Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Development of Antibody-Drug Conjugates: Future Perspective Towards Solid Tumor Treatment

Author(s): Dipankar Pramanik*

Volume 23, Issue 6, 2023

Published on: 14 November, 2022

Page: [642 - 657] Pages: 16

DOI: 10.2174/1871520623666221031105432

Price: $65

Abstract

Antibody-Drug Conjugates (ADCs) are basically a targeted drug delivery system where tumour antigenspecific antibodies are used for targeting particular tumor cells and cytotoxic materials are conjugated with it by a linker molecule. Till now, twelve ADCs have been approved by FDA for clinical use. Majority of the approved ADCs are against hematological cancer. Here in this review, we will discuss the combinations of targeted ligands (antigen) specific antibodies, different types of cytotoxic drugs (payload/warheads) and linker moieties which are being used for the development of successful FDA approved ADCs. We will discuss new ADC formulations which completed clinical trials or underwent advance phases of clinical trials against different types of solid tumours. New ADC formulation or recently developed its prototypes against solid tumour models in preclinical studies will be discussed precisely in this review article.

Graphical Abstract

[1]
World Health Organization. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[2]
DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[3]
Loadman, P. Anticancer drug development. Br. J. Cancer, 2002, 86(10), 1665-1666.
[http://dx.doi.org/10.1038/sj.bjc.6600309]
[4]
Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582] [PMID: 31659006]
[6]
Goldman, B. Multidrug resistance: Can new drugs help chemotherapy score against cancer? J. Natl. Cancer Inst., 2003, 95(4), 255-257.
[http://dx.doi.org/10.1093/jnci/95.4.255] [PMID: 12591977]
[7]
Alessandrini, L.; Perin, T.; Kadare, S.; del Pup, L.; Memeo, L.; Steffan, A.; Colarossi, L.; Berretta, M.; De Paoli, P.; Canzonieri, V. Cancer targeted therapy strategy: The pathologist’s perspectives. Curr. Cancer Drug Targets, 2018, 18(5), 410-420.
[http://dx.doi.org/10.2174/1568009618666171129145703] [PMID: 29189158]
[8]
American Society of Clinical Oncology (ASCO). What is targeted theraphy? 2022. Available from: https://www.cancer.net/navigating-cancer-care/how-cancer-treated/personalized-and-targeted-therapies/understanding-targeted-therapy [Accessed on: November 07, 2022].
[9]
National Cancer Institute (NCI). Targeted cancer therapies. Available from: https://www.cancer.gov/about-cancer/treatment/types/targeted- therapies/targeted-therapies [Accessed on: February 23, 2022].
[10]
Srinivasarao, M.; Low, P.S. Ligand targeted drug delivery. Chem. Rev., 2017, 117(19), 12133-12164.
[http://dx.doi.org/10.1021/acs.chemrev.7b00013] [PMID: 28898067]
[11]
Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv., 2021, 18(10), 1435-1455.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[12]
Gordon, M.R.; Canakci, M.; Li, L.; Zhuang, J.; Osborne, B.; Thayumanavan, S. Field guide to challenges and opportunities in antibody-drug conjugates for chemists. Bioconjug. Chem., 2015, 26(11), 2198-2215.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00399] [PMID: 26308881]
[13]
Ducry, L.; Stump, B. Antibody-drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem., 2010, 21(1), 5-13.
[http://dx.doi.org/10.1021/bc9002019] [PMID: 19769391]
[14]
Sievers, E.L.; Senter, P.D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med., 2013, 64(1), 15-29.
[http://dx.doi.org/10.1146/annurev-med-050311-201823] [PMID: 23043493]
[15]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[16]
Schwartz, R.S. Paul Ehrlich’s magic bullets. N. Engl. J. Med., 2004, 350(11), 1079-1080.
[http://dx.doi.org/10.1056/NEJMp048021] [PMID: 15014180]
[17]
Ford, C.H.; Newman, C.E.; Johnson, J.R.; Woodhouse, C.S.; Reeder, T.A.; Rowland, G.F.; Simmonds, R.G. Localisation and toxicity study of a vindesine-anti-CEA conjugate in patients with advanced cancer. Br. J. Cancer, 1983, 47(1), 35-42.
[http://dx.doi.org/10.1038/bjc.1983.4] [PMID: 6821632]
[18]
Trail, P.A.; Willner, D.; Lasch, S.J.; Henderson, A.J.; Hofstead, S.; Casazza, A.M.; Firestone, R.A.; Hellström, I.; Hellström, K.E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 1993, 261(5118), 212-215.
[http://dx.doi.org/10.1126/science.8327892] [PMID: 8327892]
[19]
Tong, J.T.W.; Harris, P.W.R.; Brimble, M.A.; Kavianinia, I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules, 2021, 26(19), 5847-5869.
[http://dx.doi.org/10.3390/molecules26195847] [PMID: 34641391]
[20]
Redman, J.M.; Hill, E.M.; AlDeghaither, D.; Weiner, L.M. Mechanisms of action of therapeutic antibodies for cancer. Mol. Immunol., 2015, 67(2 Pt A), 28-45.
[http://dx.doi.org/10.1016/j.molimm.2015.04.002] [PMID: 25911943]
[21]
Hafeez, U.; Gan, H.K.; Scott, A.M. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr. Opin. Pharmacol., 2018, 41, 114-121.
[http://dx.doi.org/10.1016/j.coph.2018.05.010] [PMID: 29883853]
[22]
Damelin, M.; Zhong, W.; Myers, J.; Sapra, P. Evolving strategies for target selection for antibody-drug conjugates. Pharm. Res., 2015, 32(11), 3494-3507.
[http://dx.doi.org/10.1007/s11095-015-1624-3] [PMID: 25585957]
[23]
Mckertish, C.M.; Kayser, V. Advances and limitations of antibody drug conjugates for cancer. Biomedicines, 2021, 9(8), 872-896.
[http://dx.doi.org/10.3390/biomedicines9080872] [PMID: 34440076]
[24]
Hafeez, U.; Parakh, S.; Gan, H.K.; Scott, A.M. Antibody-drug conjugates for cancer therapy. Molecules, 2020, 25(20), 4764-4796.
[http://dx.doi.org/10.3390/molecules25204764] [PMID: 33081383]
[25]
Perez, H.L.; Cardarelli, P.M.; Deshpande, S.; Gangwar, S.; Schroeder, G.M.; Vite, G.D.; Borzilleri, R.M. Antibody-drug conjugates: Current status and future directions. Drug Discov. Today, 2014, 19(7), 869-881.
[http://dx.doi.org/10.1016/j.drudis.2013.11.004] [PMID: 24239727]
[26]
Gutierrez, C.; Schiff, R. HER2: Biology, detection, and clinical implications. Arch. Pathol. Lab. Med., 2011, 135(1), 55-62.
[http://dx.doi.org/10.5858/2010-0454-RAR.1] [PMID: 21204711]
[27]
Ingle, G.S.; Chan, P.; Elliott, J.M.; Chang, W.S.; Koeppen, H.; Stephan, J.P.; Scales, S.J. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol., 2008, 140(1), 46-58.
[PMID: 17991300]
[28]
Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs, 2016, 8(4), 659-671.
[http://dx.doi.org/10.1080/19420862.2016.1156829] [PMID: 27045800]
[29]
Teicher, B.A.; Chari, R.V.J. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res., 2011, 17(20), 6389-6397.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1417] [PMID: 22003066]
[30]
Theocharopoulos, C.; Lialios, P.P.; Samarkos, M.; Gogas, H.; Ziogas, D.C. Antibody-Drug Conjugates: Functional principles and applications in oncology and beyond. Vaccines, 2021, 9(10), 1111-1130.
[http://dx.doi.org/10.3390/vaccines9101111] [PMID: 34696218]
[31]
Ritchie, M.; Tchistiakova, L.; Scott, N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs, 2013, 5(1), 13-21.
[http://dx.doi.org/10.4161/mabs.22854] [PMID: 23221464]
[32]
Strohl, W.R. Current progress in innovative engineered antibodies. Protein Cell, 2018, 9(1), 86-120.
[http://dx.doi.org/10.1007/s13238-017-0457-8] [PMID: 28822103]
[33]
Baah, S.; Laws, M.; Rahman, K.M. Antibody-drug conjugates-a tutorial review. Molecules, 2021, 26(10), 2943-2961.
[http://dx.doi.org/10.3390/molecules26102943] [PMID: 34063364]
[34]
Hughes, B. Antibody-drug conjugates for cancer: Poised to deliver? Nat. Rev. Drug Discov., 2010, 9(9), 665-667.
[http://dx.doi.org/10.1038/nrd3270] [PMID: 20811367]
[35]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[36]
Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody structure and function: The basis for engineering therapeutics. Antibodies (Basel), 2019, 8(4), 55-134.
[http://dx.doi.org/10.3390/antib8040055] [PMID: 31816964]
[37]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Adaptive Immune System.Molecular Biology of the Cell, 4th ed; Garland Science: New York, NY, USA, 2002.
[38]
Lipman, N.S.; Jackson, L.R.; Trudel, L.J.; Weis-Garcia, F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J., 2005, 46(3), 258-268.
[http://dx.doi.org/10.1093/ilar.46.3.258] [PMID: 15953833]
[39]
Brekke, O.H.; Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov., 2003, 2(1), 52-62.
[http://dx.doi.org/10.1038/nrd984] [PMID: 12509759]
[40]
Mehrling, T.; Soltis, D. Challenges in optimising the successful construction of antibody drug conjugates in cancer therapy. Antibodies, 2018, 7(1), 11-22.
[http://dx.doi.org/10.3390/antib7010011] [PMID: 31544863]
[41]
Wang, Y.J.; Li, Y.Y.; Liu, X.Y.; Lu, X.L.; Cao, X.; Jiao, B.H. Marine antibody-drug conjugates: Design strategies and research progress. Mar. Drugs, 2017, 15(1), 18-44.
[http://dx.doi.org/10.3390/md15010018] [PMID: 28098746]
[42]
Yasunaga, M.; Manabe, S.; Tsuji, A.; Furuta, M.; Ogata, K.; Koga, Y.; Saga, T.; Matsumura, Y. Development of antibody-drug conjugates using dds and molecular imaging. Bioengineering, 2017, 4(4), 78-90.
[http://dx.doi.org/10.3390/bioengineering4030078] [PMID: 28952557]
[43]
Payes, C.J. DanielsWells, T.R.; Maffía, P.C.; Penichet, M.L.; Morrison, S.L.; Helguera, G. Genetic engineering of antibody molecules. Rev Cell Biol Mol Med, 2015, 1(3), 1-52.
[44]
Maynard, J.; Georgiou, G. Antibody engineering. Annu. Rev. Biomed. Eng., 2000, 2(1), 339-376.
[http://dx.doi.org/10.1146/annurev.bioeng.2.1.339] [PMID: 11701516]
[45]
Wang, R.; Li, L.; Zhang, S.; Li, Y.; Wang, X.; Miao, Q.; Zhen, Y. A novel enediyne-integrated antibody-drug conjugate shows promising antitumor efficacy against CD30 + lymphomas. Mol. Oncol., 2018, 12(3), 339-355.
[http://dx.doi.org/10.1002/1878-0261.12166] [PMID: 29316337]
[46]
Almagro, J.C.; Fransson, J. Humanization of antibodies. Front. Biosci., 2008, 13, 1619-1633.
[PMID: 17981654]
[47]
Chalouni, C.; Doll, S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 20-31.
[http://dx.doi.org/10.1186/s13046-017-0667-1] [PMID: 29409507]
[48]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[49]
Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance-challenges and solutions. Drug Resist. Updat., 2015, 18, 36-46.
[http://dx.doi.org/10.1016/j.drup.2014.11.001] [PMID: 25476546]
[50]
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody‐drug conjugates: Promising and efficient tools for targeted cancer therapy. J. Cell. Physiol., 2018, 233(9), 6441-6457.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[51]
Li, F.; Emmerton, K.K.; Jonas, M.; Zhang, X.; Miyamoto, J.B.; Setter, J.R.; Nicholas, N.D.; Okeley, N.M.; Lyon, R.P.; Benjamin, D.R.; Law, C.L. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinicalmodels. Cancer Res., 2016, 76(9), 2710-2719.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1795] [PMID: 26921341]
[52]
Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates-A new wave of cancer drugs. Bioorg. Med. Chem. Lett., 2014, 24(23), 5357-5363.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.021] [PMID: 25455482]
[53]
Shen, W.C.; Ballou, B.; Ryser, H.J.; Hakala, T.R. Targeting, internalization, and cytotoxicity of methotrexate-monoclonal anti-stage-specific embryonic antigen-1 antibody conjugates in cultured F-9 teratocarcinoma cells. Cancer Res., 1986, 46(8), 3912-3916.
[PMID: 2873883]
[54]
Johnson, D.A.; Laguzza, B.C. Antitumor xenograft activity with a conjugate of a Vinca derivative and the squamous carcinoma-reactive monoclonal antibody PF1/D. Cancer Res., 1987, 47(12), 3118-3122.
[PMID: 3495327]
[55]
Dillman, R.O.; Johnson, D.E.; Shawler, D.L.; Koziol, J.A. Superiority of an acid-labile daunorubicin-monoclonal antibody immunoconjugate compared to free drug. Cancer Res., 1988, 48(21), 6097-6102.
[PMID: 3262420]
[56]
Tolcher, A.W.; Sugarman, S.; Gelmon, K.A.; Cohen, R.; Saleh, M.; Isaacs, C.; Young, L.; Healey, D.; Onetto, N.; Slichenmyer, W. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol., 1999, 17(2), 478-484.
[http://dx.doi.org/10.1200/JCO.1999.17.2.478] [PMID: 10080588]
[57]
Senter, P.D. Potent antibody drug conjugates for cancer therapy. Curr. Opin. Chem. Biol., 2009, 13(3), 235-244.
[http://dx.doi.org/10.1016/j.cbpa.2009.03.023] [PMID: 19414278]
[58]
Chari, R.V.J.; Miller, M.L.; Widdison, W.C. Antibody-drug conjugates: An emerging concept in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(15), 3796-3827.
[http://dx.doi.org/10.1002/anie.201307628] [PMID: 24677743]
[59]
Kern, J.C.; Cancilla, M.; Dooney, D.; Kwasnjuk, K.; Zhang, R.; Beaumont, M.; Figueroa, I.; Hsieh, S.; Liang, L.; Tomazela, D.; Zhang, J.; Brandish, P.E.; Palmieri, A.; Stivers, P.; Cheng, M.; Feng, G.; Geda, P.; Shah, S.; Beck, A.; Bresson, D.; Firdos, J.; Gately, D.; Knudsen, N.; Manibusan, A.; Schultz, P.G.; Sun, Y.; Garbaccio, R.M. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J. Am. Chem. Soc., 2016, 138(4), 1430-1445.
[http://dx.doi.org/10.1021/jacs.5b12547] [PMID: 26745435]
[60]
Elgersma, R.C.; Coumans, R.G.E.; Huijbregts, T.; Menge, W.M.P.B.; Joosten, J.A.F.; Spijker, H.J.; de Groot, F.M.H.; van der Lee, M.M.C.; Ubink, R.; van den Dobbelsteen, D.J.; Egging, D.F.; Dokter, W.H.A.; Verheijden, G.F.M.; Lemmens, J.M.; Timmers, C.M.; Beusker, P.H. Design, synthesis, and evaluation of linker-duocarmycin payloads: Toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol. Pharm., 2015, 12(6), 1813-1835.
[http://dx.doi.org/10.1021/mp500781a] [PMID: 25635711]
[61]
Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; Rottey, S.; Geenen, J.; Eskens, F.; Gil-Martin, M.; Mommers, E.C.; Koper, N.P.; Aftimos, P. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol., 2019, 20(8), 1124-1135.
[http://dx.doi.org/10.1016/S1470-2045(19)30328-6] [PMID: 31257177]
[62]
Kahl, B.S.; Hamadani, M.; Radford, J.; Carlo-Stella, C.; Caimi, P.; Reid, E.; Feingold, J.M.; Ardeshna, K.M.; Solh, M.; Heffner, L.T.; Ungar, D.; He, S.; Boni, J.; Havenith, K.; O’Connor, O.A. A phase I study of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody-drug conjugate, in relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res., 2019, 25(23), 6986-6994.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0711] [PMID: 31685491]
[63]
Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J., Jr; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; Hamburger, S.A.; Sharkey, R.M.; Goldenberg, D.M. First-in-human trial of a novel Anti-Trop-2 Antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin. Cancer Res., 2015, 21(17), 3870-3878.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3321] [PMID: 25944802]
[64]
Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; Hirai, T.; Atsumi, R.; Nakada, T.; Hayakawa, I.; Abe, Y.; Agatsuma, T. DS-8201a, A novel HER2-Targeting ADC with a novel DNA Topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res., 2016, 22(20), 5097-5108.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2822] [PMID: 27026201]
[65]
Trendowski, M. Recent advances in the development of antineoplastic agents derived from natural products. Drugs, 2015, 75(17), 1993-2016.
[http://dx.doi.org/10.1007/s40265-015-0489-4] [PMID: 26501980]
[66]
Chen, H.; Lin, Z.; Arnst, K.; Miller, D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules, 2017, 22(8), 1281-1308.
[http://dx.doi.org/10.3390/molecules22081281] [PMID: 28763044]
[67]
Maderna, A.; Leverett, C.A. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol. Pharm., 2015, 12(6), 1798-1812.
[http://dx.doi.org/10.1021/mp500762u] [PMID: 25697404]
[68]
Su, Z.; Xiao, D.; Xie, F.; Liu, L.; Wang, Y.; Fan, S.; Zhou, X.; Li, S. Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm. Sin. B, 2021, 11(12), 3889-3907.
[http://dx.doi.org/10.1016/j.apsb.2021.03.042] [PMID: 35024314]
[69]
Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem., 2008, 19(3), 759-765.
[http://dx.doi.org/10.1021/bc7004329] [PMID: 18314937]
[70]
Nagayama, A.; Ellisen, L.W.; Chabner, B.; Bardia, A. Antibody-drug conjugates for the treatment of solid tumors: Clinical experience and latest developments. Target. Oncol., 2017, 12(6), 719-739.
[http://dx.doi.org/10.1007/s11523-017-0535-0] [PMID: 29116596]
[71]
Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci., 2016, 17(4), 561.
[http://dx.doi.org/10.3390/ijms17040561] [PMID: 27089329]
[72]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[73]
Staudacher, A.H.; Brown, M.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br. J. Cancer, 2017, 117(12), 1736-1742.
[http://dx.doi.org/10.1038/bjc.2017.367] [PMID: 29065110]
[74]
Oflazoglu, E.; Stone, I.J.; Gordon, K.; Wood, C.G.; Repasky, E.A.; Grewal, I.S.; Law, C.L.; Gerber, H.P. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res., 2008, 14(19), 6171-6180.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0916] [PMID: 18809969]
[75]
Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S.; Blättler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res., 2006, 66(8), 4426-4433.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4489] [PMID: 16618769]
[76]
Lambert, J.M.; Chari, R.V.J. Ado-trastuzumab Emtansine (T-DM1): An antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964.
[http://dx.doi.org/10.1021/jm500766w] [PMID: 24967516]
[77]
Ponziani, S.; Di Vittorio, G.; Pitari, G.; Cimini, A.M.; Ardini, M.; Gentile, R.; Iacobelli, S.; Sala, G.; Capone, E.; Flavell, D.J.; Ippoliti, R.; Giansanti, F. Antibody-Drug Conjugates: The new frontier of chemotherapy. Int. J. Mol. Sci., 2020, 21(15), 5510-5535.
[http://dx.doi.org/10.3390/ijms21155510] [PMID: 32752132]
[78]
Barok, M.; Joensuu, H.; Isola, J. Trastuzumab emtansine: Mechanisms of action and drug resistance. Breast Cancer Res., 2014, 16(2), 3378.
[http://dx.doi.org/10.1186/bcr3621] [PMID: 24887180]
[79]
Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374.
[http://dx.doi.org/10.1039/C8CS00676H] [PMID: 31294429]
[80]
Hamann, P.R.; Hinman, L.M.; Hollander, I.; Beyer, C.F.; Lindh, D.; Holcomb, R.; Hallett, W.; Tsou, H.R.; Upeslacis, J.; Shochat, D.; Mountain, A.; Flowers, D.A.; Bernstein, I. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem., 2002, 13(1), 47-58.
[http://dx.doi.org/10.1021/bc010021y] [PMID: 11792178]
[81]
Sheyi, R.; de la Torre, B.G.; Albericio, F. Linkers: An assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics, 2022, 14(2), 396.
[http://dx.doi.org/10.3390/pharmaceutics14020396] [PMID: 35214128]
[82]
Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol., 2010, 11(1), 50-61.
[http://dx.doi.org/10.1038/nrm2820] [PMID: 19997129]
[83]
Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med., 1999, 27(9-10), 922-935.
[http://dx.doi.org/10.1016/S0891-5849(99)00176-8] [PMID: 10569625]
[84]
Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[85]
Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
[http://dx.doi.org/10.1002/cbf.1149] [PMID: 15386533]
[86]
Mills, B.J.; Lang, C.A. Differential distribution of free and bound glutathione and cyst(e)ine in human blood. Biochem. Pharmacol., 1996, 52(3), 401-406.
[http://dx.doi.org/10.1016/0006-2952(96)00241-9] [PMID: 8687493]
[87]
Pillow, T.H.; Sadowsky, J.D.; Zhang, D.; Yu, S.F.; Del Rosario, G.; Xu, K.; He, J.; Bhakta, S.; Ohri, R.; Kozak, K.R.; Ha, E.; Junutula, J.R.; Flygare, J.A. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem. Sci., 2017, 8(1), 366-370.
[http://dx.doi.org/10.1039/C6SC01831A] [PMID: 28451181]
[88]
Pillow, T.H.; Schutten, M.; Yu, S.F.; Ohri, R.; Sadowsky, J.; Poon, K.A.; Solis, W.; Zhong, F.; Del Rosario, G.; Go, M.A.T.; Lau, J.; Yee, S.; He, J.; Liu, L.; Ng, C.; Xu, K.; Leipold, D.D.; Kamath, A.V.; Zhang, D.; Masterson, L.; Gregson, S.J.; Howard, P.W.; Fang, F.; Chen, J.; Gunzner-Toste, J.; Kozak, K.K.; Spencer, S.; Polakis, P.; Polson, A.G.; Flygare, J.A.; Junutula, J.R. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol. Cancer Ther., 2017, 16(5), 871-878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0641] [PMID: 28223423]
[89]
Graaf, M.; Boven, E.; Scheeren, H.; Haisma, H.; Pinedo, H. Beta-glucuronidase mediated drug release. Curr. Pharm. Des., 2002, 8(15), 1391-1403.
[http://dx.doi.org/10.2174/1381612023394485] [PMID: 12052215]
[90]
Jeffrey, S.C.; De Brabander, J.; Miyamoto, J.; Senter, P.D. Expanded utility of the β-Glucuronide Linker: ADCs that deliver phenolic cytotoxic agents. ACS Med. Chem. Lett., 2010, 1(6), 277-280.
[http://dx.doi.org/10.1021/ml100039h] [PMID: 24900208]
[91]
Jeffrey, S.C.; Andreyka, J.B.; Bernhardt, S.X.; Kissler, K.M.; Kline, T.; Lenox, J.S.; Moser, R.F.; Nguyen, M.T.; Okeley, N.M.; Stone, I.J.; Zhang, X.; Senter, P.D. Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug. Chem., 2006, 17(3), 831-840.
[http://dx.doi.org/10.1021/bc0600214] [PMID: 16704224]
[92]
Tranoy-Opalinski, I. Legigan, T.; Barat, R.; Clarhaut, J.; Thomas, M.; Renoux, B.; Papot, S. β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: An update. Eur. J. Med. Chem., 2014, 74, 302-313.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.045] [PMID: 24480360]
[93]
Bryden, F.; Martin, C.; Letast, S.; Lles, E.; Viéitez-Villemin, I.; Rousseau, A.; Colas, C.; Brachet-Botineau, M.; Allard-Vannier, E.; Larbouret, C.; Viaud-Massuard, M.C.; Joubert, N. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates. Org. Biomol. Chem., 2018, 16(11), 1882-1889.
[http://dx.doi.org/10.1039/C7OB02780J] [PMID: 29473076]
[94]
Dubowchik, G.M.; Firestone, R.A.; Padilla, L.; Willner, D.; Hofstead, S.J.; Mosure, K.; Knipe, J.O.; Lasch, S.J.; Trail, P.A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem., 2002, 13(4), 855-869.
[http://dx.doi.org/10.1021/bc025536j] [PMID: 12121142]
[95]
Wang, Y.; Fan, S.; Zhong, W.; Zhou, X.; Li, S. Development and properties of valine-alanine based antibody-drug conjugates with monomethyl Auristatin E as the potent payload. Int. J. Mol. Sci., 2017, 18(9), 1860-1878.
[http://dx.doi.org/10.3390/ijms18091860] [PMID: 28841157]
[96]
Dubowchik, G.M.; Mosure, K.; Knipe, J.O.; Firestone, R.A. Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol®), mitomycin C and doxorubicin. Bioorg. Med. Chem. Lett., 1998, 8(23), 3347-3352.
[http://dx.doi.org/10.1016/S0960-894X(98)00610-6] [PMID: 9873732]
[97]
Chari, R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res., 2008, 41(1), 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[98]
Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature, 2003, 422(6927), 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[99]
Gauzy-Lazo, L.; Sassoon, I.; Brun, M.P. Advances in antibody-drug conjugate design: Current clinical landscape and future innovations. SLAS Discov., 2020, 25(8), 843-868.
[http://dx.doi.org/10.1177/2472555220912955] [PMID: 32192384]
[100]
Roopenian, D.C.; Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol., 2007, 7(9), 715-725.
[http://dx.doi.org/10.1038/nri2155] [PMID: 17703228]
[101]
Hammood, M.; Craig, A.; Leyton, J. Impact of endocytosis mechanisms for the receptors targeted by the currently approved Antibody-Drug Conjugates (ADCs)-a necessity for future ADC research and development. Pharmaceuticals (Basel), 2021, 14(7), 674-706.
[http://dx.doi.org/10.3390/ph14070674] [PMID: 34358100]
[102]
Peters, C.; Brown, S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep., 2015, 35(4), e00225.
[http://dx.doi.org/10.1042/BSR20150089] [PMID: 26182432]
[103]
Russell, M.R.G.; Nickerson, D.P.; Odorizzi, G. Molecular mechanisms of late endosome morphology, identity and sorting. Curr. Opin. Cell Biol., 2006, 18(4), 422-428.
[http://dx.doi.org/10.1016/j.ceb.2006.06.002] [PMID: 16781134]
[104]
Kalim, M.; Chen, J.; Wang, S.; Lin, C.; Ullah, S.; Liang, K.; Ding, Q.; Chen, S.; Zhan, J.B. Intracellular trafficking of new anticancer therapeutics: Antibody-drug conjugates. Drug Des. Devel. Ther., 2017, 11, 2265-2276.
[http://dx.doi.org/10.2147/DDDT.S135571] [PMID: 28814834]
[105]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[106]
Sockolosky, J.T.; Tiffany, M.R.; Szoka, F.C. Engineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16095-16100.
[http://dx.doi.org/10.1073/pnas.1208857109] [PMID: 22991460]
[107]
Bross, P.F.; Beitz, J.; Chen, G.; Chen, X.H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; Pazdur, R. Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res., 2001, 7(6), 1490-1496.
[PMID: 11410481]
[108]
Petersdorf, S.H.; Kopecky, K.J.; Slovak, M.; Willman, C.; Nevill, T.; Brandwein, J.; Larson, R.A.; Erba, H.P.; Stiff, P.J.; Stuart, R.K.; Walter, R.B.; Tallman, M.S.; Stenke, L.; Appelbaum, F.R. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood, 2013, 121(24), 4854-4860.
[http://dx.doi.org/10.1182/blood-2013-01-466706] [PMID: 23591789]
[109]
Jefferson, E. FDA: Pfizer voluntarily withdraws cancer treatmentmylotarg from US Market; U.S. Food and Drug Administration: Silver Spring, MD, 2010. Available from: https://www.fiercepharma. com/pharma/fda-pfizer-voluntarily-withdraws-cancer-treatment-mylotarg-from-u-s-market [Accessed on: February 23, 2022].
[110]
FDA FDA Approves Mylotarg for Treatment of Acute Myeloid leukemia 2017. Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm574507.htm [Accessed on: February 23, 2022].
[111]
Amadori, S.; Suciu, S.; Selleslag, D.; Aversa, F.; Gaidano, G.; Musso, M.; Annino, L.; Venditti, A.; Voso, M.T.; Mazzone, C.; Magro, D.; De Fabritiis, P.; Muus, P.; Alimena, G.; Mancini, M.; Hagemeijer, A.; Paoloni, F.; Vignetti, M.; Fazi, P.; Meert, L.; Ramadan, S.M.; Willemze, R.; de Witte, T.; Baron, F. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMAAML-19 trial. J. Clin. Oncol., 2016, 34(9), 972-979.
[http://dx.doi.org/10.1200/JCO.2015.64.0060] [PMID: 26811524]
[112]
Norsworthy, K.J.; Ko, C.W.; Lee, J.E.; Liu, J.; John, C.S.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA approval summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist, 2018, 23(9), 1103-1108.
[http://dx.doi.org/10.1634/theoncologist.2017-0604] [PMID: 29650683]
[113]
US Food and Drug Administration. 2016. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125388s000,125399s 000lbl.pdf [Accessed on: February 23, 2022].
[114]
Smith, L.M.; Nesterova, A.; Alley, S.C.; Torgov, M.Y.; Carter, P.J. Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol. Cancer Ther., 2006, 5(6), 1474-1482.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0026] [PMID: 16818506]
[115]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[116]
FDA Drug Approval Package. Kadcyla (Ado-Trastuzumab Emtansine). 2013. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125427Orig1s000TOC.cfm
[117]
Amiri-Kordestani, L.; Blumenthal, G.M.; Xu, Q.C.; Zhang, L.; Tang, S.W.; Ha, L.; Weinberg, W.C.; Chi, B.; Candau-Chacon, R.; Hughes, P.; Russell, A.M.; Miksinski, S.P.; Chen, X.H.; McGuinn, W.D.; Palmby, T.; Schrieber, S.J.; Liu, Q.; Wang, J.; Song, P.; Mehrotra, N.; Skarupa, L.; Clouse, K.; Al-Hakim, A.; Sridhara, R.; Ibrahim, A.; Justice, R.; Pazdur, R.; Cortazar, P. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin. Cancer Res., 2014, 20(17), 4436-4441.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0012] [PMID: 24879797]
[118]
Widdison, W.C.; Wilhelm, S.D.; Cavanagh, E.E.; Whiteman, K.R.; Leece, B.A.; Kovtun, Y.; Goldmacher, V.S.; Xie, H.; Steeves, R.M.; Lutz, R.J.; Zhao, R.; Wang, L.; Blättler, W.A.; Chari, R.V.J. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem., 2006, 49(14), 4392-4408.
[http://dx.doi.org/10.1021/jm060319f] [PMID: 16821799]
[119]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[120]
Advani, A.; Coiffier, B.; Czuczman, M.S.; Dreyling, M.; Foran, J.; Gine, E.; Gisselbrecht, C.; Ketterer, N.; Nasta, S.; Rohatiner, A.; Schmidt-Wolf, I.G.H.; Schuler, M.; Sierra, J.; Smith, M.R.; Verhoef, G.; Winter, J.N.; Boni, J.; Vandendries, E.; Shapiro, M.; Fayad, L. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: Results of a phase I study. J. Clin. Oncol., 2010, 28(12), 2085-2093.
[http://dx.doi.org/10.1200/JCO.2009.25.1900] [PMID: 20308665]
[121]
Shor, B.; Gerber, H.P.; Sapra, P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol. Immunol., 2015, 67(2 Pt A), 107-116.
[http://dx.doi.org/10.1016/j.molimm.2014.09.014] [PMID: 25304309]
[122]
U.S. Food and Drug Administration. Besponsa (inotuzumab ozogamicin) for injection, for intravenous use: US prescribing information. 2019. Available from: https://www.accessdata.fda.gov.cvb [Accessed on: February 23, 2022].
[123]
U.S. Food and Drug Administration. Lumoxiti (moxetumomab pasudotox). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761104s000lbl.pdf [Accessed on: February 23, 2022].
[124]
Dhillon, S. Moxetumomab Pasudotox: First Global Approval. Drugs, 2018, 78(16), 1763-1767.
[http://dx.doi.org/10.1007/s40265-018-1000-9] [PMID: 30357593]
[125]
Fatima, S.W.; Khare, S.K. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J. Control. Release, 2022, 341, 555-565.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.013] [PMID: 34906604]
[126]
U.S. Food and Drug Administration. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761137s000lbl.pdf [Accessed on: February 23, 2022].
[127]
Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; Capo, L.; Verlinsky, A.; Leavitt, M.; Malik, F.; Aviña, H.; Guevara, C.I.; Dinh, N.; Karki, S.; Anand, B.S.; Pereira, D.S.; Joseph, I.B.J.; Doñate, F.; Morrison, K.; Stover, D.R. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res., 2016, 76(10), 3003-3013.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1313] [PMID: 27013195]
[128]
Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; Campbell, M.; Matsangou, M.; Petrylak, D.P. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N. Engl. J. Med., 2021, 384(12), 1125-1135.
[http://dx.doi.org/10.1056/NEJMoa2035807] [PMID: 33577729]
[129]
U.S. Food and Drug Administration. POLIVY (Polatuzumab Vedotin- Piiq). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761121s000lbl.pdf [Accessed on February 23, 2022].
[130]
Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; Hirata, J.; Penuel, E.; Paulson, J.N.; Cheng, J.; Ku, G.; Matasar, M.J. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol., 2020, 38(2), 155-165.
[http://dx.doi.org/10.1200/JCO.19.00172] [PMID: 31693429]
[131]
Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; Sohn, J.; Denduluri, N.; Perrin, C.; Aogi, K.; Tokunaga, E. Im, S.A.; Lee, K.S.; Hurvitz, S.A.; Cortes, J.; Lee, C.; Chen, S.; Zhang, L.; Shahidi, J.; Yver, A.; Krop, I. Trastuzumab deruxtecan in previously treated HER2-Positive Breast Cancer. N. Engl. J. Med., 2020, 382(7), 610-621.
[http://dx.doi.org/10.1056/NEJMoa1914510] [PMID: 31825192]
[132]
U.S. Food and Drug Administration. ENHERTU (Fam- Trastuzumab Deruxtecan-Nxki): US Prescribing Information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761139s011lbl.pdf [Accessed on: February 23, 2022].
[133]
Shitara, K.; Bang, Y.J.; Iwasa, S.; Sugimoto, N.; Ryu, M.H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Lee, J.; Saito, K.; Kawaguchi, Y.; Kamio, T.; Kojima, A.; Sugihara, M.; Yamaguchi, K. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med., 2020, 382(25), 2419-2430.
[http://dx.doi.org/10.1056/NEJMoa2004413] [PMID: 32469182]
[134]
Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; Weaver, R.; Traina, T.; Dalenc, F.; Aftimos, P.; Lynce, F.; Diab, S.; Cortés, J.; O’Shaughnessy, J.; Diéras, V.; Ferrario, C.; Schmid, P.; Carey, L.A.; Gianni, L.; Piccart, M.J.; Loibl, S.; Goldenberg, D.M.; Hong, Q.; Olivo, M.S.; Itri, L.M.; Rugo, H.S. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med., 2021, 384(16), 1529-1541.
[http://dx.doi.org/10.1056/NEJMoa2028485] [PMID: 33882206]
[135]
U.S. Food and Drug Administration. TRODELVY (Sacituzumab Govitecan-Hziy): US Prescribing Information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761115s009lbl.pdf [Accessed on: February 23, 2022].
[136]
Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Goldenberg, D.M. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res., 2011, 17(10), 3157-3169.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2939] [PMID: 21372224]
[137]
U.S. Food and Drug Administration. BLENREP (Belantamab Mafodotin-Blmf): US Prescribing Information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761158s000lbl.pdf [Accessed on: February 23, 2022].
[138]
Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; Suvannasankha, A.; Weisel, K.; Karlin, L.; Libby, E.; Arnulf, B.; Facon, T.; Hulin, C.; Kortüm, K.M.; Rodríguez-Otero, P.; Usmani, S.Z.; Hari, P.; Baz, R.; Quach, H.; Moreau, P.; Voorhees, P.M.; Gupta, I.; Hoos, A.; Zhi, E.; Baron, J.; Piontek, T.; Lewis, E.; Jewell, R.C.; Dettman, E.J.; Popat, R.; Esposti, S.D.; Opalinska, J.; Richardson, P.; Cohen, A.D. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol., 2020, 21(2), 207-221.
[http://dx.doi.org/10.1016/S1470-2045(19)30788-0] [PMID: 31859245]
[139]
U.S. Food and Drug Administration. ZYNLONTA (Loncastuximab Tesirine-Lpyl). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761196s000lbl.pdf [Accessed on: February 23, 2022].
[140]
Caimi, P.F.; Ai, W.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; Zinzani, P.L.; Havenith, K.; Feingold, J.; He, S.; Qin, Y.; Ungar, D.; Zhang, X.; Carlo-Stella, C. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol., 2021, 22(6), 790-800.
[http://dx.doi.org/10.1016/S1470-2045(21)00139-X] [PMID: 33989558]
[141]
U.S. Food and Drug Administration. TIVDAK (Tisotumab Vedotin- Tftv): US Prescribing Information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761208s000lbl.pdf [Accessed on: February 23, 2022].
[142]
Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; Redondo, A.; Vindeløv, S.D.; Chen, M.; Harris, J.R.; Smith, M.; Nicacio, L.V.; Teng, M.S.L.; Laenen, A.; Rangwala, R.; Manso, L.; Mirza, M.; Monk, B.J.; Vergote, I.; Raspagliesi, F.; Melichar, B.; Gaba Garcia, L.; Jackson, A.; Henry, S.; Kral, Z.; Harter, P.; De Giorgi, U.; Bjurberg, M.; Gold, M.; O’Malley, D.; Honhon, B.; Vulsteke, C.; De Cuypere, E.; Denys, H.; Baurain, J-F.; Zamagni, C.; Tenney, M.; Gordinier, M.; Bradley, W.; Schlumbrecht, M.; Spirtos, N.; Concin, N.; Mahner, S.; Scambia, G.; Leath, C.; Farias-Eisner, R.; Cohen, J.; Muller, C.; Bhatia, S. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol., 2021, 22(5), 609-619.
[http://dx.doi.org/10.1016/S1470-2045(21)00056-5] [PMID: 33845034]
[143]
de Goeij, B.E.C.G.; Satijn, D.; Freitag, C.M.; Wubbolts, R.; Bleeker, W.K.; Khasanov, A.; Zhu, T.; Chen, G.; Miao, D.; van Berkel, P.H.C.; Parren, P.W.H.I. High turnover of tissue factor enables efficient intracellular delivery of antibody-drug conjugates. Mol. Cancer Ther., 2015, 14(5), 1130-1140.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0798] [PMID: 25724665]
[144]
Wang, X.; Ma, D.; Olson, W.C.; Heston, W.D.W. In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen. Mol. Cancer Ther., 2011, 10(9), 1728-1739.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0191] [PMID: 21750220]
[145]
Petrylak, D.P.; Vogelzang, N.J.; Chatta, K.; Fleming, M.T.; Smith, D.C.; Appleman, L.J.; Hussain, A.; Modiano, M.; Singh, P.; Tagawa, S.T.; Gore, I.; McClay, E.F.; Mega, A.E.; Sartor, A.O.; Somer, B.; Wadlow, R.; Shore, N.D.; Olson, W.C.; Stambler, N.; DiPippo, V.A.; Israel, R.J. PSMA ADC monotherapy in patients with progressive metastatic castration‐resistant prostate cancer following abiraterone and/or enzalutamide: Efficacy and safety in open‐label single‐arm phase 2 study. Prostate, 2020, 80(1), 99-108.
[http://dx.doi.org/10.1002/pros.23922] [PMID: 31742767]
[146]
Hassan, R.; Blumenschein, G.R., Jr; Moore, K.N.; Santin, A.D.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Thomas, A.; Kim, S.K.; Rajagopalan, P.; Walter, A.O.; Laurent, D.; Childs, B.H.; Sarapa, N.; Elbi, C.; Bendell, J.C. First-in-human, multicenter, phase i dose-escalation and expansion study of anti-mesothelin antibody-drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J. Clin. Oncol., 2020, 38(16), 1824-1835.
[http://dx.doi.org/10.1200/JCO.19.02085] [PMID: 32213105]
[147]
Sjögren, H.O.; Isaksson, M.; Willner, D.; Hellström, I.; Hellström, K.E.; Trail, P.A. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res., 1997, 57(20), 4530-4536.
[PMID: 9377565]
[148]
Koopman, L.A.; Terp, M.G.; Zom, G.G.; Janmaat, M.L.; Jacobsen, K.; Gresnigt-van den Heuvel, E.; Brandhorst, M.; Forssmann, U.; de Bree, F.; Pencheva, N.; Lingnau, A.; Zipeto, M.A.; Parren, P.W.H.I.; Breij, E.C.W.; Ditzel, H.J. Enapotamab vedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer. JCI Insight, 2019, 4(21), e128199.
[http://dx.doi.org/10.1172/jci.insight.128199] [PMID: 31600169]
[149]
Ameratunga, M.; Harvey, R.D.; Mau-Sørensen, M.; Thistlethwaite, F.; Forssmann, U.; Gupta, M.; Johannsdottir, H.; Ramirez-Andersen, T.; Bohlbro, M.L.; Losic, N.; Ervin-Haynes, A.L.; Lopez, J.S.; Vergote, I. First-in-human, dose-escalation, phase (ph) I trial to evaluate safety of anti-Axl antibody-drug conjugate (ADC) enapotamab vedotin (EnaV) in solid tumors. J. Clin. Oncol., 2019, 37(15), 2525-2525.
[150]
Good Clinical Practice Network. Available from: https://ichgcp.net/clinical-trials-registry/nct04868344 [Accessed on: February 23, 2022].
[151]
Rosenthal, M.; Curry, R.; Reardon, D.A.; Rasmussen, E.; Upreti, V.V.; Damore, M.A.; Henary, H.A.; Hill, J.S.; Cloughesy, T. Safety, tolerability, and pharmacokinetics of anti-EGFRvIII antibody-drug conjugate AMG 595 in patients with recurrent malignant glioma expressing EGFRvIII. Cancer Chemother. Pharmacol., 2019, 84(2), 327-336.
[http://dx.doi.org/10.1007/s00280-019-03879-2] [PMID: 31154523]
[152]
Padovan, M.; Eoli, M.; Pellerino, A.; Rizzato, S.; Caserta, C.; Simonelli, M.; Michiara, M.; Caccese, M.; Anghileri, E.; Cerretti, G.; Rudà, R.; Zagonel, V.; Lombardi, G. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: Real-World Experience from a Multicenter Study of Italian Association of Neuro-Oncology (AINO). Cancers, 2021, 13(11), 2773-2782.
[http://dx.doi.org/10.3390/cancers13112773] [PMID: 34204877]
[153]
Blackhall, F.; Jao, K.; Greillier, L.; Cho, B.C.; Penkov, K.; Reguart, N.; Majem, M.; Nackaerts, K.; Syrigos, K.; Hansen, K.; Schuette, W.; Cetnar, J.; Cappuzzo, F.; Okamoto, I.; Erman, M.; Langer, S.W.; Kato, T.; Groen, H.; Sun, Z.; Luo, Y.; Tanwani, P.; Caffrey, L.; Komarnitsky, P.; Reinmuth, N. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-High SCLC: Results from the phase 3 TAHOE Study. J. Thorac. Oncol., 2021, 16(9), 1547-1558.
[http://dx.doi.org/10.1016/j.jtho.2021.02.009] [PMID: 33607312]
[154]
Almhanna, K.; Miron, M.L.L.; Wright, D.; Gracian, A.C.; Hubner, R.A.; Van Laethem, J.L.; López, C.M.; Alsina, M.; Muñoz, F.L.; Bendell, J.; Firdaus, I.; Messersmith, W.; Ye, Z.; Fasanmade, A.A.; Danaee, H.; Kalebic, T. Phase II study of the antibody-drug conjugate TAK-264 (MLN0264) in patients with metastatic or recurrent adenocarcinoma of the stomach or gastroesophageal junction expressing guanylyl cyclase C. Invest. New Drugs, 2017, 35(2), 235-241.
[http://dx.doi.org/10.1007/s10637-017-0439-y] [PMID: 28188407]
[155]
Petrylak, D.P.; Heath, E.I.; Sonpavde, G.; George, S.; Morgans, A.K.; Eigl, B.J.; Picus, J.; Cheng, S.Y.; Hotte, S.J.; Gartner, E.M.; Vincent, M.; Chu, R.; Anand, B.; Morrison, K.; Jackson, L.; Reyno, L.M.; Yu, E.Y. Anti-tumor activity, safety and pharmacokinetics (PK) of AGS15E (ASG-15ME) in a phase I dose escalation trial in patients (Pts) with metastatic urothelial cancer (mUC). Genitourinary (nonprostate) cancer Meeting Abstract | 2016 ASCO Annual Meeting I. 2016.
[156]
Kollmannsberger, C.; Choueiri, T.K.; Heng, D.Y.C.; George, S.; Jie, F.; Croitoru, R.; Poondru, S.; Thompson, J.A. A randomized phase II study of AGS-16C3F versus axitinib in previously treated patients with metastatic renal cell carcinoma. Oncologist, 2021, 26(3), 182-e361.
[http://dx.doi.org/10.1002/onco.13628] [PMID: 33289953]
[157]
Furuuchi, K.; Rybinski, K.; Fulmer, J.; Moriyama, T.; Drozdowski, B.; Soto, A.; Fernando, S.; Wilson, K.; Milinichik, A.; Dula, M.L.; Tanaka, K.; Cheng, X.; Albone, E.; Uenaka, T. Antibody‐drug conjugate MORAb‐202 exhibits long‐lasting antitumor efficacy in TNBC PDx models. Cancer Sci., 2021, 112(6), 2467-2480.
[http://dx.doi.org/10.1111/cas.14898] [PMID: 33756060]
[158]
Akla, B.; Broussas, M.; Loukili, N.; Robert, A.; Beau-Larvor, C.; Malissard, M.; Boute, N.; Champion, T.; Haeuw, J.F.; Beck, A.; Perez, M.; Dreyfus, C.; Pavlyuk, M.; Chetaille, E.; Corvaia, N. Efficacy of the antibody-drug conjugate W0101 in preclinical models of IGF-1 receptor overexpressing solid tumors. Mol. Cancer Ther., 2020, 19(1), 168-177.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0219] [PMID: 31594825]
[159]
Yang, M.C.; Shia, C.S.; Li, W.F.; Wang, C.C.; Chen, I.J.; Huang, T.Y.; Chen, Y.J.; Chang, H.W.; Lu, C.H.; Wu, Y.C.; Wang, N.H.; Lai, J.S.; Yu, C.D.; Lai, M.T. Preclinical studies of OBI-999: A novel Globo H-targeting antibody-drug conjugate. Mol. Cancer Ther., 2021, 20(6), 1121-1132.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0763] [PMID: 33722855]
[160]
Do, M.; Wu, C.C.N.; Sonavane, P.R.; Juarez, E.F.; Adams, S.R.; Ross, J.; Rodriguez y Baena, A.; Patel, C.; Mesirov, J.P.; Carson, D.A.; Advani, S.J.; Willert, K.; Willert, K.A.A. FZD7-specific antibody-drug conjugate induces ovarian tumor regression in preclinical models. Mol. Cancer Ther., 2022, 21(1), 113-124.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0548] [PMID: 34667113]
[161]
Hingorani, P.; Roth, M.E.; Wang, Y.; Zhang, W.; Gill, J.B.; Harrison, D.J.; Teicher, B.; Erickson, S.; Gatto, G.; Smith, M.A.; Kolb, E.A.; Gorlick, R. ABBV-085, antibody-drug conjugate targeting LRRC15, is effective in osteosarcoma: A report by the pediatric preclinical testing consortium. Mol. Cancer Ther., 2021, 20(3), 535-540.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0406] [PMID: 33298592]
[162]
Cazes, A.; Betancourt, O.; Esparza, E.; Mose, E.S.; Jaquish, D.; Wong, E.; Wascher, A.A.; Tiriac, H.; Gymnopoulos, M.; Lowy, A.M. A MET targeting antibody-drug conjugate overcomes gemcitabine resistance in pancreatic cancer. Clin. Cancer Res., 2021, 27(7), 2100-2110.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3210] [PMID: 33451980]
[163]
Sommer, A.; Berndt, S.; Lerchen, H.G.; Forveille, S.; Sauvat, A.; Mumberg, D.; Kroemer, G.; Kepp, O. Antibody-drug conjugates harboring a kinesin spindle protein inhibitor with immunostimulatory properties. OncoImmunology, 2022, 11(1), 2037216.
[http://dx.doi.org/10.1080/2162402X.2022.2037216] [PMID: 35154909]
[164]
Dela Cruz Chuh, J.; Go, M.; Chen, Y.; Guo, J.; Rafidi, H.; Mandikian, D.; Sun, Y.; Lin, Z.; Schneider, K.; Zhang, P.; Vij, R.; Sharpnack, D.; Chan, P.; de la Cruz, C.; Sadowsky, J.; Seshasayee, D.; Koerber, J.T.; Pillow, T.H.; Phillips, G.D.; Rowntree, R.K.; Boswell, C.A.; Kozak, K.R.; Polson, A.G.; Polakis, P.; Yu, S.F.; Dragovich, P.S.; Agard, N.J. Preclinical optimization of Ly6E-targeted ADCs for increased durability and efficacy of anti-tumor response. MAbs, 2021, 13(1), 1862452.
[http://dx.doi.org/10.1080/19420862.2020.1862452] [PMID: 33382956]
[165]
Lodhi, M.S.; Khalid, F.; Khan, M.T.; Samra, Z.Q.; Muhammad, S.; Zhang, Y.J.; Mou, K. A novel method of magnetic nanoparticles functionalized with anti-folate receptor antibody and methotrexate for antibody mediated targeted drug delivery. Molecules, 2022, 27(1), 261-277.
[http://dx.doi.org/10.3390/molecules27010261] [PMID: 35011493]
[166]
Nejadmoghaddam, M.R.; Minai-Tehrani, A.; Ghahremanzadeh, R.; Mahmoudi, M.; Dinarvand, R.; Zarnani, A.H. Antibody-drug conjugates: Possibilities and challenges. Avicenna J. Med. Biotechnol., 2019, 11(1), 3-23.
[PMID: 30800238]
[167]
Joubert, N.; Beck, A.; Dumontet, C.; Denevault-Sabourin, C. Antibody-drug conjugates: The last decade. Pharmaceuticals, 2020, 13(9), 245-275.
[http://dx.doi.org/10.3390/ph13090245] [PMID: 32937862]
[168]
Massa, S.; Xavier, C.; De Vos, J.; Caveliers, V.; Lahoutte, T.; Muyldermans, S.; Devoogdt, N. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug. Chem., 2014, 25(5), 979-988.
[http://dx.doi.org/10.1021/bc500111t] [PMID: 24815083]
[169]
Albrecht, H.; Burke, P.A.; Natarajan, A.; Xiong, C.Y.; Kalicinsky, M.; DeNardo, G.L.; DeNardo, S.J. Production of soluble ScFvs with C-terminal-free thiol for site-specific conjugation or stable dimeric ScFvs on demand. Bioconjug. Chem., 2004, 15(1), 16-26.
[http://dx.doi.org/10.1021/bc030018+] [PMID: 14733579]
[170]
Badescu, G.; Bryant, P.; Bird, M.; Henseleit, K.; Swierkosz, J.; Parekh, V.; Tommasi, R.; Pawlisz, E.; Jurlewicz, K.; Farys, M.; Camper, N.; Sheng, X.; Fisher, M.; Grygorash, R.; Kyle, A.; Abhilash, A.; Frigerio, M.; Edwards, J.; Godwin, A. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug. Chem., 2014, 25(6), 1124-1136.
[http://dx.doi.org/10.1021/bc500148x] [PMID: 24791606]
[171]
Chang, C.; Frey, G.; Boyle, W.J.; Sharp, L.L.; Short, J.M. Novel conditionally active biologic anti-Axl antibody-drug conjugate demonstrates anti-tumor efficacy and improved safety profile. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research. Cancer Res., 2016, 76(14)(Suppl.)
[172]
Sharp, L.L.; Chang, C.; Frey, G.; Wang, J.; Liu, H.; Xing, C.; Yalcin, S.; Walls, M.; Ben, Y.; Boyle, W.J.; Short, J.M. Anti-tumor efficacy of BA3021, a novel Conditionally Active Biologic (CAB) anti-ROR2 ADC. In: Proceedings of the American Association for Cancer Research Annual Meeting, 2018, 78(13 Suppl)
[173]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Resistance to antibody-drug conjugates. Cancer Res., 2018, 78(9), 2159-2165.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3671] [PMID: 29653942]
[174]
Loganzo, F.; Tan, X.; Sung, M.; Jin, G.; Myers, J.S.; Melamud, E.; Wang, F.; Diesl, V.; Follettie, M.T.; Musto, S.; Lam, M.H.; Hu, W.; Charati, M.B.; Khandke, K.; Kim, K.S.K.; Cinque, M.; Lucas, J.; Graziani, E.; Maderna, A.; O’Donnell, C.J.; Arndt, K.T.; Gerber, H.P. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol. Cancer Ther., 2015, 14(4), 952-963.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0862] [PMID: 25646013]
[175]
Andreev, J.; Thambi, N.; Perez Bay, A.E.; Delfino, F.; Martin, J.; Kelly, M.P.; Kirshner, J.R.; Rafique, A.; Kunz, A.; Nittoli, T.; MacDonald, D.; Daly, C.; Olson, W.; Thurston, G. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther., 2017, 16(4), 681-693.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0658] [PMID: 28108597]
[176]
do Pazo, C.; Nawaz, K.; Webster, R.M. The oncology market for antibody-drug conjugates. Nat. Rev. Drug Discov., 2021, 20(8), 583-584.
[http://dx.doi.org/10.1038/d41573-021-00054-2] [PMID: 33762691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy