Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances: From Cell Biology to Cell Therapy in Atherosclerosis Plaque via Stent Implantation

Author(s): Sainan Liu, Li Li, Huanran Wang, Jianying Tan, Lai Wei, Yajun Weng and Junying Chen*

Volume 30, Issue 31, 2023

Published on: 22 December, 2022

Page: [3582 - 3613] Pages: 32

DOI: 10.2174/0929867330666221028144416

Price: $65

conference banner
Abstract

Atherosclerosis is a multifactorial result of complicated pathophysiology. Changes in the expression of polygenes, coupled with environmental and lifestyle factors, trigger a cascade of adverse events involving a variety of cell types, such as vascular endothelial cells, smooth muscle cells, and macrophages. In this review, we summarize the function and therapeutic targets of atherosclerotic cells. This article reviews the role of endothelial cells, smooth muscle cells, macrophages and foam cells in the development of atherosclerosis and the progress in the treatment of atherosclerosis by targeting these cells. Atherosclerotic plaque involves a variety of cells and biomolecules, and its complex biological environment is a difficult point for the study and treatment of atherosclerosis. For treating atherosclerosis, a large number of studies emerged based on blocking or inhibiting factors affecting the formation and development of plaque. Cardiovascular stent intervention is currently the main method for the treatment of atherosclerosis. In recent decades, numerous studies on cardiovascular, stents mainly involve drug coating or biomolecular modification of stents to enhance anti-thrombosis, anti-restenosis and endothelialization. This paper introduces the research status of cardiovascular stents and new strategies for surface modification. The treatment of atherosclerosis based on the level of molecular biology and cell biology is becoming a research hotspot in the coming decades.

« Previous
[1]
Madeddu, P. Cell therapy for the treatment of heart disease: Renovation work on the broken heart is still in progress. Free Radic. Biol. Med., 2021, 164, 206-222.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.444] [PMID: 33421587]
[2]
Gao, C.; Huang, Q.; Liu, C.; Kwong, C.H.T.; Yue, L.; Wan, J.B.; Lee, S.M.Y.; Wang, R. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun., 2020, 11(1), 2622.
[http://dx.doi.org/10.1038/s41467-020-16439-7] [PMID: 32457361]
[3]
Raggi, P.; Genest, J.; Giles, J.T.; Rayner, K.J.; Dwivedi, G.; Beanlands, R.S.; Gupta, M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis, 2018, 276, 98-108.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.07.014] [PMID: 30055326]
[4]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[5]
Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. (Oxf.), 2015, 214(1), 33-50.
[http://dx.doi.org/10.1111/apha.12466] [PMID: 25677529]
[6]
Gomez, D.; Owens, G.K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res., 2012, 95(2), 156-164.
[http://dx.doi.org/10.1093/cvr/cvs115] [PMID: 22406749]
[7]
Stojanović, S.D.; Fiedler, J.; Bauersachs, J.; Thum, T.; Sedding, D.G. Senescence-induced inflammation: An important player and key therapeutic target in atherosclerosis. Eur. Heart J., 2020, 41(31), 2983-2996.
[http://dx.doi.org/10.1093/eurheartj/ehz919] [PMID: 31898722]
[8]
Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 2019, 16(12), 727-744.
[http://dx.doi.org/10.1038/s41569-019-0227-9] [PMID: 31243391]
[9]
Heun, Y.; Gräff, P.; Lagara, A.; Schelhorn, R.; Mettler, R.; Pohl, U.; Mannell, H. The GEF Cytohesin-2/ARNO mediates resistin induced phenotypic switching in vascular smooth muscle cells. Sci. Rep., 2020, 10(1), 3672.
[http://dx.doi.org/10.1038/s41598-020-60446-z] [PMID: 32111889]
[10]
Tabas, I.; García-Cardeña, G.; Owens, G.K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol., 2015, 209(1), 13-22.
[http://dx.doi.org/10.1083/jcb.201412052] [PMID: 25869663]
[11]
Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. (Lond.), 2018, 132(12), 1243-1252.
[http://dx.doi.org/10.1042/CS20180306] [PMID: 29930142]
[12]
Wang, D.; Wang, Z.; Zhang, L.; Wang, Y. Roles of cells from the arterial vessel wall in atherosclerosis. Mediat. Inflamm., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/8135934] [PMID: 28680196]
[13]
Kim, M.J.; Jung, S.K. Nutraceuticals for prevention of atherosclerosis: Targeting monocyte infiltration to the vascular endothelium. J. Food Biochem., 2020, 44(6), e13200.
[http://dx.doi.org/10.1111/jfbc.13200] [PMID: 32189369]
[14]
Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y.; Ali, F. Atherosclerotic cardiovascular disease: A review of initiators and protective factors. Inflammopharmacology, 2016, 24(1), 1-10.
[http://dx.doi.org/10.1007/s10787-015-0255-y] [PMID: 26750181]
[15]
Zhong, S.; Li, L.; Shen, X.; Li, Q.; Xu, W.; Wang, X.; Tao, Y.; Yin, H. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic. Biol. Med., 2019, 144, 266-278.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.036] [PMID: 30946962]
[16]
Hansson, G.K.; Libby, P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519.
[http://dx.doi.org/10.1038/nri1882] [PMID: 16778830]
[17]
Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[18]
Huveneers, S.; Daemen, M.J.A.P.; Hordijk, P.L. Between Rho(k) and a hard place: The relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ. Res., 2015, 116(5), 895-908.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305720] [PMID: 25722443]
[19]
Toth, P.P. Atherogenesis and Vascular Biology. In: Therapeutic Lipidology; Davidson, M.H.; Toth, P.P.; Maki, K.C., Eds.; Springer International Publishing: Cham, 2021; pp. 11-34.
[http://dx.doi.org/10.1007/978-3-030-56514-5_2]
[20]
Higashi, Y.; Gautam, S.; Delafontaine, P.; Sukhanov, S. IGF-1 and cardiovascular disease. Growth Horm. IGF Res., 2019, 45, 6-16.
[http://dx.doi.org/10.1016/j.ghir.2019.01.002] [PMID: 30735831]
[21]
Godo, S.; Shimokawa, H. Endothelial functions. Arterioscler. Thromb. Vasc. Biol., 2017, 37(9), e108-e114.
[http://dx.doi.org/10.1161/ATVBAHA.117.309813] [PMID: 28835487]
[22]
Mudau, M.; Genis, A.; Lochner, A.; Strijdom, H. Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc. J. Afr., 2012, 23(4), 222-231.
[http://dx.doi.org/10.5830/CVJA-2011-068] [PMID: 22614668]
[23]
Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 565-577.
[http://dx.doi.org/10.1093/cvr/cvx253] [PMID: 29309526]
[24]
Sawada, N.; Obama, T.; Koba, S.; Takaki, T.; Iwamoto, S.; Aiuchi, T.; Kato, R.; Kikuchi, M.; Hamazaki, Y.; Itabe, H. Circulating oxidized LDL, increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J. Lipid Res., 2020, 61(6), 816-829.
[http://dx.doi.org/10.1194/jlr.RA119000312] [PMID: 32291330]
[25]
Inoue, K.; Arai, Y.; Kurihara, H.; Kita, T.; Sawamura, T. Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ. Res., 2005, 97(2), 176-184.
[http://dx.doi.org/10.1161/01.RES.0000174286.73200.d4] [PMID: 15961718]
[26]
Cominacini, L.; Rigoni, A.; Pasini, A.F.; Garbin, U.; Davoli, A.; Campagnola, M.; Pastorino, A.M.; Lo Cascio, V.; Sawamura, T. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J. Biol. Chem., 2001, 276(17), 13750-13755.
[http://dx.doi.org/10.1074/jbc.M010612200] [PMID: 11278710]
[27]
Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Bian, J.S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020, 10, 1568.
[http://dx.doi.org/10.3389/fphar.2019.01568] [PMID: 32038245]
[28]
Siasos, G.; Tousoulis, D.; Siasou, Z.; Stefanadis, C.; Papavassiliou, A. Shear stress, protein kinases and atherosclerosis. Curr. Med. Chem., 2007, 14(14), 1567-1572.
[http://dx.doi.org/10.2174/092986707780831087] [PMID: 17584064]
[29]
Dejana, E.; Hirschi, K.K.; Simons, M. The molecular basis of endothelial cell plasticity. Nat. Commun., 2017, 8(1), 14361.
[http://dx.doi.org/10.1038/ncomms14361] [PMID: 28181491]
[30]
Hong, L.; Du, X.; Li, W.; Mao, Y.; Sun, L.; Li, X.; End, M.T. EndMT: A promising and controversial field. Eur. J. Cell Biol., 2018, 97(7), 493-500.
[http://dx.doi.org/10.1016/j.ejcb.2018.07.005] [PMID: 30082099]
[31]
Schwartz, M. A.; Vestweber, D.; Simons, M. A unifying concept in vascular health and disease. Science (80-.), 2018, 360(6386), 270-271.
[32]
Chen, P.Y.; Qin, L.; Baeyens, N.; Li, G.; Afolabi, T.; Budatha, M.; Tellides, G.; Schwartz, M.A.; Simons, M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest., 2015, 125(12), 4514-4528.
[http://dx.doi.org/10.1172/JCI82719] [PMID: 26517696]
[33]
Evrard, S.M.; Lecce, L.; Michelis, K.C.; Nomura-Kitabayashi, A.; Pandey, G.; Purushothaman, K.R.; d’Escamard, V.; Li, J.R.; Hadri, L.; Fujitani, K.; Moreno, P.R.; Benard, L.; Rimmele, P.; Cohain, A.; Mecham, B.; Randolph, G.J.; Nabel, E.G.; Hajjar, R.; Fuster, V.; Boehm, M.; Kovacic, J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun., 2016, 7(1), 11853.
[http://dx.doi.org/10.1038/ncomms11853] [PMID: 27340017]
[34]
Qin, W.; Zhang, L.; Li, Z.; Xiao, D.; Zhang, Y.; Zhang, H.; Mokembo, J.N.; Monayo, S.M.; Jha, N.K.; Kopylov, P.; Shchekochikhin, D.; Zhang, Y. Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis. Theranostics, 2020, 10(12), 5276-5289.
[http://dx.doi.org/10.7150/thno.42470] [PMID: 32373212]
[35]
Choi, K.J.; Nam, J.K.; Kim, J.H.; Choi, S.H.; Lee, Y.J. Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp. Mol. Med., 2020, 52(5), 781-792.
[http://dx.doi.org/10.1038/s12276-020-0439-4] [PMID: 32467609]
[36]
Katsura, A.; Suzuki, H.I.; Ueno, T.; Mihira, H.; Yamazaki, T.; Yasuda, T.; Watabe, T.; Mano, H.; Yamada, Y.; Miyazono, K. Micro RNA-31 is a positive modulator of endothelial mesenchymal transition and associated secretory phenotype induced by TGF-β. Genes Cells, 2016, 21(1), 99-116.
[http://dx.doi.org/10.1111/gtc.12323] [PMID: 26663584]
[37]
Vanchin, B.; Offringa, E.; Friedrich, J.; Brinker, M.G.L.; Kiers, B.; Pereira, A.C.; Harmsen, M.C.; Moonen, J.R.A.J.; Krenning, G. MicroRNA-374b induces endothelial-to-mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. J. Pathol., 2019, 247(4), 456-470.
[http://dx.doi.org/10.1002/path.5204] [PMID: 30565701]
[38]
Ding, J.; Li, Z.; Li, L.; Ding, Y.; Wang, D.; Meng, S.; Zhou, Q.; Gui, S.; Wei, W.; Zhu, H.; Wang, Y. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction and permeability via the mitogen-activated protein kinase pathway in a rabbit model of atherosclerosis. Biomed. Pharmacother., 2020, 128, 110258.
[http://dx.doi.org/10.1016/j.biopha.2020.110258] [PMID: 32516749]
[39]
Kirmizis, D.; Papagianni, A.; Dogrammatzi, F.; Skoura, L.; Belechri, A.M.; Alexopoulos, E.; Efstratiadis, G.; Memmos, D. Effects of simvastatin on markers of inflammation, oxidative stress and endothelial cell apoptosis in patients on chronic hemodialysis. J. Atheroscler. Thromb., 2010, 17(12), 1256-1265.
[http://dx.doi.org/10.5551/jat.5710] [PMID: 20885069]
[40]
Fici, F.; Faikoglu, G.; Tarim, B.A.; Robles, N.R.; Tsioufis, K.; Grassi, G.; Gungor, B. Pitavastatin: Coronary atherosclerotic plaques changes and cardiovascular prevention. High Blood Press. Cardiovasc. Prev., 2022, 29(2), 137-144.
[http://dx.doi.org/10.1007/s40292-021-00496-0] [PMID: 35064911]
[41]
Imanishi, T.; Tsujioka, H.; Ikejima, H.; Kuroi, A.; Takarada, S.; Kitabata, H.; Tanimoto, T.; Muragaki, Y.; Mochizuki, S.; Goto, M.; Yoshida, K.; Akasaka, T. Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension, 2008, 52(3), 563-572.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.111120] [PMID: 18645051]
[42]
Yamamoto, K.; Origasa, H.; Hori, M.; Investigators, J. Effects of carvedilol on heart failure with preserved ejection fraction: The Japanese Diastolic Heart Failure Study (J-DHF). Eur. J. Heart Fail., 2013, 15(1), 110-118.
[http://dx.doi.org/10.1093/eurjhf/hfs141] [PMID: 22983988]
[43]
Chen, X.; Qian, S.; Hoggatt, A.; Tang, H.; Hacker, T.A.; Obukhov, A.G.; Herring, P.B.; Seye, C.I. Endothelial cell–specific deletion of P2Y2 receptor promotes plaque stability in atherosclerosis-susceptible ApoE-null mice. Arterioscler. Thromb. Vasc. Biol., 2017, 37(1), 75-83.
[http://dx.doi.org/10.1161/ATVBAHA.116.308561] [PMID: 27856454]
[44]
Kuosmanen, S.M.; Kansanen, E.; Kaikkonen, M.U.; Sihvola, V.; Pulkkinen, K.; Jyrkkänen, H.K.; Tuoresmäki, P.; Hartikainen, J.; Hippeläinen, M.; Kokki, H.; Tavi, P.; Heikkinen, S.; Levonen, A.L. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res., 2018, 46(3), 1124-1138.
[http://dx.doi.org/10.1093/nar/gkx1155] [PMID: 29161413]
[45]
Hu, W.; Zhang, Y.; Wang, L.; Lau, C.W.; Xu, J.; Luo, J.Y.; Gou, L.; Yao, X.; Chen, Z.Y.; Ma, R.C.W.; Tian, X.Y.; Huang, Y. Bone morphogenic protein 4-smad–induced upregulation of platelet-derived growth factor AA impairs endothelial function. Arterioscler. Thromb. Vasc. Biol., 2016, 36(3), 553-560.
[http://dx.doi.org/10.1161/ATVBAHA.115.306302] [PMID: 26769046]
[46]
Zhang, Y.; Liu, J.; Tian, X.Y.; Wong, W.T.; Chen, Y.; Wang, L.; Luo, J.; Cheang, W.S.; Lau, C.W.; Kwan, K.M.; Wang, N.; Yao, X.; Huang, Y. Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice. Arterioscler. Thromb. Vasc. Biol., 2014, 34(1), 152-159.
[http://dx.doi.org/10.1161/ATVBAHA.113.302696] [PMID: 24202302]
[47]
Murakami, M.; Nguyen, L.T.; Hatanaka, K.; Schachterle, W.; Chen, P.Y.; Zhuang, Z.W.; Black, B.L.; Simons, M. FGF-dependent regulation of VEGF receptor 2 expression in mice. J. Clin. Invest., 2011, 121(7), 2668-2678.
[http://dx.doi.org/10.1172/JCI44762] [PMID: 21633168]
[48]
Murakami, M.; Nguyen, L.T.; Zhang, Z.W.; Moodie, K.L.; Carmeliet, P.; Stan, R.V.; Simons, M. The FGF system has a key role in regulating vascular integrity. J. Clin. Invest., 2008, 118(10), 3355-3366.
[http://dx.doi.org/10.1172/JCI35298] [PMID: 18776942]
[49]
Mollmark, J.I.; Park, A.J.H.; Kim, J.; Wang, T.Z.; Katzenell, S.; Shipman, S.L.; Zagorchev, L.G.; Simons, M.; Mulligan-Kehoe, M.J. Fibroblast growth factor-2 is required for vasa vasorum plexus stability in hypercholesterolemic mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(11), 2644-2651.
[http://dx.doi.org/10.1161/ATVBAHA.112.252544] [PMID: 22982464]
[50]
Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis, 2018, 278, 226-231.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.10.007] [PMID: 30326405]
[51]
Cullen, A.; Centner, A.; Salazar, G. Regulation of the phenotypic switch of vascular smooth muscle cells by adiponectin. FASEB J., 2020, 34(S1), 1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.09643]
[52]
Ackers-Johnson, M.; Talasila, A.; Sage, A.P.; Long, X.; Bot, I.; Morrell, N.W.; Bennett, M.R.; Miano, J.M.; Sinha, S. Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler. Thromb. Vasc. Biol., 2015, 35(4), 817-828.
[http://dx.doi.org/10.1161/ATVBAHA.114.305218] [PMID: 25614278]
[53]
Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res., 2016, 118(4), 692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306361] [PMID: 26892967]
[54]
Shankman, L.S.; Gomez, D.; Cherepanova, O.A.; Salmon, M.; Alencar, G.F.; Haskins, R.M.; Swiatlowska, P.; Newman, A.A.C.; Greene, E.S.; Straub, A.C.; Isakson, B.; Randolph, G.J.; Owens, G.K. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med., 2015, 21(6), 628-637.
[http://dx.doi.org/10.1038/nm.3866] [PMID: 25985364]
[55]
Vengrenyuk, Y.; Nishi, H.; Long, X.; Ouimet, M.; Savji, N.; Martinez, F.O.; Cassella, C.P.; Moore, K.J.; Ramsey, S.A.; Miano, J.M.; Fisher, E.A. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol., 2015, 35(3), 535-546.
[http://dx.doi.org/10.1161/ATVBAHA.114.304029] [PMID: 25573853]
[56]
Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. (Berl.), 2017, 95(11), 1153-1165.
[http://dx.doi.org/10.1007/s00109-017-1575-8] [PMID: 28785870]
[57]
Durham, A.L.; Speer, M.Y.; Scatena, M.; Giachelli, C.M.; Shanahan, C.M. Role of smooth muscle cells in vascular calcification: Implications in atherosclerosis and arterial stiffness. Cardiovasc. Res., 2018, 114(4), 590-600.
[http://dx.doi.org/10.1093/cvr/cvy010] [PMID: 29514202]
[58]
Milutinović, A.; Šuput, D.; Zorc-Pleskovič, R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn. J. Basic Med. Sci., 2020, 20(1), 21-30.
[PMID: 31465719]
[59]
Chistiakov, D.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Calcifying matrix vesicles and atherosclerosis. BioMed Res. Int., 2017, 2017, 7463590.
[http://dx.doi.org/10.1155/2017/7463590] [PMID: 29238720]
[60]
Harman, J.L.; Jørgensen, H.F. The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. Br. J. Pharmacol., 2019, 176(19), 3741-3753.
[http://dx.doi.org/10.1111/bph.14779] [PMID: 31254285]
[61]
Lin, Y.; Zhu, W.; Chen, X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res. Ther., 2020, 11(1), 216.
[http://dx.doi.org/10.1186/s13287-020-01728-1] [PMID: 32503682]
[62]
Clarke, M.C.H.; Littlewood, T.D.; Figg, N.; Maguire, J.J.; Davenport, A.P.; Goddard, M.; Bennett, M.R. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ. Res., 2008, 102(12), 1529-1538.
[63]
Chen, Y.; Zeng, Y.; Zhu, X.; Miao, L.; Liang, X.; Duan, J.; Li, H.; Tian, X.; Pang, L.; Wei, Y.; Yang, J. Significant difference between sirolimus and paclitaxel nanoparticles in anti-proliferation effect in normoxia and hypoxia: The basis of better selection of atherosclerosis treatment. Bioact. Mater., 2021, 6(3), 880-889.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.005] [PMID: 33024904]
[64]
Moreno-Estar, S.; Serrano, S.; Arévalo-Martínez, M.; Cidad, P.; López-López, J.R.; Santos, M.; Pérez-Garcia, M.T.; Arias, F.J. Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomater., 2020, 115, 264-274.
[http://dx.doi.org/10.1016/j.actbio.2020.07.053] [PMID: 32771595]
[65]
Wang, H.; Zhao, H.; Zhu, H.; Li, Y.; Tang, J.; Li, Y.; Zhou, B. Sca1 + cells minimally contribute to smooth muscle cells in atherosclerosis. Circ. Res., 2021, 128(1), 133-135.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317972] [PMID: 33146591]
[66]
Yang, F.; Chen, Q.; He, S.; Yang, M.; Maguire, E.M.; An, W.; Afzal, T.A.; Luong, L.A.; Zhang, L.; Xiao, Q. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation, 2018, 137(17), 1824-1841.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027799] [PMID: 29246895]
[67]
Zhang, R.Y.; Wu, C.M.; Hu, X.M.; Lin, X.M.; Hua, Y.N.; Chen, J.J.; Ding, L.; He, X.; Yang, B.; Ping, B.H.; Zheng, L.; Wang, Q. LncRNA AC105942.1 downregulates hnRNPA2/B1 to attenuate vascular smooth muscle cells proliferation. DNA Cell Biol., 2021, 40(5), 652-661.
[http://dx.doi.org/10.1089/dna.2020.6451] [PMID: 33781092]
[68]
Ni, H.; Haemmig, S.; Deng, Y.; Chen, J.; Simion, V.; Yang, D.; Sukhova, G.; Shvartz, E.; Wara, A.K.M.K.; Cheng, H.S.; Pérez-Cremades, D.; Assa, C.; Sausen, G.; Zhuang, R.; Dai, Q.; Feinberg, M.W. A smooth muscle cell–enriched long noncoding RNA regulates cell plasticity and atherosclerosis by interacting with serum response factor. Arterioscler. Thromb. Vasc. Biol., 2021, 41(9), 2399-2416.
[http://dx.doi.org/10.1161/ATVBAHA.120.315911] [PMID: 34289702]
[69]
Kang, C.M.; Li, W.K.; Yu, K.W.; Li, X.H.; Huang, R.Y.; Ke, P.F.; Jin, X.; Cao, S.W.; Yuan, Y.S.; Wang, H.; Yan, J.; Chen, W.Y.; Huang, X.Z.; Zhao, J.J. Long non coding RNA AL355711 promotes smooth muscle cell migration through the ABCG1/MMP3 pathway. Int. J. Mol. Med., 2021, 48(6), 207.
[http://dx.doi.org/10.3892/ijmm.2021.5040] [PMID: 34608503]
[70]
Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446), 445-455.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[71]
Rahman, K.; Fisher, E.A. Insights from pre-clinical and clinical studies on the role of innate inflammation in atherosclerosis regression. Front. Cardiovasc. Med., 2018, 5, 32.
[http://dx.doi.org/10.3389/fcvm.2018.00032] [PMID: 29868610]
[72]
Khallou-Laschet, J.; Varthaman, A.; Fornasa, G.; Compain, C.; Gaston, A.T.; Clement, M.; Dussiot, M.; Levillain, O.; Graff-Dubois, S.; Nicoletti, A.; Caligiuri, G. Macrophage plasticity in experimental atherosclerosis. PLoS One, 2010, 5(1), e8852.
[http://dx.doi.org/10.1371/journal.pone.0008852] [PMID: 20111605]
[73]
Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov., 2021, 20(8), 589-610.
[http://dx.doi.org/10.1038/s41573-021-00198-1] [PMID: 33976384]
[74]
Li, L.; Du, Z.; Rong, B.; Zhao, D.; Wang, A.; Xu, Y.; Zhang, H.; Bai, X.; Zhong, J. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci. Rep., 2020, 40(1), BSR20193267.
[http://dx.doi.org/10.1042/BSR20193267] [PMID: 31894855]
[75]
Li, J.; Meng, Q.; Fu, Y.; Yu, X.; Ji, T.; Chao, Y.; Chen, Q.; Li, Y.; Bian, H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J. Cell. Physiol., 2021, 236(9), 6154-6167.
[http://dx.doi.org/10.1002/jcp.30300] [PMID: 33507545]
[76]
Sukhorukov, V.N.; Khotina, V.A.; Chegodaev, Y.S.; Ivanova, E.; Sobenin, I.A.; Orekhov, A.N. Lipid metabolism in macrophages: Focus on atherosclerosis. Biomedicines, 2020, 8(8), 262.
[http://dx.doi.org/10.3390/biomedicines8080262] [PMID: 32752275]
[77]
Westerterp, M.; Bochem, A.E.; Yvan-Charvet, L.; Murphy, A.J.; Wang, N.; Tall, A.R. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res., 2014, 114(1), 157-170.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300738] [PMID: 24385509]
[78]
Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med., 2016, 20(1), 17-28.
[http://dx.doi.org/10.1111/jcmm.12689] [PMID: 26493158]
[79]
Shu, H.; Peng, Y.; Hang, W.; Nie, J.; Zhou, N.; Wang, D.W. The role of CD36 in cardiovascular disease. Cardiovasc. Res., 2022, 118(1), 115-129.
[http://dx.doi.org/10.1093/cvr/cvaa319] [PMID: 33210138]
[80]
Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm., 2013, 2013, 152786.
[http://dx.doi.org/10.1155/2013/152786] [PMID: 23935243]
[81]
Fan, J.; Liu, L.; Liu, Q.; Cui, Y.; Yao, B.; Zhang, M.; Gao, Y.; Fu, Y.; Dai, H.; Pan, J.; Qiu, Y.; Liu, C.H.; He, F.; Wang, Y.; Zhang, L. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat. Commun., 2019, 10(1), 425.
[http://dx.doi.org/10.1038/s41467-018-07895-3] [PMID: 30602773]
[82]
Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseases—impact on oxidative stress and mitochondria. Cells, 2022, 11(3), 342.
[http://dx.doi.org/10.3390/cells11030342] [PMID: 35159155]
[83]
Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta, 2013, 424, 245-252.
[http://dx.doi.org/10.1016/j.cca.2013.06.006] [PMID: 23782937]
[84]
Bäck, M.; Yurdagul, A., Jr; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol., 2019, 16(7), 389-406.
[http://dx.doi.org/10.1038/s41569-019-0169-2] [PMID: 30846875]
[85]
Pownall, H.J.; Rosales, C.; Gillard, B.K.; Gotto, A.M. Jr High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol., 2021, 18(10), 712-723.
[http://dx.doi.org/10.1038/s41569-021-00538-z] [PMID: 33833449]
[86]
DiMarco, D.; Fernandez, M. The regulation of reverse cholesterol transport and cellular cholesterol homeostasis by MicroRNAs. Biology (Basel), 2015, 4(3), 494-511.
[http://dx.doi.org/10.3390/biology4030494] [PMID: 26226008]
[87]
Meurs, I.; Lammers, B.; Zhao, Y.; Out, R.; Hildebrand, R.B.; Hoekstra, M.; Van Berkel, T.J.C.; Van Eck, M. The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis, 2012, 221(1), 41-47.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.11.024] [PMID: 22196936]
[88]
Maguire, E.M.; Pearce, S.W.A.; Xiao, Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol., 2019, 112, 54-71.
[http://dx.doi.org/10.1016/j.vph.2018.08.002] [PMID: 30115528]
[89]
Wang, G.; Chen, J.J.; Deng, W.Y.; Ren, K.; Yin, S.H.; Yu, X.H. CTRP12 ameliorates atherosclerosis by promoting cholesterol efflux and inhibiting inflammatory response via the miR-155-5p/LXRα pathway. Cell Death Dis., 2021, 12(3), 254.
[http://dx.doi.org/10.1038/s41419-021-03544-8] [PMID: 33692340]
[90]
Yao, S.; Zheng, F.; Yu, Y.; Zhan, Y.; Xu, N.; Luo, G.; Zheng, L.; Apolipoprotein, M. Apolipoprotein M promotes cholesterol uptake and efflux from mouse macrophages. FEBS Open Bio, 2021, 11(6), 1607-1620.
[http://dx.doi.org/10.1002/2211-5463.13157] [PMID: 33830664]
[91]
Rayner, K. J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M. L.; Tamehiro, N.; Fisher, E. A.; Moore, K. J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science (80-.), 2010, 328(5985), 1570-1573.
[92]
Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[93]
Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int. J. Mol. Sci., 2021, 22(18), 10152.
[http://dx.doi.org/10.3390/ijms221810152] [PMID: 34576315]
[94]
Xu, S.; Li, L.; Yan, J.; Ye, F.; Shao, C.; Sun, Z.; Bao, Z.; Dai, Z.; Zhu, J.; Jing, L.; Wang, Z. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration. Biomed. Pharmacother., 2018, 97, 1020-1031.
[http://dx.doi.org/10.1016/j.biopha.2017.11.041] [PMID: 29136780]
[95]
Pandi-Perumal, S.R.; BaHammam, A.S.; Ojike, N.I.; Akinseye, O.A.; Kendzerska, T.; Buttoo, K.; Dhandapany, P.S.; Brown, G.M.; Cardinali, D.P. Melatonin and human cardiovascular disease. J. Cardiovasc. Pharmacol. Ther., 2017, 22(2), 122-132.
[http://dx.doi.org/10.1177/1074248416660622] [PMID: 27450357]
[96]
Mueller, P.A.; Zhu, L.; Tavori, H.; Huynh, K.; Giunzioni, I.; Stafford, J.M.; Linton, M.F.; Fazio, S. Deletion of macrophage low-density lipoprotein receptor-related protein 1 (LRP1) accelerates atherosclerosis regression and increases C-c chemokine receptor type 7 (CCR7) expression in plaque macrophages. Circulation, 2018, 138(17), 1850-1863.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031702] [PMID: 29794082]
[97]
Härdtner, C.; Kornemann, J.; Krebs, K.; Ehlert, C.A.; Jander, A.; Zou, J.; Starz, C.; Rauterberg, S.; Sharipova, D.; Dufner, B.; Hoppe, N.; Dederichs, T.S.; Willecke, F.; Stachon, P.; Heidt, T.; Wolf, D.; von zur Mühlen, C.; Madl, J.; Kohl, P.; Kaeser, R.; Boettler, T.; Pieterman, E.J.; Princen, H.M.G.; Ho-Tin-Noé, B.; Swirski, F.K.; Robbins, C.S.; Bode, C.; Zirlik, A.; Hilgendorf, I. Inhibition of macrophage proliferation dominates plaque regression in response to cholesterol lowering. Basic Res. Cardiol., 2020, 115(6), 78.
[http://dx.doi.org/10.1007/s00395-020-00838-4] [PMID: 33296022]
[98]
Härdtner, C.; Ehlert, C.A.; Hilgendorf, I. New insights in statins affecting atheromatous plaque macrophages. Curr. Opin. Lipidol., 2021, 32(4), 258-264.
[http://dx.doi.org/10.1097/MOL.0000000000000769] [PMID: 34054106]
[99]
Ascenzi, F.; De Vitis, C.; Maugeri-Saccà, M.; Napoli, C.; Ciliberto, G.; Mancini, R. SCD1, autophagy and cancer: Implications for therapy. J. Exp. Clin. Cancer Res., 2021, 40(1), 265.
[http://dx.doi.org/10.1186/s13046-021-02067-6] [PMID: 34429143]
[100]
Guo, H.; Wei, D.; Liu, R.; Zhang, C.; Jiang, S.; Wang, W.; Hu, H.; Shen, L.; Liang, X. A novel therapeutic strategy for atherosclerosis: Autophagy-dependent cholesterol efflux. J. Physiol. Biochem., 2022, 78(3), 557-572.
[http://dx.doi.org/10.1007/s13105-021-00870-5] [PMID: 35064467]
[101]
Liu, C.; Jiang, Z.; Pan, Z.; Yang, L. The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front. Cell Dev. Biol., 2022, 9, 809516.
[http://dx.doi.org/10.3389/fcell.2021.809516] [PMID: 35087837]
[102]
Zhou, M.; Ren, P.; Zhang, Y.; Li, S.; Li, M.; Li, P.; Shang, J.; Liu, W.; Liu, H. Shen-yuan-dan capsule attenuates atherosclerosis and foam cell formation by enhancing autophagy and inhibiting the PI3K/Akt/mTORC1 signaling pathway. Front. Pharmacol., 2019, 10, 603.
[http://dx.doi.org/10.3389/fphar.2019.00603] [PMID: 31214032]
[103]
Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067.
[http://dx.doi.org/10.1161/ATVBAHA.116.308916] [PMID: 28428217]
[104]
Kloc, M.; Uosef, A.; Kubiak, J.Z.; Ghobrial, R.M. Role of macrophages and RhoA pathway in atherosclerosis. Int. J. Mol. Sci., 2020, 22(1), 216.
[http://dx.doi.org/10.3390/ijms22010216] [PMID: 33379334]
[105]
Tajbakhsh, A.; Rezaee, M.; Kovanen, P.T.; Sahebkar, A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol. Ther., 2018, 188, 12-25.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.003] [PMID: 29444453]
[106]
Che, X.; Xiao, Q.; Song, W.; Zhang, H.; Sun, B.; Geng, N.; Tao, Z.; Shao, Q.; Pu, J. Protective functions of liver X receptor α in estabhlished vulnerable plaques: Involvement of regulating endoplasmic reticulum–mediated macrophage apoptosis and efferocytosis. J. Am. Heart Assoc., 2021, 10(10), e018455.
[http://dx.doi.org/10.1161/JAHA.120.018455] [PMID: 33969692]
[107]
Dhawan, U.K.; Singhal, A.; Subramanian, M. Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution. Pharmacol. Res., 2021, 170, 105699.
[http://dx.doi.org/10.1016/j.phrs.2021.105699] [PMID: 34087352]
[108]
Brophy, M.L.; Dong, Y.; Tao, H.; Yancey, P.G.; Song, K.; Zhang, K.; Wen, A.; Wu, H.; Lee, Y.; Malovichko, M.V.; Sithu, S.D.; Wong, S.; Yu, L.; Kocher, O.; Bischoff, J.; Srivastava, S.; Linton, M.F.; Ley, K.; Chen, H. Myeloid-specific deletion of epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ. Res., 2019, 124(4), e6-e19.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313028] [PMID: 30595089]
[109]
Blackburn, J.W.D.; Lau, D.H.C.; Liu, E.Y.; Ellins, J.; Vrieze, A.M.; Pawlak, E.N.; Dikeakos, J.D.; Heit, B. Soluble CD93 is an apoptotic cell opsonin recognized by α x β 2. Eur. J. Immunol., 2019, 49(4), 600-610.
[http://dx.doi.org/10.1002/eji.201847801] [PMID: 30656676]
[110]
Yurdagul, A., Jr; Doran, A.C.; Cai, B.; Fredman, G.; Tabas, I.A. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front. Cardiovasc. Med., 2018, 4, 86.
[http://dx.doi.org/10.3389/fcvm.2017.00086] [PMID: 29379788]
[111]
Snodgrass, R.G.; Benatzy, Y.; Schmid, T.; Namgaladze, D.; Mainka, M.; Schebb, N.H.; Lütjohann, D.; Brüne, B. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ., 2021, 28(4), 1301-1316.
[http://dx.doi.org/10.1038/s41418-020-00652-4] [PMID: 33177619]
[112]
Vago, J.P.; Galvão, I.; Negreiros-Lima, G.L.; Teixeira, L.C.R.; Lima, K.M.; Sugimoto, M.A.; Moreira, I.Z.; Jones, S.A.; Lang, T.; Riccardi, C.; Teixeira, M.M.; Harris, J.; Morand, E.F.; Sousa, L.P. Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacol. Res., 2020, 158, 104842.
[http://dx.doi.org/10.1016/j.phrs.2020.104842] [PMID: 32413484]
[113]
Lee, Y.J.I.; Kim, B.M.; Ahn, Y.H.; Choi, J.H.; Choi, Y.H.; Kang, J.L. STAT6 signaling mediates PPARγ activation and resolution of acute sterile inflammation in mice. Cells, 2021, 10(3), 501.
[http://dx.doi.org/10.3390/cells10030501] [PMID: 33652833]
[114]
Rattazzi, M.; Rosenfeld, M.E. The multifaceted role of macrophages in cardiovascular calcification. Atherosclerosis, 2018, 270, 193-195.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.046] [PMID: 29395099]
[115]
Villa-Bellosta, R.; Hamczyk, M.R.; Andrés, V. Alternatively activated macrophages exhibit an anticalcifying activity dependent on extra-cellular ATP/pyrophosphate metabolism. Am. J. Physiol. Cell Physiol., 2016, 310(10), C788-C799.
[http://dx.doi.org/10.1152/ajpcell.00370.2015] [PMID: 26936458]
[116]
Li, Y.; Sun, Z.; Zhang, L.; Yan, J.; Shao, C.; Jing, L.; Li, L.; Wang, Z. Role of macrophages in the progression and regression of vascular calcification. Front. Pharmacol., 2020, 11, 661.
[http://dx.doi.org/10.3389/fphar.2020.00661] [PMID: 32457633]
[117]
Shioi, A.; Morioka, T.; Shoji, T.; Emoto, M. The inhibitory roles of vitamin K in progression of vascular calcification. Nutrients, 2020, 12(2), 583.
[http://dx.doi.org/10.3390/nu12020583] [PMID: 32102248]
[118]
Ceneri, N.; Zhao, L.; Young, B.D.; Healy, A.; Coskun, S.; Vasavada, H.; Yarovinsky, T.O.; Ike, K.; Pardi, R.; Qin, L.; Qin, L.; Tellides, G.; Hirschi, K.; Meadows, J.; Soufer, R.; Chun, H.J.; Sadeghi, M.M.; Bender, J.R.; Morrison, A.R. Rac2 modulates atherosclerotic calcification by regulating macrophage interleukin-1β production. Arterioscler. Thromb. Vasc. Biol., 2017, 37(2), 328-340.
[http://dx.doi.org/10.1161/ATVBAHA.116.308507] [PMID: 27834690]
[119]
Oba, E.; Aung, N.Y.; Ohe, R.; Sadahiro, M.; Yamakawa, M. The distribution of macrophage subtypes and their relationship to bone morphogenetic protein 2 in calcified aortic valve stenosis. Am. J. Transl. Res., 2020, 12(5), 1728-1740.
[PMID: 32509172]
[120]
Dube, P.R.; Chikkamenahalli, L.L.; Birnbaumer, L.; Vazquez, G. Reduced calcification and osteogenic features in advanced atherosclerotic plaques of mice with macrophage-specific loss of TRPC3. Atherosclerosis, 2018, 270, 199-204.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.12.025] [PMID: 29290366]
[121]
Friede, K.; Li, J.; Voora, D. Use of pharmacogenetic information in the treatment of cardiovascular disease. Clin. Chem., 2017, 63(1), 177-185.
[http://dx.doi.org/10.1373/clinchem.2016.255232] [PMID: 27864383]
[122]
Liang, C.; Hu, Y.; Wang, H.; Xia, D.; Li, Q.; Zhang, J.; Yang, J.; Li, B.; Li, H.; Han, D.; Dong, M. Biomimetic cardiovascular stents for in vivo re-endothelialization. Biomaterials, 2016, 103, 170-182.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.042] [PMID: 27380443]
[123]
Al-Lamee, R.K.; Nowbar, A.N.; Francis, D.P. Percutaneous coronary intervention for stable coronary artery disease. Heart, 2019, 105(1), 11-19.
[http://dx.doi.org/10.1136/heartjnl-2017-312755] [PMID: 30242142]
[124]
Grüntzig, A. Transluminal Dilatation of Coronary Artery Stenosis -Experimental Report. In: Percutaneous Vascular Recanalization; Springer: Berlin, Heidelberg, 1978; pp. 57-65.
[http://dx.doi.org/10.1007/978-3-642-46381-5_9]
[125]
Kim, H.L.; Park, K.W.; Kwak, J.J.; Kim, Y.S.; Sir, J.J.; Lee, S.J.; Lee, H.Y.; Chang, H.J.; Kang, H.J.; Cho, Y.S.; Chung, W.Y.; Chae, I.H.; Choi, D.J.; Kim, H.S.; Oh, B.H.; Park, Y.B.; Koo, B.K. Stent-related cardiac events after non-cardiac surgery: Drug-eluting stent vs. bare metal stent. Int. J. Cardiol., 2008, 123(3), 353-354.
[http://dx.doi.org/10.1016/j.ijcard.2006.11.182] [PMID: 17346821]
[126]
Bangalore, S. The elusive late benefit of biodegradable polymer drug-eluting stents. Circulation, 2019, 139(3), 334-336.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038378] [PMID: 30586785]
[127]
Ledwoch, J.; Fuernau, G.; Desch, S.; Eitel, I.; Jung, C.; de Waha, S.; Poess, J.; Schneider, S.; Schuler, G.; Werdan, K.; Zeymer, U.; Thiele, H. Drug-eluting stents versus bare-metal stents in acute myocardial infarction with cardiogenic shock. Heart, 2017, 103(15), 1177-1184.
[http://dx.doi.org/10.1136/heartjnl-2016-310403] [PMID: 28174212]
[128]
Pyka, Ł.; Hawranek, M.; Szyguła-Jurkiewicz, B.; Desperak, P.; Szczurek, W.; Lekston, A.; Gąsior, M.; Zembala, M.O.; Pawlak, S.; Zembala, M.; Przybyłowski, P. Everolimuseluting second-generation stents for treatment of de novo lesions in patients with cardiac allograft vasculopathy. Ann. Transplant., 2020, 25, e921266-e1.
[http://dx.doi.org/10.12659/AOT.921266] [PMID: 32253369]
[129]
Bangalore, S.; Toklu, B.; Amoroso, N.; Fusaro, M.; Kumar, S.; Hannan, E.L.; Faxon, D.P.; Feit, F. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: Mixed treatment comparison meta-analysis. BMJ, 2013, 347(nov081), f6625.
[http://dx.doi.org/10.1136/bmj.f6625] [PMID: 24212107]
[130]
Hytönen, J.P.; Taavitsainen, J.; Tarvainen, S.; Ylä-Herttuala, S. Biodegradable coronary scaffolds: Their future and clinical and technological challenges. Cardiovasc. Res., 2018, 114(8), 1063-1072.
[http://dx.doi.org/10.1093/cvr/cvy097] [PMID: 29718125]
[131]
Zivic, F.; Grujovic, N.; Pellicer, E.; Sort, J.; Mitrovic, S.; Adamovic, D.; Vulovic, M. Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials. In: Biomaterials in Clinical Practice; Springer: Berlin, 2018; pp. 225-280.
[http://dx.doi.org/10.1007/978-3-319-68025-5_9]
[132]
Mao, L.; shen, L.; Chen, J.; Zhang, X.; Kwak, M.; Wu, Y.; Fan, R.; Zhang, L.; Pei, J.; Yuan, G.; Song, C.; Ge, J.; Ding, W. A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Sci. Rep., 2017, 7(1), 46343.
[http://dx.doi.org/10.1038/srep46343] [PMID: 28397881]
[133]
Mostaed, E.; Sikora-Jasinska, M.; Drelich, J.W.; Vedani, M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater., 2018, 71, 1-23.
[http://dx.doi.org/10.1016/j.actbio.2018.03.005] [PMID: 29530821]
[134]
Barlis, P.; Regar, E.; Serruys, P.W.; Dimopoulos, K.; van der Giessen, W.J.; van Geuns, R.J.M.; Ferrante, G.; Wandel, S.; Windecker, S.; van Es, G.A.; Eerdmans, P.; Jüni, P.; di Mario, C. An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: A LEADERS trial sub-study. Eur. Heart J., 2010, 31(2), 165-176.
[http://dx.doi.org/10.1093/eurheartj/ehp480] [PMID: 19889649]
[135]
Lekshmi, K.M.; Che, H.L.; Cho, C.S.; Park, I.K. Drug- and gene-eluting stents for preventing coronary restenosis. Chonnam Med. J., 2017, 53(1), 14-27.
[http://dx.doi.org/10.4068/cmj.2017.53.1.14] [PMID: 28184335]
[136]
Liu, S.; Yang, Y.; Jiang, S.; Tang, N.; Tian, J.; Ponnusamy, M.; Tariq, M.A.; Lian, Z.; Xin, H.; Yu, T. Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis, 2018, 272, 153-161.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.03.036] [PMID: 29609130]
[137]
Zhao, J.; Feng, Y. Surface engineering of cardiovascular devices for improved hemocompatibility and rapid endothelialization. Adv. Healthc. Mater., 2020, 9(18), 2000920.
[http://dx.doi.org/10.1002/adhm.202000920] [PMID: 32833323]
[138]
Liu, T.; Hu, Y.; Tan, J.; Liu, S.; Chen, J.; Guo, X.; Pan, C.; Li, X. Surface biomimetic modification with laminin-loaded heparin/poly-l-lysine nanoparticles for improving the biocompatibility. Mater. Sci. Eng. C, 2017, 71, 929-936.
[http://dx.doi.org/10.1016/j.msec.2016.11.010] [PMID: 27987790]
[139]
Yu, C.; Guan, G.; Glas, S.; Wang, L.; Li, Z.; Turng, L.S. A biomimetic basement membrane consisted of hybrid aligned nanofibers and microfibers with immobilized collagen IV and laminin for rapid endothelialization. Biodes. Manuf., 2021, 4(2), 171-189.
[http://dx.doi.org/10.1007/s42242-020-00111-6]
[140]
Gabriele, Zuchtriegel; Bernd, Uhl; Robert, Pick; Michaela, Ramsauer; Julian, Dominik; Martin, Canis; Sandip, Kanse; Markus, Sperandio; Fritz, Krombach; Krombach, F.; Reichel, C.A. Vitronectin stabilizes intravascular adhesion of neutrophils by coordinating β2 integrin clustering. Haematologica, 2020, 106(10), 2641-2653.
[http://dx.doi.org/10.3324/haematol.2019.226241] [PMID: 32703799]
[141]
Marinval, N.; Morenc, M.; Labour, M.N.; Samotus, A.; Mzyk, A.; Ollivier, V.; Maire, M.; Jesse, K.; Bassand, K.; Niemiec-Cyganek, A.; Haddad, O.; Jacob, M.P.; Chaubet, F.; Charnaux, N.; Wilczek, P.; Hlawaty, H. Fucoidan/VEGF-based surface modification of decellularized pulmonary heart valve improves the antithrombotic and reendothelialization potential of bioprostheses. Biomaterials, 2018, 172, 14-29.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.054] [PMID: 29715592]
[142]
Roy, T.; James, B.D.; Allen, J.B. Anti-VEGF-R2 aptamer and RGD peptide synergize in a bifunctional hydrogel for enhanced angiogenic potential. Macromol. Biosci., 2021, 21(2), 2000337.
[http://dx.doi.org/10.1002/mabi.202000337] [PMID: 33191671]
[143]
Kakinoki, S.; Takasaki, K.; Mahara, A.; Ehashi, T.; Hirano, Y.; Yamaoka, T. Direct surface modification of metallic biomaterials via tyrosine oxidation aiming to accelerate the re-endothelialization of vascular stents. J. Biomed. Mater. Res. A, 2018, 106(2), 491-499.
[http://dx.doi.org/10.1002/jbm.a.36258] [PMID: 28975703]
[144]
Wang, C.; Hao, H.; Wang, J.; Xue, Y.; Huang, J.; Ren, K.; Ji, J. High-throughput hyaluronic acid hydrogel arrays for cell selective adhesion screening. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(19), 4024-4030.
[http://dx.doi.org/10.1039/D1TB00429H] [PMID: 33899898]
[145]
Bai, L.; Zhao, J.; Li, Q.; Guo, J.; Ren, X.; Xia, S.; Zhang, W.; Feng, Y. Biofunctionalized electrospun PCL-PIBMD/SF vascular grafts with PEG and cell-adhesive peptides for endothelialization. Macromol. Biosci., 2019, 19(2), 1800386.
[http://dx.doi.org/10.1002/mabi.201800386] [PMID: 30485667]
[146]
Yu, C.; Yang, H.; Wang, L.; Thomson, J.A.; Turng, L.S.; Guan, G. Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. Mater. Sci. Eng. C, 2021, 128, 112301.
[http://dx.doi.org/10.1016/j.msec.2021.112301] [PMID: 34474852]
[147]
Tardalkar, K.; Marsale, T.; Bhamare, N.; Kshersagar, J.; Chaudhari, L.; Joshi, M.G. Heparin immobilization of tissue engineered xenogeneic small diameter arterial scaffold improve endothelialization. Tissue Eng. Regen. Med., 2022, 19(3), 505-523.
[http://dx.doi.org/10.1007/s13770-021-00411-7] [PMID: 35092597]
[148]
Zhou, J.; Wang, M.; Wei, T.; Bai, L.; Zhao, J.; Wang, K.; Feng, Y. Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Appl. Mater. Interfaces, 2021, 13(14), 16097-16105.
[http://dx.doi.org/10.1021/acsami.1c01869] [PMID: 33787204]
[149]
Ravindranath, R.R.; Romaschin, A.; Thompson, M. In vitro and in vivo cell-capture strategies using cardiac stent technology — A review. Clin. Biochem., 2016, 49(1-2), 186-191.
[http://dx.doi.org/10.1016/j.clinbiochem.2015.09.012] [PMID: 26474510]
[150]
Avci-Adali, M.; Perle, N.; Ziemer, G.; Wendel, H.P. Current concepts and new developments for autologous in vivo endothelialisation of biomaterials for intravascular applications. Eur. Cell. Mater., 2011, 21, 157-176.
[http://dx.doi.org/10.22203/eCM.v021a13] [PMID: 21312162]
[151]
He, S.; Walimbe, T.; Chen, H.; Gao, K.; Kumar, P.; Wei, Y.; Hao, D.; Liu, R.; Farmer, D.L.; Lam, K.S.; Zhou, J.; Panitch, A.; Wang, A. Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. Bioact. Mater., 2022, 10, 460-473.
[http://dx.doi.org/10.1016/j.bioactmat.2021.08.017] [PMID: 34901560]
[152]
Aoki, J.; Serruys, P.W.; van Beusekom, H.; Ong, A.T.L.; McFadden, E.P.; Sianos, G.; van der Giessen, W.J.; Regar, E.; de Feyter, P.J.; Davis, H.R.; Rowland, S.; Kutryk, M.J.B. Endothelial progenitor cell capture by stents coated with antibody against CD34: The HEAL-ING-FIM (healthy endothelial accelerated lining inhibits neointimal growth-first in man) Registry. J. Am. Coll. Cardiol., 2005, 45(10), 1574-1579.
[http://dx.doi.org/10.1016/j.jacc.2005.01.048] [PMID: 15893169]
[153]
Zhang, Y.; Wang, J.; Xiao, J.; Fang, T.; Hu, N.; Li, M.; Deng, L.; Cheng, Y.; Zhu, Y.; Cui, W. An electrospun fiber-covered stent with programmable dual drug release for endothelialization acceleration and lumen stenosis prevention. Acta Biomater., 2019, 94, 295-305.
[http://dx.doi.org/10.1016/j.actbio.2019.06.008] [PMID: 31195144]
[154]
Janjic, M.; Pappa, F.; Karagkiozaki, V.; Gitas, C.; Ktenidis, K.; Logothetidis, S. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. Int. J. Nanomedicine, 2017, 12, 6343-6355.
[http://dx.doi.org/10.2147/IJN.S138261] [PMID: 28919738]
[155]
Das, A.; Ahmad Shiekh, P.; Kumar, A. A coaxially structured trilayered gallic acid-based antioxidant vascular graft for treating coronary artery disease. Eur. Polym. J., 2021, 143, 110203.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110203]
[156]
Zhao, Y.; Zang, G.; Yin, T.; Ma, X.; Zhou, L.; Wu, L.; Daniel, R.; Wang, Y.; Qiu, J.; Wang, G. A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent: Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway. Bioact. Mater., 2021, 6(2), 375-385.
[http://dx.doi.org/10.1016/j.bioactmat.2020.08.018] [PMID: 32954055]
[157]
Wang, Z.; Wu, Y.; Wang, J.; Zhang, C.; Yan, H.; Zhu, M.; Wang, K.; Li, C.; Xu, Q.; Kong, D. Effect of resveratrol on modulation of endothelial cells and macrophages for rapid vascular regeneration from electrospun poly(ε-caprolactone) scaffolds. ACS Appl. Mater. Interfaces, 2017, 9(23), 19541-19551.
[http://dx.doi.org/10.1021/acsami.6b16573] [PMID: 28539044]
[158]
Lu, J.; Zhuang, W.; Li, L.; Zhang, B.; Yang, L.; Liu, D.; Yu, H.; Luo, R.; Wang, Y. Micelle-embedded layer-by-layer coating with catechol and phenylboronic acid for tunable drug loading, sustained release, mild tissue response, and selective cell fate for re-endothelialization. ACS Appl. Mater. Interfaces, 2019, 11(10), 10337-10350.
[http://dx.doi.org/10.1021/acsami.9b01253] [PMID: 30753784]
[159]
Park, K.S.; Kang, S.N.; Kim, D.H.; Kim, H.B.; Im, K.S.; Park, W.; Hong, Y.J.; Han, D.K.; Joung, Y.K. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater., 2020, 111, 91-101.
[http://dx.doi.org/10.1016/j.actbio.2020.05.011] [PMID: 32434081]
[160]
Yang, F.; Zhao, Q.; Zhang, S.; Zhao, T.; Feng, B. Effectiveness and safety of rapamycin combined with CD133 antibody stent in preventing vascular restenosis. Chinese J. Tissue Eng. Res., 2022, 26(4), 579.
[161]
Liang, C.; Tian, Y.; Zou, X.; Hu, Y.; Zhou, H.; Yang, L.; Wang, H. Improve endothelialization of metallic cardiovascular stent via femtosecond laser induced micro/nanostructure dependent cells proliferation and drug delivery control. Colloids Surf. B Biointerfaces, 2022, 212, 112376.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112376] [PMID: 35114434]
[162]
Che, H.L.; Bae, I.H.; Lim, K.S.; Song, I.T.; Lee, H.; Muthiah, M.; Namgung, R.; Kim, W.J.; Kim, D.G.; Ahn, Y.; Jeong, M.H.; Park, I.K. Suppression of post-angioplasty restenosis with an Akt1 siRNA-embedded coronary stent in a rabbit model. Biomaterials, 2012, 33(33), 8548-8556.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.045] [PMID: 22940215]
[163]
Wang, D.; Deuse, T.; Stubbendorff, M.; Chernogubova, E.; Erben, R.G.; Eken, S.M.; Jin, H.; Li, Y.; Busch, A.; Heeger, C.H.; Behnisch, B.; Reichenspurner, H.; Robbins, R.C.; Spin, J.M.; Tsao, P.S.; Schrepfer, S.; Maegdefessel, L. Local MicroRNA modulation using a novel Anti-miR-21–eluting stent effectively prevents experimental in-stent restenosis. Arterioscler. Thromb. Vasc. Biol., 2015, 35(9), 1945-1953.
[http://dx.doi.org/10.1161/ATVBAHA.115.305597] [PMID: 26183619]
[164]
Hong, C.A.; Son, H.Y.; Nam, Y.S. Layer-by-layer siRNA/poly(L-lysine) multilayers on polydopamine-coated surface for efficient cell adhesion and gene silencing. Sci. Rep., 2018, 8(1), 7738.
[http://dx.doi.org/10.1038/s41598-018-25655-7] [PMID: 29773839]
[165]
Chistiakov, D.A.; Myasoedova, V.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. The phenomenon of atherosclerosis reversal and regression: Lessons from animal models. Exp. Mol. Pathol., 2017, 102(1), 138-145.
[http://dx.doi.org/10.1016/j.yexmp.2017.01.013] [PMID: 28108216]
[166]
Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.K.; Orekhov, A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology (Basel), 2020, 9(3), 60.
[http://dx.doi.org/10.3390/biology9030060] [PMID: 32245238]
[167]
Förstermann, U.; Xia, N.; Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res., 2017, 120(4), 713-735.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[168]
Salvayre, R.; Negre-Salvayre, A.; Camaré, C. Oxidative theory of atherosclerosis and antioxidants. Biochimie, 2016, 125, 281-296.
[http://dx.doi.org/10.1016/j.biochi.2015.12.014] [PMID: 26717905]
[169]
Cheng, F.; Torzewski, M.; Degreif, A.; Rossmann, H.; Canisius, A.; Lackner, K.J. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: Implications for atherogenesis. PLoS One, 2013, 8(8), e72063.
[http://dx.doi.org/10.1371/journal.pone.0072063] [PMID: 23991041]
[170]
Basak, S.; Khare, H.A.; Kempen, P.J.; Kamaly, N.; Almdal, K. Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. Nanoscale Adv., 2022, 4(3), 742-753.
[http://dx.doi.org/10.1039/D1NA00631B]
[171]
Babashamsi, M.M.; Koukhaloo, S.Z.; Halalkhor, S.; Salimi, A.; Babashamsi, M. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes Metab. Syndr., 2019, 13(2), 1529-1534.
[http://dx.doi.org/10.1016/j.dsx.2019.03.004] [PMID: 31336517]
[172]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[173]
Chen, W.; Wu, Y.; Lu, Q.; Wang, S.; Xing, D. Endogenous ApoA-I expression in macrophages: A potential target for protection against atherosclerosis. Clin. Chim. Acta, 2020, 505, 55-59.
[http://dx.doi.org/10.1016/j.cca.2020.02.025] [PMID: 32092318]
[174]
Wu, G.; Wei, W.; Zhang, J.; Nie, W.; Yuan, L.; Huang, Y.; Zuo, L.; Huang, L.; Xi, X.; Xie, H.Y. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials, 2020, 250, 119963.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119963] [PMID: 32334199]
[175]
Zhao, Y.; Jiang, C.; He, J.; Guo, Q.; Lu, J.; Yang, Y.; Zhang, W.; Liu, J. Multifunctional dextran sulfate-coated reconstituted high density lipoproteins target macrophages and promote beneficial antiatherosclerotic mechanisms. Bioconjug. Chem., 2017, 28(2), 438-448.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00600] [PMID: 28004910]
[176]
Mansukhani, N.A.; Peters, E.B.; So, M.M.; Albaghdadi, M.S.; Wang, Z.; Karver, M.R.; Clemons, T.D.; Laux, J.P.; Tsihlis, N.D.; Stupp, S.I.; Kibbe, M.R. Peptide amphiphile supramolecular nanostructures as a targeted therapy for atherosclerosis. Macromol. Biosci., 2019, 19(6), 1900066.
[http://dx.doi.org/10.1002/mabi.201900066] [PMID: 31066494]
[177]
Levin, N.; Bischoff, E.D.; Daige, C.L.; Thomas, D.; Vu, C.T.; Heyman, R.A.; Tangirala, R.K.; Schulman, I.G. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 135-142.
[http://dx.doi.org/10.1161/01.ATV.0000150044.84012.68] [PMID: 15539622]
[178]
Vickers, K.C.; Landstreet, S.R.; Levin, M.G.; Shoucri, B.M.; Toth, C.L.; Taylor, R.C.; Palmisano, B.T.; Tabet, F.; Cui, H.L.; Rye, K.A.; Sethupathy, P.; Remaley, A.T. MicroRNA-223 coordinates cholesterol homeostasis. Proc. Natl. Acad. Sci. USA, 2014, 111(40), 14518-14523.
[http://dx.doi.org/10.1073/pnas.1215767111] [PMID: 25246565]
[179]
Kirichenko, T.V.; Sukhorukov, V.N.; Markin, A.M.; Nikiforov, N.G.; Liu, P.Y.; Sobenin, I.A.; Tarasov, V.V.; Orekhov, A.N.; Aliev, G. Medicinal plants as a potential and successful treatment option in the context of atherosclerosis. Front. Pharmacol., 2020, 11, 403.
[http://dx.doi.org/10.3389/fphar.2020.00403] [PMID: 32322201]
[180]
Liu, Q.; Fan, J.; Bai, J.; Peng, L.; Zhang, T.; Deng, L.; Wang, G.; Zhao, Y.; Nong, J.; Zhang, M.; Wang, Y. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway. Sci. Rep., 2018, 8(1), 17347.
[http://dx.doi.org/10.1038/s41598-018-35485-2] [PMID: 30478377]
[181]
Xu, Z.; Dong, A.; Feng, Z.; Li, J. Interleukin-32 promotes lipid accumulation through inhibition of cholesterol efflux. Exp. Ther. Med., 2017, 14(2), 947-952.
[http://dx.doi.org/10.3892/etm.2017.4596] [PMID: 28781617]
[182]
Poznyak, A.V.; Wu, W.K.; Melnichenko, A.A.; Wetzker, R.; Sukhorukov, V.; Markin, A.M.; Khotina, V.A.; Orekhov, A.N. Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells, 2020, 9(3), 584.
[http://dx.doi.org/10.3390/cells9030584] [PMID: 32121535]
[183]
Tousoulis, D.; Oikonomou, E.; Economou, E.K.; Crea, F.; Kaski, J.C. Inflammatory cytokines in atherosclerosis: Current therapeutic approaches. Eur. Heart J., 2016, 37(22), 1723-1732.
[http://dx.doi.org/10.1093/eurheartj/ehv759] [PMID: 26843277]
[184]
Caligiuri, G. CD31 as a therapeutic target in atherosclerosis. Circ. Res., 2020, 126(9), 1178-1189.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315935] [PMID: 32324506]
[185]
Schönbeck, U.; Sukhova, G.K.; Shimizu, K.; Mach, F.; Libby, P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7458-7463.
[http://dx.doi.org/10.1073/pnas.97.13.7458] [PMID: 10861012]
[186]
Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med., 2011, 17(11), 1410-1422.
[http://dx.doi.org/10.1038/nm.2538] [PMID: 22064431]
[187]
Nakao, T.; Horie, T.; Baba, O.; Nishiga, M.; Nishino, T.; Izuhara, M.; Kuwabara, Y.; Nishi, H.; Usami, S.; Nakazeki, F.; Ide, Y.; Koyama, S.; Kimura, M.; Sowa, N.; Ohno, S.; Aoki, H.; Hasegawa, K.; Sakamoto, K.; Minatoya, K.; Kimura, T.; Ono, K. Genetic ablation of MicroRNA-33 attenuates inflammation and abdominal aortic aneurysm formation via several anti-inflammatory pathways. Arterioscler. Thromb. Vasc. Biol., 2017, 37(11), 2161-2170.
[http://dx.doi.org/10.1161/ATVBAHA.117.309768] [PMID: 28882868]
[188]
Hu, J.; Huang, S.; Liu, X.; Zhang, Y.; Wei, S.; Hu, X. miR-155: An important role in inflammation response. J. Immunol. Res., 2022, 2022, 7437281.
[http://dx.doi.org/10.1155/2022/7437281] [PMID: 35434143]
[189]
Warboys, C.M.; de Luca, A.; Amini, N.; Luong, L.; Duckles, H.; Hsiao, S.; White, A.; Biswas, S.; Khamis, R.; Chong, C.K.; Cheung, W.M.; Sherwin, S.J.; Bennett, M.R.; Gil, J.; Mason, J.C.; Haskard, D.O.; Evans, P.C. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler. Thromb. Vasc. Biol., 2014, 34(5), 985-995.
[http://dx.doi.org/10.1161/ATVBAHA.114.303415] [PMID: 24651677]
[190]
Luo, S.; Wang, F.; Chen, S.; Chen, A.; Wang, Z.; Gao, X.; Kong, X.; Zuo, G.; Zhou, W.; Gu, Y.; Ge, Z.; Zhang, J. NRP2 promotes atherosclerosis by upregulating PARP1 expression and enhancing low shear stress-induced endothelial cell apoptosis. FASEB J., 2022, 36(2), e22079.
[http://dx.doi.org/10.1096/fj.202101250RR] [PMID: 35028975]
[191]
Emanueli, C.; Meloni, M.; Hasan, W.; Habecker, B. A. The biology of neurotrophins: Cardiovascular function. Neurotrophic Factors, 2014, 220, 309-328.
[192]
Chen, Y.; Chen, Z.; Duan, J.; Gui, L.; Li, H.; Liang, X.; Tian, X.; Liu, K.; Li, Y.; Yang, J. H2O2-responsive VEGF/NGF gene co-delivery nano-system achieves stable vascularization in ischemic hindlimbs. J. Nanobiotechnol., 2022, 20(1), 145.
[http://dx.doi.org/10.1186/s12951-022-01328-6] [PMID: 35305670]
[193]
Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Hristova, M.; Antonelli, A.; Manni, L.; Ghenev, P.I.; Angelucci, F.; Aloe, L. NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome. Arch. Physiol. Biochem., 2001, 109(4), 357-360.
[http://dx.doi.org/10.1076/apab.109.4.357.4249] [PMID: 11935372]
[194]
Manni, L.; Nikolova, V.; Vyagova, D.; Chaldakov, G.N.; Aloe, L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int. J. Cardiol., 2005, 102(1), 169-171.
[http://dx.doi.org/10.1016/j.ijcard.2004.10.041] [PMID: 15939120]
[195]
Chaldakov, G.N.; Stankulov, I.S.; Fiore, M.; Ghenev, P.I.; Aloe, L. Nerve growth factor levels and mast cell distribution in human coronary atherosclerosis. Atherosclerosis, 2001, 159(1), 57-66.
[http://dx.doi.org/10.1016/S0021-9150(01)00488-9] [PMID: 11689207]
[196]
Chaldakov, G.N.; Fiore, M.; Hristova, M.G.; Aloe, L. Metabotrophic potential of neurotrophins: implication in obesity and related diseases? Med. Sci. Monit., 2003, 9(10), HY19-HY21.
[PMID: 14523335]
[197]
Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Manni, L.; Hristova, M.G.; Antonelli, A.; Ghenev, P.I.; Aloe, L. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: A role for NGF and BDNF in cardiovascular disease? Prog. Brain Res., 2004, 146, 279-289.
[http://dx.doi.org/10.1016/S0079-6123(03)46018-4] [PMID: 14699970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy