, J.H.; Lowe, J.; Chan, C.; Garlock, D.; Shaw, S.; Beattie, P.D.; Kratochvil, Z.; Kubasti, N.; Seagers, K.; Ghaffari, R.; Swanson, C.D. Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosens. Bioelectron., 2016, 78, 290-299.
[http://dx.doi.org/10.1016/j.bios.2015.11.060] [PMID: 26630284]
[214]
Connelly, J.T.; Rolland, J.P.; Whitesides, G.M. “Paper Machine” for molecular diagnostics. Anal. Chem., 2015, 87(15), 7595-7601.
[http://dx.doi.org/10.1021/acs.analchem.5b00411] [PMID: 26104869]
[215]
Lee, S.; Mehta, S.; Erickson, D. Two-color lateral flow assay for multiplex detection of causative agents behind acute febrile illnesses. Anal. Chem., 2016, 88(17), 8359-8363.
[http://dx.doi.org/10.1021/acs.analchem.6b01828] [PMID: 27490379]
[216]
Shawar, R.; Weissfeld, A.S. FDA regulation of clinical microbiology diagnostic devices. J. Clin. Microbiol., 2011, 49(Suppl. 9), 11.
[http://dx.doi.org/10.1128/JCM.00821-11]
[217]
FDA. Wondfo USA Co., Ltd. Wondfo early result pregnancy test strip 2022. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfIVD/detail.cfm?id=4871&noclia=1
[218]
FDA. Easy Healthcare Corporation, easy@home HCG pregnancy test cassette., 2022. Available from: https://www.accessdata.fda. gov/scripts/cdrh/cfdocs/cfIVD/detail.cfm?id=8861&noclia=1
[219]
Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic point-of-care testing: Commercial landscape and future directions. Front. Bioeng. Biotechnol., 2021, 8, 602659.
[http://dx.doi.org/10.3389/fbioe.2020.602659] [PMID: 33520958]
[220]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[221]
Food and Drug Administration. At-home OTC COVID-19 diagnostic tests; , 2022. Available from: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/home-otc-covid-19-diagnostic-tests#footnoteref1_3rdanxb
[222]
Yin, B.; Wan, X.; Sohan, A.S.M.M.F.; Lin, X. Microfluidics-based POCT for SARS-CoV-2 diagnostics. Micromachines (Basel), 2022, 13(8), 1238.
[http://dx.doi.org/10.3390/mi13081238] [PMID: 36014162]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy