Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Optimization of Carotenoid Production by Rhodosporidium babjevae and Evaluation of Antifungal and Dyeing Activity

Author(s): Nastaran Salimi, Mahboobeh Madani* and Pegah Shakib*

Volume 17, Issue 1, 2023

Published on: 16 November, 2022

Page: [34 - 48] Pages: 15

DOI: 10.2174/2212796817666221103100531

Price: $65

conference banner
Abstract

Aims and Objective: The aim of this study was to evaluate the antifungal, dyeing activity and optimization of carotenoid production by Rhodosporidium babjevae.

Background: Rhodosporidium red yeast is one of the natural alternative sources of carotenoids. Carotenoids are produced by a wide variety of bacteria, algae, fungi ,and plants. These pigments serve a vital function as antioxidant protectors and have lately caught a lot of attention because of their positive impact on human health.

Methods: In this experimental-laboratory study, Rhodosporidium was isolated from different environmental sources in Isfahan. After carotenoid extraction based on the Davis method from Rhodosporidium, cell biomass, and the total amount of carotenoids were measured, and the carotenoid light absorption spectrum was determined. To optimize carotenoid production, one-factor and Taguchi methods evaluated incubation time factors, pH, nitrogen, and carbon source. Then, yeast carotenoid antifungal activity, minimum inhibitory concentration (MIC),and minimum fungicidal concentration (MFC) were determined. The stability of dye against washing, rubbing, and light was investigated to evaluate the carotenoid dyeing activity.

Results: The optimum condition for carotenoid production was 96 hours of incubation, 2 g L-1 peptone, pH 5.5, and 30 g L-1 glucose. The optimal conditions of Taguchi were performed, and production of 11.67 mg L-1 was obtained. The carotenoid pigment isolated from Rhodosporidium babjevae showed no anti-candida properties but has antifungal activity against A. flavus and A. niger. Woolen fabric had washing fastness of 2 and cotton fabric had a washing fastness of 3. The staining grade on woolen and cotton fabrics was 4. The grade of color fastness of woolen and cotton fabrics against dry rubbing was 5, while the grade of color fastness against wet rubbing was 2 and 4, respectively.

Conclusion: Based on the results, Rhodosporidium babjevae carotenoid is a suitable option for dyeing woolen and cotton fabrics with antifungal properties that can be used in industry. It is hoped that it can be used for the commercial production of carotenoids.

[1]
Malik, K.; Tokkas, J.; Goyal, S. Microbial pigments: A review. Int. J. Microb. Res. Technol., 2012, 1(4), 361-365.
[2]
Babitha, S. Microbial pigments. Biotechnology for agro-industrial residues utilisation; Springer: Germany, 2009, pp. 147-162.
[http://dx.doi.org/10.1007/978-1-4020-9942-7_8]
[3]
Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial pigments in the food industry-challenges and the way forward. Front. Nutr., 2019, 6, 7.
[http://dx.doi.org/10.3389/fnut.2019.00007] [PMID: 30891448]
[4]
Nigam, P.S.; Luke, J.S. Food additives: Production of microbial pigments and their antioxidant properties. Curr. Opin. Food Sci., 2016, 7, 93-100.
[http://dx.doi.org/10.1016/j.cofs.2016.02.004]
[5]
Rana, B.; Bhattacharyya, M.; Patni, B.; Arya, M.; Joshi, G.K. The realm of microbial pigments in the food color market. Front. Sustain. Food Syst., 2021, 5, 603892.
[http://dx.doi.org/10.3389/fsufs.2021.603892]
[6]
Ferreira, S.M.; Carneiro, H.C.; Alves, R.B.; Batista, A.C.S.; Da Silva, E.N., Jr.; Dias, G.G. UBI 31-38 peptide-coumarin conjugate: Photophysical features, imaging tracking and synergism with amphotericin B Against Cryptococcus. Curr. Top. Med. Chem., 2018, 18(2), 157-163.
[7]
Fiedor, J.; Burda, K.J.N. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, 6(2), 466-488.
[http://dx.doi.org/10.3390/nu6020466]
[8]
Rapoport, A.; Guzhova, I.; Bernetti, L.; Buzzini, P.; Kieliszek, M.; Kot, A.M.J.M. Carotenoids and some other pigments from fungi and yeasts. Metabolites, 2021, 11(2), 92.
[http://dx.doi.org/10.3390/metabo11020092]
[9]
Vargas, S.A.F.; Ramírez, C.M. Yeast carotenoids: Production and activity as antimicrobial biomolecule. Arch. Microbiol., 2021, 203, 873-888.
[10]
Tuli, H.S.; Chaudhary, P.; Beniwal, V.; Sharma, A.K. Microbial pigments as natural color sources: Current trends and future perspectives. J. Food Sci. Technol., 2015, 52(8), 4669-4678.
[http://dx.doi.org/10.1007/s13197-014-1601-6] [PMID: 26243889]
[11]
Narsing, R.M.P.; Xiao, M.; Li, W.J. Fungal and bacterial pigments: Secondary metabolites with wide applications. Front. Microbiol., 2017, 8, 1113.
[http://dx.doi.org/10.3389/fmicb.2017.01113] [PMID: 28690593]
[12]
Kirti, K.; Amita, S.; Priti, S.; Jyoti, S. Colorful world of microbes: Carotenoids and their applications. Adv. Biol., 2014, 2014, 837891.
[http://dx.doi.org/10.1155/2014/837891]
[13]
Avalos, J.; Limón, M.C. Biological roles of fungal carotenoids. Curr. Genet., 2015, 61(3), 309-324.
[14]
Walter, M.H.; Strack, D. Carotenoids and their cleavage products: Biosynthesis and functions. Nat. Prod. Rep., 2011, 28(4), 663-92.
[15]
Liu, C.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresour. Technol., 2021, 337, 125398.
[16]
Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med., 2020, 74(1), 1-16.
[http://dx.doi.org/10.1007/s11418-019-01364-x]
[17]
Barreiro, C.; Barredo, J.L. Carotenoids production: A healthy and profitable industry. Methods Mol. Biol., 2018, 1852, 45-55.
[18]
Montgomery, D.C. Design and analysis of experiments; John wiley & sons: New Jersey, 2017.
[19]
Mokhtari, M.; Etebarian, H.R.; Razavi, M.; Heydari, A.; Mirhendi, H. Identification of yeasts isolated from varieties of apples and citrus using PCR-fragment size polymorphism and sequencing of ITS1–5.8 S-ITS2 region. Food Biotechnol., 2012, 26(3), 252-265.
[http://dx.doi.org/10.1080/08905436.2012.698771]
[20]
Yarrow, D. Methods for the isolation, maintenance and identification of yeasts. The yeasts; Elsevier: Germany, 1998, pp. 77-100.
[http://dx.doi.org/10.1016/B978-044481312-1/50014-9]
[21]
Gross, J. Pigments in vegetables: chlorophylls and carotenoids; Springer Science & Business Media: Germany, 2012.
[22]
De Carvalho, L.M.J.; Gomes, P.B.; Godoy, R.L.O.; Pacheco, S.; Do Monte, P.H.F.; De Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int., 2012, 47(2), 337-340.
[http://dx.doi.org/10.1016/j.foodres.2011.07.040]
[23]
Cutzu, R.; Clemente, A.; Reis, A.; Nobre, B.; Mannazzu, I.; Roseiro, J.; Da Silva, L.T. Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry. J. Ind. Microbiol. Biotechnol., 2013, 40(8), 865-875.
[http://dx.doi.org/10.1007/s10295-013-1278-2] [PMID: 23660998]
[24]
Maldonade, I.R.; Rodriguez, A.D.B.; Scamparini, A.R.P. Statistical optimisation of cell growth and carotenoid production by Rhodotorula mucilaginosa. Braz. J. Microbiol., 2012, 43(1), 109-115.
[http://dx.doi.org/10.1590/S1517-83822012000100012] [PMID: 24031809]
[25]
Şerban, E.S.; Ionescu, M.; Matinca, D.; Maier, C.S.; Bojiţă, M.T. Screening of the antibacterial and antifungal activity of eight volatile essential oils. Farmacia, 2011, 59(3), 440-446.
[26]
Dahui, L.; Zaigui, W.; Yunhua, Z. Antifungal activity of extracts by supercritical carbon dioxide extraction from roots of Echinacea angustifolia and analysis of their constituents using Gas Chromatography-Mass Spectrometry (GC-MS). J. Med. Plants Res., 2011, 5(23), 5605-5610.
[27]
Rostami, H.; Hamedi, H.; Yolmeh, M. Some biological activities of pigments extracted from Micrococcus roseus (PTCC 1411) and Rhodotorula glutinis (PTCC 5257). Int. J. Immunopathol. Pharmacol., 2016, 29(4), 684-695.
[http://dx.doi.org/10.1177/0394632016673846] [PMID: 27895288]
[28]
Wojciechowski, K.; Szadowski, J. Spectrophotometric investigation and PPP-MO calculations of some phenylazophthalimide dyes. Dyes Pigments, 1991, 16(1), 35-56.
[http://dx.doi.org/10.1016/0143-7208(91)87019-J]
[29]
Zhao, Y.; Guo, L.; Xia, Y.; Zhuang, X.; Chu, W. Isolation, identification of carotenoid-producing Rhodotorula sp. from marine environment and optimization for carotenoid production. Mar. Drugs, 2019, 17(3), 161.
[http://dx.doi.org/10.3390/md17030161] [PMID: 30857196]
[30]
Park, P.K.; Cho, D.H.; Kim, E.Y.; Chu, K.H. Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World J. Microbiol. Biotechnol., 2005, 21(4), 429-434.
[http://dx.doi.org/10.1007/s11274-004-1891-3]
[31]
Ananda, N.; Vadlani, P.V. Production and optimization of carotenoid-enriched dried distiller’s grains with solubles by Phaffia rhodozyma and Sporobolomyces roseus fermentation of whole stillage. J. Ind. Microbiol. Biotechnol., 2010, 37(11), 1183-1192.
[http://dx.doi.org/10.1007/s10295-010-0765-y] [PMID: 20585831]
[32]
Sanjay, K.R.; Kumaresan, N.; Manohar, B.; Kumar, S.U.; Vijayalakshmi, G. Optimization of carotenoid production by Aspergillus carbonarius in submerged fermentation using a response surface methodology. Int. J. Food Eng., 2007, 3(5), 66-75.
[http://dx.doi.org/10.2202/1556-3758.1295]
[33]
Borowitzka, M.A. Carotenoid production using microorganisms. Single cell oils; Elsevier: Germany, 2010, pp. 225-240.
[http://dx.doi.org/10.1016/B978-1-893997-73-8.50015-3]
[34]
Chanchay, N.; Sirisansaneeyakul, S.; Chaiyasut, C.; Poosaran, N. Optimal conditions for carotenoid production and antioxidation characteristics by Rhodotorula rubra. World Acad. Sci. Eng. Technol., 2012, 6, 1645-1649.
[35]
Aksu, Z.; Eren, A.T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem., 2005, 40(9), 2985-2991.
[http://dx.doi.org/10.1016/j.procbio.2005.01.011]
[36]
Yimyoo, T.; Yongmanitchai, W.; Limtong, S. Carotenoid production by Rhodosporidium paludigenum DMKU3-LPK4 using glycerol as the carbon source. Agric. Nat. Resour., 2011, 45(1), 90-100.
[37]
Mata, G.L.C.; Montañez, J.C.; Méndez, Z.A.; Aguilar, C.N. Biotechnological production of carotenoids by yeasts: an overview. Microb. Cell Fact., 2014, 13(1), 12.
[http://dx.doi.org/10.1186/1475-2859-13-12] [PMID: 24443802]
[38]
Chen, D.; Han, Y.; Gu, Z. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem., 2006, 41(8), 1773-1778.
[http://dx.doi.org/10.1016/j.procbio.2006.03.023]
[39]
Asker, D.; Beppu, T.; Ueda, K. Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl. Microbiol. Biotechnol., 2007, 77(2), 383-392.
[http://dx.doi.org/10.1007/s00253-007-1157-8] [PMID: 17828533]
[40]
Allahkarami, S.; Sepahi, A.A.; Hosseini, H.; Razavi, M.R. Isolation and identification of carotenoid-producing Rhodotorula sp. from pinaceae forest ecosystems and optimization of in vitro carotenoid production. Biotechnol. Rep., 2021, 32, e00687.
[http://dx.doi.org/10.1016/j.btre.2021.e00687] [PMID: 34815952]
[41]
Mohammadi, B.; Madani, M.; Ahadi, A.M. The Effect of Carotenoid Produced by Rhodotorula mucilaginosa UIMC35 on Aspergillus Fumigatus; Aspergillus flavus, and Mucor hiemalis. J. Qom Uni. Med. Sci., 2017, 11(8), 46-56.
[42]
Amal, A.M.; Abeer, K.A.; Samia, H.M.; Nadia, A.E-N.H. Selection of pigment (melanin) production in streptomyces and their application in printing and dyeing of wool fabrics. Res. J. Chem. Sci., 2011, 2231, 606X.
[43]
Sharma, D.; Gupta, C.; Aggarwal, S.; Nagpal, N. Pigment extraction from fungus for textile dyeing. Biology, 2012, 2012, 27510277.
[44]
Jiang, C.; Shi, J.; Liu, Y.; Zhu, C. Inhibition of Aspergillus carbonarius and fungal contamination in table grapes using Bacillus subtilis. Food Control, 2014, 35(1), 41-8.
[45]
Sánchez, M.S.; Mariano, S.G.; Leite, MO.; Mura, FB.; Verma, ML.; Da Silva, SS. Production of fungal and bacterial pigments and their applications. Biotechnological production of bioactive compounds, 2020, , 327-61.
[46]
Ibrahim, W.; Sarwar, Z.; Khan, A.; Hassan, A.; Azeem, A.; Nazir, A. A novel study of comparison properties of pigment and reactive dye-printed cotton fabric. J. Nat. Fibers, 2018, 16(6), 825-835.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy