Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Reciprocal Interaction of Pain and Brain: Plasticity-induced Pain, Pain-induced Plasticity, and Therapeutic Targets

Author(s): Masoumeh Kourosh-Arami* and Alireza Komaki

Volume 22, Issue 10, 2023

Published on: 02 November, 2022

Page: [1484 - 1492] Pages: 9

DOI: 10.2174/1871527322666221102141002

open access plus

Abstract

Considerable functional and structural alterations, or plasticity, in the central nervous system (CNS) are accompanied by numerous chronic pain syndromes. Sensitization of the peripheral (primary hyperalgesia) or central (secondary hyperalgesia) nervous system as unhelpful neuroplasticity may result in stimulus-induced pain (hyperalgesia and allodynia). Furthermore, nociception induces extensive plasticity in the peripheral and central neural systems in pathological disease states. Diseaseinduced plasticity at both structural and functional levels is evident as alterations in different molecules, synapses, cellular function and network activity. In the present article, we review plasticityinduced pain and pain-induced plasticity. Moreover, we will review the pain matrix. Furthermore, we will focus on recent developments of CNS alterations in long-lasting pain in some clinical entities encountered in rehabilitation. These clinical entities comprise nonspecific low back pain, complex regional pain syndrome, postamputation phantom pain, fibromyalgia, and chronic pain after spinal cord injury. Moreover, we will review the clinical treatment for the inhibition of pathological pain.

Graphical Abstract

[1]
Kourosh-Arami M, Hosseini N, Komaki A. Brain is modulated by neuronal plasticity during postnatal development. J Physiol Sci 2021; 71(1): 34.
[http://dx.doi.org/10.1186/s12576-021-00819-9] [PMID: 34789147]
[2]
Apkarian VA, Hashmi JA, Baliki MN. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain 2011; 152(3): S49-64.
[http://dx.doi.org/10.1016/j.pain.2010.11.010] [PMID: 21146929]
[3]
Pelletier R, Higgins J, Bourbonnais D. Addressing neuroplastic changes in distributed areas of the nervous system associated with chron-ic musculoskeletal disorders. Phys Ther 2015; 95(11): 1582-91.
[http://dx.doi.org/10.2522/ptj.20140575] [PMID: 25953594]
[4]
Siddall PJ. Neuroplasticity and pain: What does it all mean? Med J Aust 2013; 198(4): 177-8.
[http://dx.doi.org/10.5694/mja13.10100] [PMID: 23451946]
[5]
Kourosh-Arami M, Komaki A, Gholami M. Addiction-induced plasticity in underlying neural circuits. Neurol Sci 2022; 43(3): 1605-15.
[http://dx.doi.org/10.1007/s10072-021-05778-y] [PMID: 35064341]
[6]
Samani F, Arami MK. Repeated administration of orexin into the thalamic paraventricular nucleus inhibits the development of morphine-induced analgesia. Protein Pept Lett 2022; 29(1): 57-63.
[PMID: 34906051]
[7]
Sator-Katzenschlager S. Pain and neuroplasticity. Rev Med Clin Las Condes 2014; 25(4): 699-706.
[http://dx.doi.org/10.1016/S0716-8640(14)70091-4]
[8]
Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009; 139(2): 267-84.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[9]
Zheng W, Woo CW, Yao Z, et al. Pain-evoked reorganization in functional brain networks. Cereb Cortex 2020; 30(5): 2804-22.
[http://dx.doi.org/10.1093/cercor/bhz276] [PMID: 31813959]
[10]
Duric V, McCarson K. Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain 2006; 7(8): 544-55.
[http://dx.doi.org/10.1016/j.jpain.2006.01.458] [PMID: 16885011]
[11]
Terada M, Kuzumaki N, Hareyama N, et al. Suppression of enriched environment-induced neurogenesis in a rodent model of neuro-pathic pain. Neurosci Lett 2008; 440(3): 314-8.
[http://dx.doi.org/10.1016/j.neulet.2008.05.078] [PMID: 18565655]
[12]
May A. Neuroimaging: Visualising the brain in pain. Neurol Sci 2007; 28(S2): S101-7.
[http://dx.doi.org/10.1007/s10072-007-0760-x] [PMID: 17508154]
[13]
Peyron R, García-Larrea L, Grégoire MC, et al. Haemodynamic brain responses to acute pain in humans. Brain 1999; 122(9): 1765-80.
[http://dx.doi.org/10.1093/brain/122.9.1765] [PMID: 10468515]
[14]
Zhuo M. Targeting central plasticity: A new direction of finding painkillers. Curr Pharm Des 2005; 11(21): 2797-807.
[http://dx.doi.org/10.2174/1381612054546798] [PMID: 16101456]
[15]
Foltz EL, White LE. The role of rostral cingulumotomy in “pain” relief. Int J Neurol 1968; 6(3-4): 353-73.
[PMID: 5759640]
[16]
Henry DE, Chiodo AE, Yang W. Central nervous system reorganization in a variety of chronic pain states: A review. PM R 2011; 3(12): 1116-25.
[http://dx.doi.org/10.1016/j.pmrj.2011.05.018] [PMID: 22192321]
[17]
Frot M, Mauguière F, Magnin M, Garcia-Larrea L. Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in hu-mans. J Neurosci 2008; 28(4): 944-52.
[http://dx.doi.org/10.1523/JNEUROSCI.2934-07.2008] [PMID: 18216202]
[18]
Kim W, Kim SK, Nabekura J. Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J Neurochem 2017; 141(4): 499-506.
[http://dx.doi.org/10.1111/jnc.14012] [PMID: 28278355]
[19]
Worthen SF, Hobson AR, Hall SD, Aziz Q, Furlong PL. Primary and secondary somatosensory cortex responses to anticipation and pain: A magnetoencephalography study. Eur J Neurosci 2011; 33(5): 946-59.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07575.x] [PMID: 21323764]
[20]
Orenius TI, Raij TT, Nuortimo A, Näätänen P, Lipsanen J, Karlsson H. The interaction of emotion and pain in the insula and secondary somatosensory cortex. Neuroscience 2017; 349: 185-94.
[http://dx.doi.org/10.1016/j.neuroscience.2017.02.047] [PMID: 28259800]
[21]
Maihöfner C, Herzner B, Otto Handwerker H. Secondary somatosensory cortex is important for the sensory-discriminative dimension of pain: A functional MRI study. Eur J Neurosci 2006; 23(5): 1377-83.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04632.x] [PMID: 16553798]
[22]
Pondelis NJ, Moulton EA. Supraspinal mechanisms underlying ocular pain. Front Med 2021; 2021: 8.
[PMID: 35211480]
[23]
Amanzio M, Palermo S. Pain anticipation and nocebo-related responses: A descriptive mini-review of functional neuroimaging studies in normal subjects and precious hints on pain processing in the context of neurodegenerative disorders. Front Pharmacol 2019; 10: 969.
[http://dx.doi.org/10.3389/fphar.2019.00969] [PMID: 31551779]
[24]
Cha M, Um SW, Kwon M, Nam TS, Lee BH. Repetitive motor cortex stimulation reinforces the pain modulation circuits of peripheral neuropathic pain. Sci Rep 2017; 7(1): 7986.
[http://dx.doi.org/10.1038/s41598-017-08208-2] [PMID: 28801619]
[25]
Garcia-Larrea L, Peyron R. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms. Neuroimage 2007; 37(S1): S71-9.
[http://dx.doi.org/10.1016/j.neuroimage.2007.05.062] [PMID: 17644413]
[26]
Henssen DJHA, Kurt E, van Cappellen van Walsum AM, et al. Long-term effect of motor cortex stimulation in patients suffering from chronic neuropathic pain: An observational study. PLoS One 2018; 13(1)e0191774
[http://dx.doi.org/10.1371/journal.pone.0191774] [PMID: 29381725]
[27]
Willis WD Jr. Central nervous system mechanisms for pain modulation. Appl Neurophysiol 1985; 48(1-6): 153-65.
[PMID: 3017206]
[28]
Vanegas H, Schaible HG. Descending control of persistent pain: Inhibitory or facilitatory? Brain Res Brain Res Rev 2004; 46(3): 295-309.
[http://dx.doi.org/10.1016/j.brainresrev.2004.07.004] [PMID: 15571771]
[29]
Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Brain Res Rev 2009; 60(1): 214-25.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.009] [PMID: 19146877]
[30]
Ossipov MH. The perception and endogenous modulation of pain Scientifica 2012; 2012
[http://dx.doi.org/10.6064/2012/561761]
[31]
Dellarole A, Morton P, Brambilla R, et al. Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plastic-ity are dependent on TNFR1 signaling. Brain Behav Immun 2014; 41: 65-81.
[http://dx.doi.org/10.1016/j.bbi.2014.04.003] [PMID: 24938671]
[32]
Tyrtyshnaia A, Manzhulo I. Neuropathic pain causes memory deficits and dendrite tree morphology changes in mouse hippocampus. J Pain Res 2020; 13: 345-54.
[http://dx.doi.org/10.2147/JPR.S238458] [PMID: 32104056]
[33]
Ignatowski TA, Covey WC, Knight PR, Severin CM, Nickola TJ, Spengler RN. Brain-derived TNFα mediates neuropathic pain. Brain Res 1999; 841(1-2): 70-7.
[http://dx.doi.org/10.1016/S0006-8993(99)01782-5] [PMID: 10546989]
[34]
Mai CL, Wei X, Gui WS, et al. Differential regulation of GSK-3β in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury. Mol Pain 2019; 15: 1-12.
[http://dx.doi.org/10.1177/1744806919826789] [PMID: 30632435]
[35]
Kaster MP, Gadotti VM, Calixto JB, Santos ARS, Rodrigues ALS. Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology 2012; 62(1): 419-26.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.018] [PMID: 21867719]
[36]
Shen Y, Guan S, Ge H, et al. Effects of palmatine on rats with comorbidity of diabetic neuropathic pain and depression. Brain Res Bull 2018; 139: 56-66.
[http://dx.doi.org/10.1016/j.brainresbull.2018.02.005] [PMID: 29427595]
[37]
Strobel C, Hunt S, Sullivan R, Sun J, Sah P. Emotional regulation of pain: The role of noradrenaline in the amygdala. Sci China Life Sci 2014; 57(4): 384-90.
[http://dx.doi.org/10.1007/s11427-014-4638-x] [PMID: 24643418]
[38]
Ikeda R, Takahashi Y, Inoue K, Kato F. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neu-ropathic pain. Pain 2007; 127(1): 161-72.
[http://dx.doi.org/10.1016/j.pain.2006.09.003] [PMID: 17055162]
[39]
Gonçalves L, Silva R, Pinto-Ribeiro F, et al. Neuropathic pain is associated with depressive behaviour and induces neuroplasticity in the amygdala of the rat. Exp Neurol 2008; 213(1): 48-56.
[http://dx.doi.org/10.1016/j.expneurol.2008.04.043] [PMID: 18599044]
[40]
Ji G, Sun H, Fu Y, et al. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 2010; 30(15): 5451-64.
[http://dx.doi.org/10.1523/JNEUROSCI.0225-10.2010] [PMID: 20392966]
[41]
Han JS, Neugebauer V. Synaptic plasticity in the amygdala in a visceral pain model in rats. Neurosci Lett 2004; 361(1-3): 254-7.
[http://dx.doi.org/10.1016/j.neulet.2003.12.027] [PMID: 15135941]
[42]
Crock LW, Kolber BJ, Morgan CD, et al. Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 2012; 32(41): 14217-26.
[http://dx.doi.org/10.1523/JNEUROSCI.1473-12.2012] [PMID: 23055491]
[43]
Nakagawa T, Katsuya A, Tanimoto S, et al. Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemi-cal somatic and visceral noxious stimuli in rats. Neurosci Lett 2003; 344(3): 197-200.
[http://dx.doi.org/10.1016/S0304-3940(03)00465-8] [PMID: 12812839]
[44]
Rouwette T, Vanelderen P, Reus M, et al. Experimental neuropathy increases limbic forebrain CRF. Eur J Pain 2012; 16(1): 61-71.
[http://dx.doi.org/10.1016/j.ejpain.2011.05.016] [PMID: 21684787]
[45]
Ulrich-Lai YM, Xie W, Meij JTA, Dolgas CM, Yu L, Herman JP. Limbic and HPA axis function in an animal model of chronic neuro-pathic pain. Physiol Behav 2006; 88(1-2): 67-76.
[http://dx.doi.org/10.1016/j.physbeh.2006.03.012] [PMID: 16647726]
[46]
Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D. The human amygdala and pain: Evidence from neuroimaging. Hum Brain Mapp 2014; 35(2): 527-38.
[http://dx.doi.org/10.1002/hbm.22199] [PMID: 23097300]
[47]
Ji G, Neugebauer V. Pro- and anti-nociceptive effects of Corticotropin-Releasing Factor (CRF) in central amygdala neurons are mediated through different receptors. J Neurophysiol 2008; 99(3): 1201-12.
[http://dx.doi.org/10.1152/jn.01148.2007] [PMID: 18171711]
[48]
Fu Y, Han J, Ishola T, et al. PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior. Mol Pain 2008; 4: 26.
[http://dx.doi.org/10.1186/1744-8069-4-26]
[49]
Cheng SJ, Chen CC, Yang HW, et al. Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci 2011; 31(6): 2258-70.
[http://dx.doi.org/10.1523/JNEUROSCI.5564-10.2011] [PMID: 21307262]
[50]
Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: Review and suggestions for new therapies. Expert Rev Neurother 2008; 8(5): 809-18.
[http://dx.doi.org/10.1586/14737175.8.5.809] [PMID: 18457537]
[51]
Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011; 152(3): S2-S15.
[http://dx.doi.org/10.1016/j.pain.2010.09.030] [PMID: 20961685]
[52]
Jensen MP. A neuropsychological model of pain: Research and clinical implications. J Pain 2010; 11(1): 2-12.
[http://dx.doi.org/10.1016/j.jpain.2009.05.001] [PMID: 19595637]
[53]
Dworkin RH. An overview of neuropathic pain: Syndromes, symptoms, signs, and several mechanisms. Clin J Pain 2002; 18(6): 343-9.
[http://dx.doi.org/10.1097/00002508-200211000-00001] [PMID: 12441827]
[54]
Deumens R, Joosten EAJ, Waxman SG, Hains BC. Locomotor dysfunction and pain: The scylla and charybdis of fiber sprouting after spinal cord injury. Mol Neurobiol 2008; 37(1): 52-63.
[http://dx.doi.org/10.1007/s12035-008-8016-1] [PMID: 18415034]
[55]
Oatway MA, Chen Y, Bruce JC, Dekaban GA, Weaver LC. Anti-CD11d integrin antibody treatment restores normal serotonergic projec-tions to the dorsal, intermediate, and ventral horns of the injured spinal cord. J Neurosci 2005; 25(3): 637-47.
[http://dx.doi.org/10.1523/JNEUROSCI.3960-04.2005] [PMID: 15659600]
[56]
Flor H. Phantom-limb pain: Characteristics, causes, and treatment. Lancet Neurol 2002; 1(3): 182-9.
[http://dx.doi.org/10.1016/S1474-4422(02)00074-1] [PMID: 12849487]
[57]
Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat Rev Neurosci 2006; 7(11): 873-81.
[http://dx.doi.org/10.1038/nrn1991] [PMID: 17053811]
[58]
Ramachandran VS, Stewart M, Rogers-Ramachandran DC. Perceptual correlates of massive cortical reorganization. Neuroreport 1992; 3(7): 583-6.
[http://dx.doi.org/10.1097/00001756-199207000-00009] [PMID: 1421112]
[59]
Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375(6531): 482-4.
[http://dx.doi.org/10.1038/375482a0] [PMID: 7777055]
[60]
Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984; 224(4): 591-605.
[http://dx.doi.org/10.1002/cne.902240408] [PMID: 6725633]
[61]
Henderson LA, Gustin SM, Macey PM, Wrigley PJ, Siddall PJ. Functional reorganization of the brain in humans following spinal cord injury: Evidence for underlying changes in cortical anatomy. J Neurosci 2011; 31(7): 2630-7.
[http://dx.doi.org/10.1523/JNEUROSCI.2717-10.2011] [PMID: 21325531]
[62]
Wrigley PJ, Press SR, Gustin SM, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 2009; 141(1): 52-9.
[http://dx.doi.org/10.1016/j.pain.2008.10.007] [PMID: 19027233]
[63]
Klug S, Anderer P, Saletu-Zyhlarz G, et al. Erratum to: Dysfunctional pain modulation in somatoform pain disorder patients. Eur Arch Psychiatry Clin Neurosci 2011; 261(4): 309.
[http://dx.doi.org/10.1007/s00406-010-0168-0] [PMID: 20924589]
[64]
Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KKS. Somatosensory cortical plasticity in carpal tunnel syndrome—a cross-sectional fMRI evaluation. Neuroimage 2006; 31(2): 520-30.
[http://dx.doi.org/10.1016/j.neuroimage.2005.12.017] [PMID: 16460960]
[65]
Pleger B, Tegenthoff M, Schwenkreis P, et al. Mean sustained pain levels are linked to hemispherical side-to-side differences of primary somatosensory cortex in the complex regional pain syndrome I. Exp Brain Res 2004; 155(1): 115-9.
[http://dx.doi.org/10.1007/s00221-003-1738-4] [PMID: 15064892]
[66]
Dancause N, Barbay S, Frost SB, et al. Extensive cortical rewiring after brain injury. J Neurosci 2005; 25(44): 10167-79.
[http://dx.doi.org/10.1523/JNEUROSCI.3256-05.2005] [PMID: 16267224]
[67]
Calford MB, Tweedale R. Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputa-tion. Nature 1988; 332(6163): 446-8.
[http://dx.doi.org/10.1038/332446a0] [PMID: 3352742]
[68]
Gustin SM, Peck CC, Cheney LB, Macey PM, Murray GM, Henderson LA. Pain and plasticity: Is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci 2012; 32(43): 14874-84.
[http://dx.doi.org/10.1523/JNEUROSCI.1733-12.2012] [PMID: 23100410]
[69]
Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: Clinical characteristics, pathophysiology, and management. Lancet Neurol 2009; 8(9): 857-68.
[http://dx.doi.org/10.1016/S1474-4422(09)70176-0] [PMID: 19679277]
[70]
Sarnthein J, Jeanmonod D. High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage 2008; 39(4): 1910-7.
[http://dx.doi.org/10.1016/j.neuroimage.2007.10.019] [PMID: 18060808]
[71]
Maihöfner C, Birklein F. [Complex regional pain syndromes: New aspects on pathophysiology and therapy Fortschr Neurol Psychiatr 2007; 75(6): 331-42.
[PMID: 17443440]
[72]
Stein C, Mendl G. The German counterpart to McGill pain questionnaire. Pain 1988; 32(2): 251-5.
[http://dx.doi.org/10.1016/0304-3959(88)90074-7] [PMID: 3362561]
[73]
Maihofner C. Hand werker HO, Neundörfer B. et al. Cortical reorganization during recovery from complex regional pain syndrome: Neurology (21). Pain Pract 2005; 5(1): 63-4.
[74]
Pleger B, Tegenthoff M, Ragert P, et al. Sensorimotor returning in complex regional pain syndrome parallels pain reduction. Ann Neurol 2005; 57(3): 425-9.
[http://dx.doi.org/10.1002/ana.20394] [PMID: 15732114]
[75]
Cauda F, Palermo S, Costa T, et al. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. Neuroimage Clin 2014; 4: 676-86.
[http://dx.doi.org/10.1016/j.nicl.2014.04.007] [PMID: 24936419]
[76]
Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci 2017; 18(1): 20-30.
[http://dx.doi.org/10.1038/nrn.2016.162] [PMID: 27974843]
[77]
Apkarian AV, Sosa Y, Sonty S, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24(46): 10410-5.
[http://dx.doi.org/10.1523/JNEUROSCI.2541-04.2004] [PMID: 15548656]
[78]
Davis KD, Moayedi M. Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol 2013; 8(3): 518-34.
[http://dx.doi.org/10.1007/s11481-012-9386-8] [PMID: 22825710]
[79]
Seminowicz DA, Wideman TH, Naso L, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci 2011; 31(20): 7540-50.
[http://dx.doi.org/10.1523/JNEUROSCI.5280-10.2011] [PMID: 21593339]
[80]
Bushnell MC, Čeko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013; 14(7): 502-11.
[http://dx.doi.org/10.1038/nrn3516] [PMID: 23719569]
[81]
Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: A longitudinal voxel-based morphometric study. Arthritis Rheum 2010; 62(10): 2930-40.
[http://dx.doi.org/10.1002/art.27585] [PMID: 20518076]
[82]
Obermann M, Nebel K, Schumann C, et al. Gray matter changes related to chronic posttraumatic headache. Neurology 2009; 73(12): 978-83.
[http://dx.doi.org/10.1212/WNL.0b013e3181b8791a] [PMID: 19770474]
[83]
Ikeda H, Tsuda M, Inoue K, Murase K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur J Neurosci 2007; 25(5): 1297-306.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05386.x] [PMID: 17425556]
[84]
Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci USA 2009; 106(7): 2423-8.
[http://dx.doi.org/10.1073/pnas.0809897106] [PMID: 19171885]
[85]
Zhao MG, Toyoda H, Wang YK, Zhuo M. Enhanced synaptic long-term potentiation in the anterior cingulate cortex of adult wild mice as compared with that in laboratory mice. Mol Brain 2009; 2(1): 11.
[http://dx.doi.org/10.1186/1756-6606-2-11] [PMID: 19445686]
[86]
Baliki MN, Petre B, Torbey S, et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 2012; 15(8): 1117-9.
[http://dx.doi.org/10.1038/nn.3153] [PMID: 22751038]
[87]
Derbyshire SWG, Jones AKP, Creed F, et al. Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 2002; 16(1): 158-68.
[http://dx.doi.org/10.1006/nimg.2002.1066] [PMID: 11969326]
[88]
Gwilym SE, Keltner JR, Warnaby CE, et al. Psychophysical and functional imaging evidence supporting the presence of central sensitiza-tion in a cohort of osteoarthritis patients. Arthritis Rheum 2009; 61(9): 1226-34.
[http://dx.doi.org/10.1002/art.24837] [PMID: 19714588]
[89]
Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010; 120(11): 3779-87.
[http://dx.doi.org/10.1172/JCI43766] [PMID: 21041960]
[90]
Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci 2002; 25(6): 319-25.
[http://dx.doi.org/10.1016/S0166-2236(02)02157-4] [PMID: 12086751]
[91]
Berman SM, Naliboff BD, Suyenobu B, et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with en-hanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci 2008; 28(2): 349-59.
[http://dx.doi.org/10.1523/JNEUROSCI.2500-07.2008] [PMID: 18184777]
[92]
Burgmer M, Pogatzki-Zahn E, Gaubitz M, et al. Fibromyalgia unique temporal brain activation during experimental pain: A controlled fMRI Study. J Neural Transm 2010; 117(1): 123-31.
[http://dx.doi.org/10.1007/s00702-009-0339-1] [PMID: 19937376]
[93]
Tiemann L, Schulz E, Winkelmann A, Ronel J, Henningsen P, Ploner M. Behavioral and neuronal investigations of hypervigilance in patients with fibromyalgia syndrome. PLoS One 2012; 7(4)e35068
[http://dx.doi.org/10.1371/journal.pone.0035068] [PMID: 22509383]
[94]
Arnold BS, Alpers GW, Süß H, et al. Affective pain modulation in fibromyalgia, somatoform pain disorder, back pain, and healthy con-trols. Eur J Pain 2008; 12(3): 329-38.
[http://dx.doi.org/10.1016/j.ejpain.2007.06.007] [PMID: 17723312]
[95]
Snijders T, Ramsey NF, Koerselman F. Gijn Jvan. Attentional modulation fails to attenuate the subjective pain experience in chronic, unexplained pain. Eur J Pain 2010; 14(3): 282.
[http://dx.doi.org/10.1016/j.ejpain.2009.05.019]
[96]
Merzenich MM, Van Vleet TM, Nahum M. Brain plasticity-based therapeutics. Front Hum Neurosci 2014; 8: 385.
[http://dx.doi.org/10.3389/fnhum.2014.00385] [PMID: 25018719]
[97]
Freynhagen R, Rolke R, Baron R, et al. Pseudoradicular and radicular low-back pain – A disease continuum rather than different entities? Answers from quantitative sensory testing. Pain 2008; 135(1): 65-74.
[http://dx.doi.org/10.1016/j.pain.2007.05.004] [PMID: 17570589]
[98]
Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: Abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 2008; 60(4): 570-81.
[http://dx.doi.org/10.1016/j.neuron.2008.08.022] [PMID: 19038215]
[99]
Flor H, Denke C, Schaefer M, Grüsser S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001; 357(9270): 1763-4.
[http://dx.doi.org/10.1016/S0140-6736(00)04890-X] [PMID: 11403816]
[100]
Napadow V, Liu J, Li M, et al. Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Hum Brain Mapp 2007; 28(3): 159-71.
[http://dx.doi.org/10.1002/hbm.20261] [PMID: 16761270]
[101]
Boccard SGJ, Prangnell SJ, Pycroft L, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg 2017; 106: 625-37.
[http://dx.doi.org/10.1016/j.wneu.2017.06.173] [PMID: 28710048]
[102]
Pereira EAC, Lu G, Wang S, et al. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol 2010; 223(2): 574-81.
[http://dx.doi.org/10.1016/j.expneurol.2010.02.004] [PMID: 20178783]
[103]
Weaver FM, Follett KA, Stern M, et al. Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes. Neurology 2012; 79(1): 55-65.
[http://dx.doi.org/10.1212/WNL.0b013e31825dcdc1] [PMID: 22722632]
[104]
Nikolajsen L, Christensen KF. Phantom limb pain. Nerves Nerve Injur 2015; 2015: 23-34.

© 2024 Bentham Science Publishers | Privacy Policy