Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A Deep Dive in the Involvement of the Cerebellum in Epilepsy: A Neuroanatomical and Cellular Approach

Author(s): Carmen Rubio*, Wilhelm Moreno, Ernesto Ochoa and Eric Uribe

Volume 30, Issue 32, 2023

Published on: 27 December, 2022

Page: [3630 - 3648] Pages: 19

DOI: 10.2174/0929867330666221028150138

Price: $65

Abstract

Objective: The purpose of this article is to describe the state-of-art of neuroanatomical and cellular aspects of the cerebellum in epilepsy.

Background: Over the years, cerebellum epileptogenesis has been widely studied. There is growing evidence linking the cerebellum with this pathology by several other structures involved: mainly the limbic system, thalamus, cerebral cortex, red nucleus, and reticular formation. As a result, these anatomical and cellular changes in the cerebellum might trigger the genesis and propagation of seizures.

Discussion: We herewith outline the cerebellum's deep nuclei physiological pathways, responsible for seizure spread via ion channels and neurotransmitter dysfunction. Additionally, we describe the shifts in seizures produced after cell death, gene expression, and protein interaction with their respective molecular and anatomical pathways.

Conclusion: Finally, we highlight the role played by the cerebellum in seizure propagation to the brain and how it can be counteracted in some subtypes of drug-resistant epilepsy.

[1]
Cooper, I.S.; Amin, I.; Riklan, M.; Waltz, J.M.; Poon, T.P. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch. Neurol., 1976, 33(8), 559-570.
[http://dx.doi.org/10.1001/archneur.1976.00500080037006] [PMID: 821458]
[2]
Davis, R.; Emmonds, S.E. Cerebellar stimulation for seizure control: 17-year study. Stereotact. Funct. Neurosurg., 1992, 58(1-4), 200-208.
[http://dx.doi.org/10.1159/000098996] [PMID: 1439341]
[3]
Levy, L.F.; Auchterlonie, W.C. Chronic cerebellar stimulation in the treatment of epilepsy. Epilepsia, 1979, 20(3), 235-245.
[http://dx.doi.org/10.1111/j.1528-1157.1979.tb04800.x] [PMID: 312731]
[4]
Šramka, M.; Chkhenkeli, S.A. Clinical experience in intraoperational determination of brain inhibitory structures and application of implanted neurostimulators in epilepsy. Stereotact. Funct. Neurosurg., 1990, 54(1-8), 56-59.
[http://dx.doi.org/10.1159/000100190] [PMID: 2080382]
[5]
Fraioli, B.; Guidetti, B. Effects of stereotactic lesions of the dentate nucleus of the cerebellum in man. Appl. Neurophysiol., 1975, 38(2), 81-90.
[PMID: 769688]
[6]
Kwan, P.; Brodie, M.J. Refractory epilepsy: Mechanisms and solutions. Expert Rev. Neurother., 2006, 6(3), 397-406.
[http://dx.doi.org/10.1586/14737175.6.3.397] [PMID: 16533143]
[7]
Fisher, R.S.; Velasco, A.L. Electrical brain stimulation for epilepsy. Nat. Rev. Neurol., 2014, 10(5), 261-270.
[http://dx.doi.org/10.1038/nrneurol.2014.59] [PMID: 24709892]
[8]
Miterko, L.N.; Baker, K.B.; Beckinghausen, J.; Bradnam, L.V.; Cheng, M.Y.; Cooperrider, J.; DeLong, M.R.; Gornati, S.V.; Hallett, M.; Heck, D.H.; Hoebeek, F.E.; Kouzani, A.Z.; Kuo, S.H.; Louis, E.D.; Machado, A.; Manto, M.; McCambridge, A.B.; Nitsche, M.A.; Taib, N.O.B.; Popa, T.; Tanaka, M.; Timmann, D.; Steinberg, G.K.; Wang, E.H.; Wichmann, T.; Xie, T.; Sillitoe, R.V. Consensus paper: Experimental neurostimulation of the cerebellum. Cerebellum, 2019, 18(6), 1064-1097.
[http://dx.doi.org/10.1007/s12311-019-01041-5] [PMID: 31165428]
[9]
Crooks, R.; Mitchell, T.; Thom, M. Patterns of cerebellar atrophy in patients with chronic epilepsy: A quantitative neuropathological study. Epilepsy Res., 2000, 41(1), 63-73.
[http://dx.doi.org/10.1016/S0920-1211(00)00133-9] [PMID: 10924869]
[10]
Allen, L.A.; Vos, S.B.; Kumar, R.; Ogren, J.A.; Harper, R.K.; Winston, G.P.; Balestrini, S.; Wandschneider, B.; Scott, C.A.; Ourselin, S.; Duncan, J.S.; Lhatoo, S.D.; Harper, R.M.; Diehl, B. Cerebellar, limbic, and midbrain volume alterations in sudden unexpected death in epilepsy. Epilepsia, 2019, 60(4), 718-729.
[http://dx.doi.org/10.1111/epi.14689] [PMID: 30868560]
[11]
Marcián, V.; Mareček, R.; Koriťáková, E.; Pail, M.; Bareš, M.; Brázdil, M. Morphological changes of cerebellar substructures in temporal lobe epilepsy: A complex phenomenon, not mere atrophy. Seizure, 2018, 54, 51-57.
[http://dx.doi.org/10.1016/j.seizure.2017.12.004] [PMID: 29268230]
[12]
Streng, M.L.; Krook-Magnuson, E. The cerebellum and epilepsy. Epilepsy Behav., 2021, 121(Pt B), 106909.
[http://dx.doi.org/10.1016/j.yebeh.2020.106909] [PMID: 32035793]
[13]
Sandok, E.K.; O’Brien, T.J.; Jack, C.R.; So, E.L. Significance of cerebellar atrophy in intractable temporal lobe epilepsy: A quantitative MRI study. Epilepsia, 2000, 41(10), 1315-1320.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb04611.x] [PMID: 11051128]
[14]
Buijink, A.W.G.; Caan, M.W.A.; Tijssen, M.A.J.; Hoogduin, J.M.; Maurits, N.M.; van Rootselaar, A.F. Decreased cerebellar fiber density in cortical myoclonic tremor but not in essential tremor. Cerebellum, 2013, 12(2), 199-204.
[http://dx.doi.org/10.1007/s12311-012-0414-2] [PMID: 22961557]
[15]
Sun, N.; Li, B.X.; Hong, Y.J.; Bing, Y.H.; Qiu, D.L.; Chu, C.P. Noradrenaline depresses spontaneous complex spikes activity of cerebellar Purkinje cells via α2-adrenergic receptor in vivo in mice. Neurosci. Lett., 2019, 703, 38-44.
[http://dx.doi.org/10.1016/j.neulet.2019.03.008] [PMID: 30853408]
[16]
Bohnen, N.I.; O’Brien, T.J.; Mullan, B.P.; So, E.L. Cerebellar changes in partial seizures: Clinical correlations of quantitative SPECT and MRI analysis. Epilepsia, 1998, 39(6), 640-650.
[http://dx.doi.org/10.1111/j.1528-1157.1998.tb01433.x] [PMID: 9637607]
[17]
McCandless, D.W.; Feussner, G.K.; Lust, W.D.; Passonneau, J.V. Metabolite levels in brain following experimental seizures: The effects of maximal electroshock and phenytoin in cerebellar layers. J. Neurochem., 1979, 32(3), 743-753.
[http://dx.doi.org/10.1111/j.1471-4159.1979.tb04557.x] [PMID: 219146]
[18]
Clark, S.L.W.J.W. The electroencephalogram in cerebellar seizures. J. Chem. Inf. Model., 2013, 53, 1689-1699.
[19]
Andersen, L.M.; Jerbi, K.; Dalal, S.S. Can EEG and MEG detect signals from the human cerebellum? Neuroimage, 2020, 215, 116817.
[http://dx.doi.org/10.1016/j.neuroimage.2020.116817] [PMID: 32278092]
[20]
Kostopoulos, G.K. The tottering mouse: A critical review of its usefulness in the study of the neuronal mechanisms underlying epilepsy. J. Neural Transm. Suppl., 1992, 35, 21-36.
[http://dx.doi.org/10.1007/978-3-7091-9206-1_3] [PMID: 1512593]
[21]
Menuz, K.; Nicoll, R.A. Loss of inhibitory neuron AMPA receptors contributes to ataxia and epilepsy in stargazer mice. J. Neurosci., 2008, 28(42), 10599-10603.
[http://dx.doi.org/10.1523/JNEUROSCI.2732-08.2008] [PMID: 18923036]
[22]
Rubio, C.; Mendoza, C.; Trejo, C.; Custodio, V.; Rubio-Osornio, M.; Hernández, L.; González, E.; Paz, C. Activation of the extrinsic and intrinsic apoptotic pathways in cerebellum of kindled rats. Cerebellum, 2019, 18(4), 750-760.
[http://dx.doi.org/10.1007/s12311-019-01030-8] [PMID: 31062284]
[23]
Paul, M.S.; Das, M.J. Superior and Inferior Olivary Nucleus (Superior and Inferior Olivary Complex). In: Neuroanatomy; StatPearls Publishing: Treasure Island, FL, 2019.
[24]
Zucca, R.; Rasmussen, A.; Bengtsson, F. Climbing fiber regulation of spontaneous Purkinje cell activity and cerebellum-dependent blink responses. ENeuro., 2016, 3, 0067-15.2015.
[http://dx.doi.org/10.1523/ENEURO.0067-15.2015]
[25]
Brown, A.M.; Arancillo, M.; Lin, T.; Catt, D.R.; Zhou, J.; Lackey, E.P.; Stay, T.L.; Zuo, Z.; White, J.J.; Sillitoe, R.V. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci. Rep., 2019, 9(1), 1742.
[http://dx.doi.org/10.1038/s41598-018-38264-1] [PMID: 30742002]
[26]
Yeh, H.H.; Woodward, D.J. Noradrenergic action in the developing rat cerebellum: Interaction between norepinephrine and synaptically-evoked responses of immature Purkinje cells. Brain Res. Dev. Brain Res., 1983, 11(2), 207-218.
[http://dx.doi.org/10.1016/0165-3806(83)90218-3] [PMID: 6320981]
[27]
Cacciola, A.; Milardi, D.; Basile, G.A.; Bertino, S.; Calamuneri, A.; Chillemi, G.; Paladina, G.; Impellizzeri, F.; Trimarchi, F.; Anastasi, G.; Bramanti, A.; Rizzo, G. The cortico-rubral and cerebello-rubral pathways are topographically organized within the human red nucleus. Sci. Rep., 2019, 9(1), 12117.
[http://dx.doi.org/10.1038/s41598-019-48164-7] [PMID: 31431648]
[28]
Slemmer, J.E.; De Zeeuw, C.I.; Weber, J.T. Don’t get too excited: Mechanisms of glutamate-mediated Purkinje cell death. In: Prog. Brain Res; , 2005; 148, pp. 367-390.
[http://dx.doi.org/10.1016/S0079-6123(04)48029-7] [PMID: 15661204]
[29]
Allison, D.W.; Gelfand, V.I.; Spector, I.; Craig, A.M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: Differential attachment of NMDA versus AMPA receptors. J. Neurosci., 1998, 18(7), 2423-2436.
[http://dx.doi.org/10.1523/JNEUROSCI.18-07-02423.1998] [PMID: 9502803]
[30]
Kitamura, K.; Häusser, M. Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. J. Neurosci., 2011, 31(30), 10847-10858.
[http://dx.doi.org/10.1523/JNEUROSCI.2525-10.2011] [PMID: 21795537]
[31]
Cheong, E.; Shin, H.S. T-type Ca2+ channels in absence epilepsy. Biochim. Biophys. Acta Biomembr., 2013, 1828(7), 1560-1571.
[http://dx.doi.org/10.1016/j.bbamem.2013.02.002] [PMID: 23416255]
[32]
Kim, D.; Song, I.; Keum, S.; Lee, T.; Jeong, M.J.; Kim, S.S.; McEnery, M.W.; Shin, H.S. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α(1G) T-type Ca2+ channels. Neuron, 2001, 31(1), 35-45.
[http://dx.doi.org/10.1016/S0896-6273(01)00343-9] [PMID: 11498049]
[33]
Kostopoulos, G.K.; Psarropoulou, C.T. Possible mechanisms underlying hyperexcitability in the epileptic mutant mouse tottering. J. Neural Transm. Suppl., 1992, 35, 109-124.
[http://dx.doi.org/10.1007/978-3-7091-9206-1_8] [PMID: 1355109]
[34]
Kros, L.; Eelkman Rooda, O.H.J.; Spanke, J.K.; Alva, P.; Dongen, M.N.; Karapatis, A.; Tolner, E.A.; Strydis, C.; Davey, N.; Winkelman, B.H.J.; Negrello, M.; Serdijn, W.A.; Steuber, V.; van den Maagdenberg, A.M.J.M.; De Zeeuw, C.I.; Hoebeek, F.E. Cerebellar output controls generalized spike‐and‐wave discharge occurrence. Ann. Neurol., 2015, 77(6), 1027-1049.
[http://dx.doi.org/10.1002/ana.24399] [PMID: 25762286]
[35]
Leresche, N.; Lambert, R.C. T-type calcium channels in synaptic plasticity. Channels (Austin), 2017, 11(2), 121-139.
[http://dx.doi.org/10.1080/19336950.2016.1238992] [PMID: 27653665]
[36]
Lee, C.Y.; Chen, C.C.; Liou, H.H. Levetiracetam inhibits glutamate transmission through presynaptic P/Q-type calcium channels on the granule cells of the dentate gyrus. Br. J. Pharmacol., 2009, 158(7), 1753-1762.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00463.x] [PMID: 19888964]
[37]
Tringham, E.W.; Payne, C.E.; Dupere, J.R.B.; Usowicz, M.M. Maturation of rat cerebellar Purkinje cells reveals an atypical Ca2+ channel current that is inhibited by ω-agatoxin IVA and the dihydropyridine (−)-( S )-Bay K8644. J. Physiol., 2007, 578(3), 693-714.
[http://dx.doi.org/10.1113/jphysiol.2006.121905] [PMID: 17124267]
[38]
Barclay, J.; Balaguero, N.; Mione, M.; Ackerman, S.L.; Letts, V.A.; Brodbeck, J.; Canti, C.; Meir, A.; Page, K.M.; Kusumi, K.; Perez-Reyes, E.; Lander, E.S.; Frankel, W.N.; Gardiner, R.M.; Dolphin, A.C.; Rees, M. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci., 2001, 21(16), 6095-6104.
[http://dx.doi.org/10.1523/JNEUROSCI.21-16-06095.2001] [PMID: 11487633]
[39]
Pippucci, T.; Parmeggiani, A.; Palombo, F.; Maresca, A.; Angius, A.; Crisponi, L.; Cucca, F.; Liguori, R.; Valentino, M.L.; Seri, M.; Carelli, V. A novel null homozygous mutation confirms CACNA2D2 as a gene mutated in epileptic encephalopathy. PLoS One, 2013, 8(12), e82154.
[http://dx.doi.org/10.1371/journal.pone.0082154] [PMID: 24358150]
[40]
Letts, V.A. Stargazer-a mouse to seize! Epilepsy Curr., 2005, 5(5), 161-165.
[http://dx.doi.org/10.1111/j.1535-7511.2005.00051.x] [PMID: 16175212]
[41]
Bellamy, T.C. Interactions between Purkinje neurones and Bergmann glia. Cerebellum, 2006, 5(2), 116-126.
[http://dx.doi.org/10.1080/14734220600724569] [PMID: 16818386]
[42]
Iino, M.; Goto, K.; Kakegawa, W.; Okado, H.; Sudo, M.; Ishiuchi, S.; Miwa, A.; Takayasu, Y.; Saito, I.; Tsuzuki, K.; Ozawa, S. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science, 2001, 292(5518), 926-929.
[http://dx.doi.org/10.1126/science.1058827] [PMID: 11340205]
[43]
Saab, A.S.; Neumeyer, A.; Jahn, H.M.; Cupido, A.; Šimek, A.A.M.; Boele, H.J.; Scheller, A.; Le Meur, K.; Götz, M.; Monyer, H.; Sprengel, R.; Rubio, M.E.; Deitmer, J.W.; De Zeeuw, C.I.; Kirchhoff, F. Bergmann glial AMPA receptors are required for fine motor coordination. Science, 2012, 337(6095), 749-753.
[http://dx.doi.org/10.1126/science.1221140] [PMID: 22767895]
[44]
Yamada, K.; Watanabe, M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Japanese Assoc Anat., 2002, 77, 94-108.
[45]
Hachem, S.; Laurenson, A.S.; Hugnot, J.P.; Legraverend, C. Expression of S100B during embryonic development of the mouse cerebellum. BMC Dev. Biol., 2007, 7(1), 17.
[http://dx.doi.org/10.1186/1471-213X-7-17] [PMID: 17362503]
[46]
Perkins, E.M.; Clarkson, Y.L.; Suminaite, D.; Lyndon, A.R.; Tanaka, K.; Rothstein, J.D.; Skehel, P.A.; Wyllie, D.J.A.; Jackson, M. Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Hum. Mol. Genet., 2018, 27(15), 2614-2627.
[http://dx.doi.org/10.1093/hmg/ddy169] [PMID: 29741614]
[47]
Kormish, J.D.; Sinner, D.; Zorn, A.M. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev. Dyn., 2010, 239(1), 56-68.
[PMID: 19655378]
[48]
Rosiles, A.; Rubio, C.; Trejo, C.; Gutierrez, J.; Hernández, L.; Paz, C. Commentary: Participation of Sox-1 expression and signaling of β-catenin in the pathophysiology of generalized seizures in cerebellum of rat. CNS Neurol. Disord. Drug Targets, 2016, 15(1), 3-6.
[http://dx.doi.org/10.2174/1871527314666150821105001] [PMID: 26295820]
[49]
Rubio, C.; Rosiles-Abonce, A.; Trejo-Solis, C.; Rubio-Osornio, M.; Mendoza, C.; Custodio, V.; Martínez-Lazcano, J.C.; González, E.; Paz, C. Increase signaling of Wnt/β-catenin pathway and presence of apoptosis in cerebellum of kindled rats. CNS Neurol. Disord. Drug Targets, 2017, 16(7), 772-780.
[PMID: 28124605]
[50]
Anne, S.L.; Govek, E.E.; Ayrault, O.; Kim, J.H.; Zhu, X.; Murphy, D.A.; Van Aelst, L.; Roussel, M.F.; Hatten, M.E. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One, 2013, 8(11), e81769.
[http://dx.doi.org/10.1371/journal.pone.0081769] [PMID: 24303070]
[51]
Cerpa, W.; Godoy, J.A.; Alfaro, I.; Farías, G.G.; Metcalfe, M.J.; Fuentealba, R.; Bonansco, C.; Inestrosa, N.C. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J. Biol. Chem., 2008, 283(9), 5918-5927.
[http://dx.doi.org/10.1074/jbc.M705943200] [PMID: 18096705]
[52]
Rubio-Osornio, C.; Eguiluz-Meléndez, A.; Trejo-Solís, C.; Custodio, V.; Rubio-Osornio, M.; Rosiles-Abonce, A.; Martínez-Lazcano, J.C.; González, E.; Paz, C. Decreased expression of Sox-1 in cerebellum of rat with generalized seizures induced by kindling model. CNS Neurol. Disord. Drug Targets, 2016, 15(6), 723-729.
[http://dx.doi.org/10.2174/1871527315666160321105818] [PMID: 26996170]
[53]
Rubio, C.; Taddei, E.; Acosta, J.; Custodio, V.; Paz, C. Neuronal excitability in epileptogenic zones regulated by the Wnt/B-catenin pathway. CNS Neurol. Disord. Drug Targets, 2020, 19(1), 2-11.
[http://dx.doi.org/10.2174/1871527319666200120143133] [PMID: 31987027]
[54]
Kintscher, M.; Wozny, C.; Johenning, F.W.; Schmitz, D.; Breustedt, J. Role of RIM1α in short- and long-term synaptic plasticity at cerebellar parallel fibres. Nat. Commun., 2013, 4(1), 2392.
[http://dx.doi.org/10.1038/ncomms3392] [PMID: 23999086]
[55]
Koscielny, A.; Malik, A.R.; Liszewska, E.; Zmorzynska, J.; Tempes, A.; Tarkowski, B.; Jaworski, J. Adaptor complex 2 controls dendrite morphology via mTOR-dependent expression of GluA2. Mol. Neurobiol., 2018, 55(2), 1590-1606.
[http://dx.doi.org/10.1007/s12035-017-0436-3] [PMID: 28190237]
[56]
Krook-Magnuson, E.; Szabo, G.G.; Armstrong, C.; Oijala, M.; Soltesz, I. Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. ENeuro., 2014, 1, 0005-0014.
[http://dx.doi.org/10.1523/ENEURO.0005-14.2014]
[57]
Paz, J.T.; Huguenard, J.R. Microcircuits and their interactions in epilepsy: Is the focus out of focus? Nat. Neurosci., 2015, 18(3), 351-359.
[http://dx.doi.org/10.1038/nn.3950] [PMID: 25710837]
[58]
Sorokin, J.M.; Davidson, T.J.; Frechette, E.; Abramian, A.M.; Deisseroth, K.; Huguenard, J.R.; Paz, J.T. Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron, 2017, 93(1), 194-210.
[http://dx.doi.org/10.1016/j.neuron.2016.11.026] [PMID: 27989462]
[59]
Chen, Y.; Landin-Romero, R.; Kumfor, F.; Irish, M.; Hodges, J.R.; Piguet, O. Cerebellar structural connectivity and contributions to cognition in frontotemporal dementias. Cortex, 2020, 129, 57-67.
[http://dx.doi.org/10.1016/j.cortex.2020.04.013] [PMID: 32428762]
[60]
Ito, M. The Cerebellum and Neural Control; Raven Press cop: New York (N.Y.), 1984.
[61]
Wyckhuys, T.; Geerts, P.J.; Raedt, R.; Vonck, K.; Wadman, W.; Boon, P. Deep brain stimulation for epilepsy: Knowledge gained from experimental animal models. Acta Neurol. Belg., 2009, 109(2), 63-80.
[PMID: 19681438]
[62]
Paz, C.; Gutiérrez-Baeza, F.; Bazán-Perkins, B. Transection of the superior cerebellar peduncle interferes with the onset and duration of generalized seizures induced by amygdaloid kindling. Brain Res., 1991, 558(1), 90-92.
[http://dx.doi.org/10.1016/0006-8993(91)90718-B] [PMID: 1933384]
[63]
Rubio, C.; Custodio, V.; Juárez, F.; Paz, C. Stimulation of the superior cerebellar peduncle during the development of amygdaloid kindling in rats. Brain Res., 2004, 1010(1-2), 151-155.
[http://dx.doi.org/10.1016/j.brainres.2004.03.015] [PMID: 15126128]
[64]
Monaghan, P.L.; Beitz, A.J.; Larson, A.A.; Altschuler, R.A.; Madl, J.E.; Mullett, M.A. Immunocytochemical localization of glutamate-, glutaminase- and aspartate aminotransferase-like immunoreactivity in the rat deep cerebellar nuclei. Brain Res., 1986, 363(2), 364-370.
[http://dx.doi.org/10.1016/0006-8993(86)91024-3] [PMID: 2867817]
[65]
Léna, C.; Popa, D. Cerebrocerebellar loops in the rodent brain. In: The Neuronal Codes of the Cerebellum; Elsevier Inc.: Amsterdam, 2016; pp. 135-153.
[http://dx.doi.org/10.1016/B978-0-12-801386-1.00006-X]
[66]
Serapide, M.F.; Zappalà, A.; Parenti, R.; Pantò, M.R.; Cicirata, F. Laterality of the pontocerebellar projections in the rat. Eur. J. Neurosci., 2002, 15(9), 1551-1556.
[http://dx.doi.org/10.1046/j.1460-9568.2002.01993.x] [PMID: 12028366]
[67]
O’Brien, J.; Unwin, N. Organization of spines on the dendrites of Purkinje cells. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1575-1580.
[http://dx.doi.org/10.1073/pnas.0507884103] [PMID: 16423897]
[68]
Pugh, J.R.; Raman, I.M. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J. Neurosci., 2008, 28(42), 10549-10560.
[http://dx.doi.org/10.1523/JNEUROSCI.2061-08.2008] [PMID: 18923031]
[69]
Dietrichs, E.; Haines, D.E. Interconnections between hypothalamus and cerebellum. Anat. Embryol. (Berl.), 1989, 179(3), 207-220.
[http://dx.doi.org/10.1007/BF00326585] [PMID: 2644872]
[70]
Aumann, T.D.; Rawson, J.A.; Finkelstein, D.I.; Horne, M.K. Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: A light and electron microscopic study using single and double anterograde labelling. J. Comp. Neurol., 1994, 349(2), 165-181.
[http://dx.doi.org/10.1002/cne.903490202] [PMID: 7860776]
[71]
Gornati, S.V.; Schäfer, C.B.; Eelkman Rooda, O.H.J.; Nigg, A.L.; De Zeeuw, C.I.; Hoebeek, F.E. Differentiating cerebellar impact on thalamic nuclei. Cell Rep., 2018, 23(9), 2690-2704.
[http://dx.doi.org/10.1016/j.celrep.2018.04.098] [PMID: 29847799]
[72]
Halassa, M.M.; Acsády, L. Thalamic inhibition: Diverse sources, diverse scales. Trends Neurosci., 2016, 39(10), 680-693.
[http://dx.doi.org/10.1016/j.tins.2016.08.001] [PMID: 27589879]
[73]
Haroian, A.J.; Massopust, L.C.; Young, P.A. Cerebellothalamic projections in the rat: An autoradiographic and degeneration study. J. Comp. Neurol., 1981, 197(2), 217-236.
[http://dx.doi.org/10.1002/cne.901970205] [PMID: 7276233]
[74]
Kwon, H.G.; Hong, J.H.; Hong, C.P.; Lee, D.H.; Ahn, S.H.; Jang, S.H. Dentatorubrothalamic tract in human brain: Diffusion tensor tractography study. Neuroradiology, 2011, 53(10), 787-791.
[http://dx.doi.org/10.1007/s00234-011-0878-7] [PMID: 21547376]
[75]
Kuramoto, E.; Furuta, T.; Nakamura, K.C.; Unzai, T.; Hioki, H.; Kaneko, T. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: A single neuron-tracing study using viral vectors. Cereb. Cortex, 2009, 19(9), 2065-2077.
[http://dx.doi.org/10.1093/cercor/bhn231] [PMID: 19174446]
[76]
Sakayori, N.; Kato, S.; Sugawara, M.; Setogawa, S.; Fukushima, H.; Ishikawa, R.; Kida, S.; Kobayashi, K. Motor skills mediated through cerebellothalamic tracts projecting to the central lateral nucleus. Mol. Brain, 2019, 12(1), 13.
[http://dx.doi.org/10.1186/s13041-019-0431-x] [PMID: 30736823]
[77]
Killackey, H.P.; Sherman, S.M. Corticothalamic projections from the rat primary somatosensory cortex. J. Neurosci., 2003, 23(19), 7381-7384.
[http://dx.doi.org/10.1523/JNEUROSCI.23-19-07381.2003] [PMID: 12917373]
[78]
Dow, R.S.; Fernández-Guardiola, A.; Manni, E. The influence of the cerebellum on experimental epilepsy. Electroencephalogr. Clin. Neurophysiol., 1962, 14(3), 383-398.
[http://dx.doi.org/10.1016/0013-4694(62)90115-3] [PMID: 13887605]
[79]
Heath, R.G.; Harper, J.W. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: Evoked potential and histological studies in monkeys and cats. Exp. Neurol., 1974, 45(2), 268-287.
[http://dx.doi.org/10.1016/0014-4886(74)90118-6] [PMID: 4422320]
[80]
Lautin, A. The limbic brain, 2001 Ed.; Academic Press: New York, N.Y., 2001.
[81]
Mirski, M.A.; Ferrendelli, J.A. Interruption of the mammillothalamic tract prevents seizures in guinea pigs. Science, 1984, 226(4670), 72-74.
[http://dx.doi.org/10.1126/science.6433485] [PMID: 6433485]
[82]
Hirayasu, Y.; Wada, J.A. N-methyl-D-aspartate injection into the massa intermedia facilitates development of limbic kindling in rats. Epilepsia, 1992, 33(6), 965-970.
[http://dx.doi.org/10.1111/j.1528-1157.1992.tb01745.x] [PMID: 1464279]
[83]
Bertram, E.H.; Mangan, P.S.; Zhang, D.; Scott, C.A.; Williamson, J.M. The midline thalamus: Alterations and a potential role in limbic epilepsy. Epilepsia, 2001, 42(8), 967-978.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042008967.x] [PMID: 11554881]
[84]
Bertram, E.H. Neuronal circuits in epilepsy: Do they matter? Exp. Neurol., 2013, 244, 67-74.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.028] [PMID: 22342991]
[85]
Fisher, R.S.; Uematsu, S.; Krauss, G.L.; Cysyk, B.J.; McPherson, R.; Lesser, R.P.; Gordon, B.; Schwerdt, P.; Rise, M. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia, 1992, 33(5), 841-851.
[http://dx.doi.org/10.1111/j.1528-1157.1992.tb02192.x] [PMID: 1396427]
[86]
Velasco, F.; Carrillo-Ruiz, J.D.; Brito, F.; Velasco, M.; Velasco, A.L.; Marquez, I.; Davis, R. Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia, 2005, 46(7), 1071-1081.
[http://dx.doi.org/10.1111/j.1528-1167.2005.70504.x] [PMID: 16026559]
[87]
Velasco, M.; Velasco, F.; Velasco, A.L.; Brito, F.; Jiménez, F.; Marquez, I.; Rojas, B. Electrocortical and behavioral responses produced by acute electrical stimulation of the human centromedian thalamic nucleus. Electroencephalogr. Clin. Neurophysiol., 1997, 102(6), 461-471.
[http://dx.doi.org/10.1016/S0013-4694(96)95203-0] [PMID: 9216479]
[88]
Shinoda, Y.; Kano, M.; Futami, T. Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. I. Projection of individual cerebellar nuclei to single pyramidal tract neurons in areas 4 and 6. Neurosci. Res., 1985, 2(3), 133-156.
[http://dx.doi.org/10.1016/0168-0102(85)90009-4] [PMID: 2991824]
[89]
Meeren, H.K.M.; Pijn, J.P.M.; Van Luijtelaar, E.L.J.M.; Coenen, A.M.L.; Lopes da Silva, F.H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci., 2002, 22(4), 1480-1495.
[http://dx.doi.org/10.1523/JNEUROSCI.22-04-01480.2002] [PMID: 11850474]
[90]
Rouiller, E.M.; Tanne, J.; Moret, V.; Boussaoud, D. Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: A multiple retrograde tracing study. J. Comp. Neurol., 1999, 409(1), 131-152.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990621)409:1<131::AID-CNE10>3.0.CO;2-A] [PMID: 10363716]
[91]
Sabatino, M.; Gravante, G.; Ferraro, G.; Savatteri, V.; La Grutta, V. Inhibitory control by substantia nigra of generalized epilepsy in the cat. Epilepsy Res., 1988, 2(6), 380-386.
[http://dx.doi.org/10.1016/0920-1211(88)90049-6] [PMID: 3197707]
[92]
Çavdar, S.; Onat, F.Y.; Çakmak, Y.Ö.; Yananli, H.R.; Gülçebi, M.; Aker, R. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J. Anat., 2008, 212(3), 249-256.
[http://dx.doi.org/10.1111/j.1469-7580.2008.00858.x] [PMID: 18221482]
[93]
Horn, A.K.E. The reticular formation. Prog. Brain Res., 2006, 151, 127-155.
[http://dx.doi.org/10.1016/S0079-6123(05)51005-7] [PMID: 16221588]
[94]
Jones, B.E.; Yang, T.Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol., 1985, 242(1), 56-92.
[http://dx.doi.org/10.1002/cne.902420105] [PMID: 2416786]
[95]
Manto, M.; Gruol, D.L.; Schmahmann, J.D.; Koibuchi, N.; Rossi, F. Handbook of the cerebellum and cerebellar disorders. In: Handbook of Cerebellum and Cerebellar Disorders; Springer: Chang, 2013; p. 2424.
[96]
Shammah-Lagnado, S.J.; Ricardo, J.A.; Sakamoto, N.T.M.N.; Negra˜o, N. Afferent connections of the mesencephalic reticular formation: A horseradish peroxidase study in the rat. Neuroscience, 1983, 9(2), 391-409.
[http://dx.doi.org/10.1016/0306-4522(83)90302-0] [PMID: 6877601]
[97]
Browning, R.A. Role of the brain-stem reticular formation in tonic-clonic seizures: Lesion and pharmacological studies. Fed. Proc., 1985, 44(8), 2425-2431.
[PMID: 3886430]
[98]
Mangold, S.A.; Das, J. Neuroanatomy, Reticular Formation; StatPearls Publising: Treasure Island, FL, 2020.
[99]
Akdogan, I.; Goksin, N. Experimental epilepsy models and morphologic alterations of experimental epilepsy models in brain and hippocampus. In: Underlying Mechanisms of Epilepsy; , 2011; 2011, p. 21813620.
[http://dx.doi.org/10.5772/19928]
[100]
Baracskay, P.; Kiglics, V.; Kékesi, K.A.; Juhász, G.; Czurkó, A. Status epilepticus affects the gigantocellular network of the pontine reticular formation. BMC Neurosci., 2009, 10(1), 133.
[http://dx.doi.org/10.1186/1471-2202-10-133] [PMID: 19912649]
[101]
Martin, F.; Vertes, P.; Waltzer, R. Spinal projections of the gigantocellular reticular formation in the rat. Evidence for projections from different areas to laminae I and II and lamina IX. Exp. Brain Res., 1985, 58, 154-162.
[102]
Racine, R.J. Modification of seizure activity by electrical modification of after-discharge. Electroencephalogr. Clin. Neurophysiol., 1972, 32, 269-279.
[http://dx.doi.org/10.1016/0013-4694(72)90176-9] [PMID: 4110396]
[103]
Unverdi, M.; Alsayouri, K. Neuroanatomy, Cerebellar Dysfunction; StatPearls Publishing: Treasure Island, FL, 2019.
[104]
Bentivoglio, M.; Kuypers, H.G.J.M. Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord. Exp. Brain Res., 1982, 46(3), 339-356.
[http://dx.doi.org/10.1007/BF00238629] [PMID: 7095042]
[105]
Paz, C.; Reygadas, E.; Ferna´ndez-Guardiola, A. Amygdala kindling in totally cerebellectomized cats. Exp. Neurol., 1985, 88(2), 418-424.
[http://dx.doi.org/10.1016/0014-4886(85)90203-1] [PMID: 3987863]
[106]
Bantli, H.; Bloedel, J.R.; Anderson, G.; McRoberts, R.; Sandberg, E. Effects of stimulating the cerebellar surface on the activity in penicillin foci. J. Neurosurg., 1978, 48(1), 69-84.
[http://dx.doi.org/10.3171/jns.1978.48.1.0069] [PMID: 619026]
[107]
Hutton, J.T.; Frost, J.D., Jr.; Foster, J. The influence of the cerebellum in cat penicillin epilepsy. Epilepsia, 1972, 13(3), 401-408.
[http://dx.doi.org/10.1111/j.1528-1157.1972.tb04580.x] [PMID: 4626569]
[108]
Hablitz, J.J. Intramuscular penicillin epilepsy in the cat: Effects of chronic cerebellar stimulation. Exp. Neurol., 1976, 50(2), 505-514.
[http://dx.doi.org/10.1016/0014-4886(76)90022-4] [PMID: 1248564]
[109]
Cooke, P.M.; Snider, R.S. Some cerebellar influences on electrically-induced cerebral seizures. Epilepsia, 1955, C4(1), 19-28.
[http://dx.doi.org/10.1111/j.1528-1157.1955.tb03170.x] [PMID: 13305547]
[110]
Maiti, A.; Snider, R.S. Cerebellar control of basal forebrain seizures: Amygdala and hippocampus. Epilepsia, 1975, 16(3), 521-533.
[http://dx.doi.org/10.1111/j.1528-1157.1975.tb06082.x] [PMID: 810347]
[111]
Reimer, G.R.; Grimm, R.J.; Dow, R.S. Effects of cerebellar stimulation on cobalt-induced epilepsy in the cat. Electroencephalogr. Clin. Neurophysiol., 1967, 23(5), 456-462.
[http://dx.doi.org/10.1016/0013-4694(67)90188-5] [PMID: 4168976]
[112]
Ebner, T.J.; Bantli, H.; Bloedel, J.R. Effects of cerebellar stimulation on unitary activity within a chronic epileptic focus in a primate. Electroencephalogr. Clin. Neurophysiol., 1980, 49(5-6), 585-599.
[http://dx.doi.org/10.1016/0013-4694(80)90399-5] [PMID: 6158438]
[113]
Streng, M.L.; Krook-Magnuson, E. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures. J. Physiol., 2020, 598(1), 171-187.
[http://dx.doi.org/10.1113/JP278747] [PMID: 31682010]
[114]
Rijkers, K.; Moers-Hornikx, V.M.P.; Hemmes, R.J.; Aalbers, M.W.; Temel, Y.; Vles, J.S.H.; Hoogland, G. Sustained reduction of cerebellar activity in experimental epilepsy. BioMed Res. Int., 2015, 2015, 718591.
[http://dx.doi.org/10.1155/2015/718591] [PMID: 26417599]
[115]
Coyle, J.T.; Molliver, M.E.; Kuhar, M.J. In situ injection of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage. J. Comp. Neurol., 1978, 180(2), 301-323.
[http://dx.doi.org/10.1002/cne.901800208] [PMID: 659663]
[116]
McGeer, E.G.; McGeer, P.L. Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid. Neurochem. Res., 1978, 3(4), 501-517.
[http://dx.doi.org/10.1007/BF00966331] [PMID: 34114]
[117]
Rubio, C.; Custodio, V.; González, E.; Retana-Márquez, S.; López, M.; Paz, C. Effects of kainic acid lesions of the cerebellar interpositus and dentate nuclei on amygdaloid kindling in rats. Brain Res. Bull., 2011, 85(1-2), 64-67.
[http://dx.doi.org/10.1016/j.brainresbull.2011.02.003] [PMID: 21335069]
[118]
Anderson, B.J.; Steinmetz, J.E. Cerebellar and brainstem circuits involved in classical eyeblink conditioning. Rev. Neurosci., 1994, 5(3), 251-273.
[http://dx.doi.org/10.1515/REVNEURO.1994.5.3.251] [PMID: 7889216]
[119]
Katz, D.B.; Steinmetz, J.E. Single-unit evidence for eye-blink conditioning in cerebellar cortex is altered, but not eliminated, by interpositus nucleus lesions. Learn. Mem., 1997, 4(1), 88-104.
[http://dx.doi.org/10.1101/lm.4.1.88] [PMID: 10456056]
[120]
Lavond, D.G.; Hembree, T.L.; Thompson, R.F. Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Res., 1985, 326(1), 179-182.
[http://dx.doi.org/10.1016/0006-8993(85)91400-3] [PMID: 3971143]
[121]
Min, J.K.; Valentine, P.A.; Teskey, G.C. Effect of complete and partial bilateral lesions of the deep cerebellar nuclei on amygdaloid kindling in rats. Epilepsia, 1998, 39(7), 692-699.
[http://dx.doi.org/10.1111/j.1528-1157.1998.tb01153.x] [PMID: 9670896]
[122]
Tsuru, N.; Kawasaki, H.; Genda, S.; Hara, K.; Hashiguchi, H.; Ueda, Y. Effect of unilateral dentate nucleus lesions on amygdaloid kindling in rats. Epilepsia, 1992, 33(2), 213-221.
[http://dx.doi.org/10.1111/j.1528-1157.1992.tb02309.x] [PMID: 1547750]
[123]
Brown, W.J.; Babb, T.L.; Soper, H.V.; Lieb, J.P.; Ottino, C.A.; Crandall, P.H. Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys. J. Neurosurg., 1977, 47(3), 366-379.
[http://dx.doi.org/10.3171/jns.1977.47.3.0366] [PMID: 408468]
[124]
Babačić, H.; Mehta, A.; Merkel, O.; Schoser, B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One, 2019, 14(2), e0212198.
[http://dx.doi.org/10.1371/journal.pone.0212198] [PMID: 30794581]
[125]
Brighina, F.; Daniele, O.; Piazza, A.; Giglia, G.; Fierro, B. Hemispheric cerebellar rTMS to treat drug-resistant epilepsy: Case reports. Neurosci. Lett., 2006, 397(3), 229-233.
[http://dx.doi.org/10.1016/j.neulet.2005.12.050] [PMID: 16426754]
[126]
Perlmutter, J.S.; Mink, J.W. Deep brain stimulation. Annu. Rev. Neurosci., 2006, 29(1), 229-257.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112824] [PMID: 16776585]
[127]
Molnar, G.F.; Sailer, A.; Gunraj, C.A.; Lang, A.E.; Lozano, A.M.; Chen, R. Thalamic deep brain stimulation activates the cerebello-thalamocortical pathway. Neurology, 2004, 63(5), 907-909.
[http://dx.doi.org/10.1212/01.WNL.0000137419.85535.C7] [PMID: 15365147]
[128]
Rajakulendran, S.; Hanna, M.G. The role of calcium channels in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(1), a022723.
[http://dx.doi.org/10.1101/cshperspect.a022723] [PMID: 26729757]
[129]
Benussi, A.; Dell’Era, V.; Cotelli, M.S.; Turla, M.; Casali, C.; Padovani, A.; Borroni, B. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul., 2017, 10(2), 242-250.
[http://dx.doi.org/10.1016/j.brs.2016.11.001] [PMID: 27838276]
[130]
Benussi, A.; Koch, G.; Cotelli, M.; Padovani, A.; Borroni, B. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Mov. Disord., 2015, 30(12), 1701-1705.
[http://dx.doi.org/10.1002/mds.26356] [PMID: 26274840]
[131]
Ferrucci, R.; Bocci, T.; Cortese, F.; Ruggiero, F.; Priori, A. Noninvasive cerebellar stimulation as a complement tool to pharmacotherapy. Curr. Neuropharmacol., 2018, 17(1), 14-20.
[http://dx.doi.org/10.2174/1570159X15666171114142422] [PMID: 29141551]
[132]
Ugawa, Y.; Uesaka, Y.; Terao, Y.; Hanajima, R.; Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Ann. Neurol., 1995, 37(6), 703-713.
[http://dx.doi.org/10.1002/ana.410370603] [PMID: 7778843]
[133]
Ugawa, Y.; Genba-Shimizu, K.; Rothwell, J.C.; Iwata, M.; Kanazawa, I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Ann. Neurol., 1994, 36(1), 90-96.
[http://dx.doi.org/10.1002/ana.410360117] [PMID: 8024268]
[134]
Wright, G.D.; McLellan, D.L.; Brice, J.G. A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J. Neurol. Neurosurg. Psychiatry, 1984, 47(8), 769-774.
[http://dx.doi.org/10.1136/jnnp.47.8.769] [PMID: 6381652]
[135]
Lockard, J.S.; Ojemann, G.A.; Congdon, W.C.; DuCharme, L.L. Cerebellar stimulation in alumina-gel monkey model: Inverse relationship between clinical seizures and EEG interictal bursts. Epilepsia, 1979, 20(3), 223-234.
[http://dx.doi.org/10.1111/j.1528-1157.1979.tb04799.x] [PMID: 109292]
[136]
Van Buren, J.M.; Wood, J.H.; Oakley, J.; Hambrecht, F. Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J. Neurosurg., 1978, 48(3), 407-416.
[http://dx.doi.org/10.3171/jns.1978.48.3.0407] [PMID: 344840]
[137]
Tønnesen, J.; Kokaia, M. Epilepsy and optogenetics: Can seizures be controlled by light? Clin. Sci. (Lond.), 2017, 131(14), 1605-1616.
[http://dx.doi.org/10.1042/CS20160492] [PMID: 28667062]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy