Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Editorial

The Lymphatic System in Neurological Disease and Alzheimer's Disease. A Brief Editorial

Author(s): Miguel A. Pappolla*, Roxana O. Carare, Burkhand Poeggeler, Thomas Wisniewski and Kumar Sambamurti*

Volume 19, Issue 10, 2022

Published on: 24 November, 2022

Page: [689 - 693] Pages: 5

DOI: 10.2174/1567205020666221028111517

Price: $65

conference banner
Next »
[1]
Baranello R, Bharani K, Padmaraju V, et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr Alzheimer Res 2015; 12(1): 32-46.
[http://dx.doi.org/10.2174/1567205012666141218140953] [PMID: 25523424]
[2]
Chachaj A. Gąsiorowski K, Szuba A, Sieradzki A, Leszek J. Lymphatic system in the brain clearance mechanisms - new therapeutic perspectives for Alzheimer’s disease. Curr Neuropharmacol 2022. Epub ahead of print
[http://dx.doi.org/10.2174/1570159X20666220411091332] [PMID: 35410605]
[3]
Maloveská M, Humeník F, Vikartovská Z, et al. Brain fluid channels for metabolite removal. Physiol Res 2022; 71(2): 199-208.
[http://dx.doi.org/10.33549/physiolres.934802] [PMID: 35344669]
[4]
Pappolla M, Sambamurti K, Vidal R, Pacheco-Quinto J, Poeggeler B, Matsubara E. Evidence for lymphatic Aβ clearance in Alzheimer’s transgenic mice. Neurobiol Dis 2014; 71: 215-9.
[http://dx.doi.org/10.1016/j.nbd.2014.07.012] [PMID: 25102344]
[5]
Pappolla MA, Matsubara E, Vidal R, et al. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr Alzheimer Res 2018; 15(7): 637-42.
[http://dx.doi.org/10.2174/1567205015666180411092551] [PMID: 29637859]
[6]
Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res 2016; 366(3): 667-77.
[http://dx.doi.org/10.1007/s00441-016-2493-8] [PMID: 27599481]
[7]
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4(147)147ra111
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[8]
Hershenhouse KS, Shauly O, Gould DJ, Patel KM. Meningeal lymphatics: A review and future directions from a clinical perspective. Neurosci Insights 2019; 141179069519889027
[http://dx.doi.org/10.1177/1179069519889027] [PMID: 32363346]
[9]
Koh L, Nagra G, Johnston M. Properties of the lymphatic cerebrospinal fluid transport system in the rat: Impact of elevated intracranial pressure. J Vasc Res 2007; 44(5): 423-32.
[http://dx.doi.org/10.1159/000104255] [PMID: 17587862]
[10]
Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981; 240(4): F329-36.
[PMID: 7223890]
[11]
Boulton M, Yonung A, Hay J, et al. Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: Measurement of 125 l-albumin clearance. Neuropathol Appl Neurobiol 1996; 22(4): 325-33.
[http://dx.doi.org/10.1111/j.1365-2990.1996.tb01111.x] [PMID: 8875467]
[12]
Brinker T, Lüdemann W, Berens von Rautenfeld D, Samii M. Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol 1997; 94(5): 493-8.
[http://dx.doi.org/10.1007/s004010050738] [PMID: 9386783]
[13]
Vega JL, Jonakait GM. The cervical lymph nodes drain antigens administered into the spinal subarachnoid space of the rat. Neuropathol Appl Neurobiol 2004; 30(4): 416-8.
[http://dx.doi.org/10.1111/j.1365-2990.2004.00575.x] [PMID: 15305988]
[14]
Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992; 2(4): 269-76.
[http://dx.doi.org/10.1111/j.1750-3639.1992.tb00703.x] [PMID: 1341962]
[15]
Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: A new view. Immunol Today 1992; 13(12): 507-12.
[http://dx.doi.org/10.1016/0167-5699(92)90027-5] [PMID: 1463583]
[16]
Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 2013; 123(3): 1299-309.
[http://dx.doi.org/10.1172/JCI67677] [PMID: 23434588]
[17]
Weller RO, Kida S, Zhang ET. Pathways of fluid drainage from the brain-morphological aspects and immunological significance in rat and man. Brain Pathol 1992; 2(4): 277-84.
[http://dx.doi.org/10.1111/j.1750-3639.1992.tb00704.x] [PMID: 1341963]
[18]
Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 2008; 34(2): 131-44.
[http://dx.doi.org/10.1111/j.1365-2990.2007.00926.x] [PMID: 18208483]
[19]
Frost M, Keable A, Baseley D, et al. Vascular α1A adrenergic receptors as a potential therapeutic target for IPAD in Alzheimer’s disease. Pharmaceuticals (Basel) 2020; 13(9): 261.
[http://dx.doi.org/10.3390/ph13090261] [PMID: 32971843]
[20]
Yamada S, DePasquale M, Patlak CS, Cserr HF. Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 1991; 261(4 Pt 2): H1197-204.
[PMID: 1928403]
[21]
Scaglioni M, Suami H. Anatomy of the lymphatic system and the lymphosome concept with reference to lymphedema. Semin Plast Surg 2018; 32(1): 005-11.
[http://dx.doi.org/10.1055/s-0038-1635118] [PMID: 29636647]
[22]
Wick N, Haluza D, Gurnhofer E, et al. Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells. Am J Pathol 2008; 173(4): 1202-9.
[http://dx.doi.org/10.2353/ajpath.2008.080101] [PMID: 18772332]
[23]
Földi M, Gellért A, Kozma M, Poberai M, Zoltán ÖT, Csanda E. New contributions to the anatomical connections of the brain and the lymphatic system. Cells Tissues Organs 1966; 64(4): 498-505.
[http://dx.doi.org/10.1159/000142849] [PMID: 5957959]
[24]
Reshetilov VI. Presence of lymphatic vessels in the human spinal dura mater. Vopr Neirokhir 1980; (4): 43-6.
[25]
Andres KH, von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 1987; 175(3): 289-301.
[http://dx.doi.org/10.1007/BF00309843] [PMID: 3826655]
[26]
Miura M, Kato S, Lüdinghausen M. Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. Arch Histol Cytol 1998; 61(3): 277-86.
[http://dx.doi.org/10.1679/aohc.61.277] [PMID: 9756104]
[27]
Nauen DW, Troncoso JC. Amyloid‐beta is present in human lymph nodes and greatly enriched in those of the cervical region. Alzheimers Dement 2022; 18(2): 205-10.
[http://dx.doi.org/10.1002/alz.12385] [PMID: 34057798]
[28]
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523(7560): 337-41.
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[29]
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8(1): 1434.
[http://dx.doi.org/10.1038/s41467-017-01484-6] [PMID: 29127332]
[30]
Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 2018; 560(7717): 185-91.
[http://dx.doi.org/10.1038/s41586-018-0368-8] [PMID: 30046111]
[31]
Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S. Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS One 2008; 3(10)e3321
[http://dx.doi.org/10.1371/journal.pone.0003321] [PMID: 18830405]
[32]
Scholtzova H, Chianchiano P, Pan J, et al. Amyloid β and Tau Alzheimer’s disease related pathology is reduced by Toll-like receptor 9 stimulation. Acta Neuropathol Commun 2014; 2(1): 101.
[http://dx.doi.org/10.1186/s40478-014-0101-2] [PMID: 25178404]
[33]
Patel AG, Nehete PN, Krivoshik SR, et al. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer’s disease pathology in aged squirrel monkeys. Brain 2021; 144(7): 2146-65.
[http://dx.doi.org/10.1093/brain/awab129] [PMID: 34128045]
[34]
Scholtzova H, Do E, Dhakal S, et al. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J Neurosci 2017; 37(4): 936-59.
[http://dx.doi.org/10.1523/JNEUROSCI.1967-16.2016] [PMID: 28123027]
[35]
Kim T, Vidal GS, Djurisic M, et al. Human LILRB2 is a β-amyloid receptor and its murine homolog PIRB regulates synaptic plasticity in an Alzheimer’s model. Science 2013; 341(6152): 1399-404.
[http://dx.doi.org/10.1126/science.1242077] [PMID: 24052308]
[36]
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence. Fluids Barriers CNS 2014; 11(1): 26.
[http://dx.doi.org/10.1186/2045-8118-11-26] [PMID: 25678956]
[37]
Lemere CA, Maron R, Spooner ET, et al. Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann N Y Acad Sci 2000; 920(1): 328-31.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06943.x] [PMID: 11193172]
[38]
Weiner HL, Lemere CA, Maron R, et al. Nasal administration of amyloid-? peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 2000; 48(4): 567-79.
[http://dx.doi.org/10.1002/1531-8249(200010)48:4<567:AID-ANA3>3.0.CO;2-W] [PMID: 11026440]
[39]
Frenkel D, Maron R, Burt DS, Weiner HL. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115(9): 2423-33.
[http://dx.doi.org/10.1172/JCI23241] [PMID: 16100572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy