Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Impact of GSTT1 and GSTM1 Polymorphisms in the Susceptibility to Philadelphia Negative Chronic Myeloid Leukaemia

Author(s): Abozer Y. Elderdery*, Hadeil M.E. Idris, Entesar M. Tebien, Nada Abdalfatah Diab, Siddiqa M.A. Hamza, Bandar A. Suliman, Abdulaziz H. Alhamidi, Nawal Eltayeb Omer and Jeremy Mills

Volume 23, Issue 4, 2023

Published on: 21 November, 2022

Page: [319 - 324] Pages: 6

DOI: 10.2174/1568009623666221027103845

Price: $65

Abstract

Background: Our research aimed to clarify the role of genetic polymorphisms in GST (T1 and M1) in the development of Ph-ve CML.

Materials and Methods: We report on a case-control study with 126 participants, divided into 26 patients with Ph-ve CML (57.7% male, 42.3% female) and 100 healthy volunteers (51% male, 49% female) with no medical history of cancer as a control population. All Ph-ve CML patients were diagnosed according to standard hematologic and cytogenetic criteria based on CBC, confirmed by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) to determine the presence or absence of the BCRABL gene, followed by bone marrow (BM) examination.

Results: Of the 26 studied cases, 50% had the GSTT1 null genotype against 21% of the control group, a statistically significant difference (CI= 1.519 - 9.317; p-value= 0.004). The GSTM1 null genotype was detected in 23.1% of cases and 35% of controls, a difference not statistically significant (OR= 0.557; CI= 0.205-1.515; p-value= 0.252). The distribution of GSTT1 and GSTM1 polymorphisms was also examined according to gender, age and ethnic grouping; these findings revealed no statistically significant differences.

Conclusion: Our study reveals a strong correlation between GSTT1 polymorphism and Ph-ve CML, whereas the data for GSTM1 polymorphisms indicates no role in the initial development of the disease. More studies are required to further clarify these and other genes' roles in disease development.

Graphical Abstract

[1]
Montefusco, E.; Alimena, G.; Coco, F.L.; De Cuia, M.R.; Wang, Y.Z.; Spiriti, M.A.A.; Mancini, F.; Cedrone, M.; Mancini, M.; Mandelli, F. pH-negative and BCR-negative atypical chronic myelogenous leukemia: Biological features and clinical outcome. Ann. Hematol., 1992, 65(1), 17-21.
[http://dx.doi.org/10.1007/BF01715120] [PMID: 1643155]
[2]
Al-Achkar, W.; Azeiz, G.; Moassass, F.; Wafa, A. Influence of CYP1A1, GST polymorphisms and susceptibility risk of chronic myeloid leukemia in Syrian population. Med. Oncol., 2014, 31(5), 889.
[http://dx.doi.org/10.1007/s12032-014-0889-4] [PMID: 24671854]
[3]
Onida, F.; Ball, G.; Kantarjian, H.M.; Smith, T.L.; Glassman, A.; Albitar, M.; Scappini, B.; Rios, M.B.; Keating, M.J.; Beran, M. Characteristics and outcome of patients with Philadelphia chromosome negative, BCR/ABL negative chronic myelogenous leukemia. Cancer, 2002, 95(8), 1673-1684.
[http://dx.doi.org/10.1002/cncr.10832] [PMID: 12365015]
[4]
Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci., 2012, 112, 31-88.
[http://dx.doi.org/10.1016/B978-0-12-415813-9.00003-9] [PMID: 22974737]
[5]
Polesel, F.; Andersen, H.R.; Trapp, S.; Plósz, B.G. Removal of antibiotics in biological wastewater treatment systems—A critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X). Environ. Sci. Technol., 2016, 50(19), 10316-10334.
[http://dx.doi.org/10.1021/acs.est.6b01899] [PMID: 27479075]
[6]
Kankanamage, R.N.T.; Sefcikova, J. Advancements of xenobiotic toxicity screening for the advancement of human health. Chem. Res. Toxicol., 2021, 34(7), 1699-1700.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00535] [PMID: 34110791]
[7]
Elhoseiny, S.; El-Wakil, M.; Fawzy, M.; Rahman, A.A. GSTP1 (Ile105Val) gene polymorphism: Risk and treatment response in chronic myeloid leukemia. J. Cancer Ther., 2014, 5(1), 1-10.
[http://dx.doi.org/10.4236/jct.2014.51001]
[8]
Idris, H.M.E.; Khalil, H.B.; Mills, J.; Elderdery, A.Y. CYP1A1 and CYP2D6 polymorphisms and susceptibility to chronic myelocytic leukaemia. Curr. Cancer Drug Targets, 2020, 20(9), 675-680.
[http://dx.doi.org/10.2174/1570163817666200518081356] [PMID: 32418524]
[9]
Detection of Genetic polymorphisms of Methylene tetrahydrofolate reductase among Sudanese patients with chronic myeloid leukemia. PJMHS, 2019, 13(4), 1325-1329.
[10]
The role of genetic polymorphisms of the MTHFR (C677T and A1298C) gene in the incidence of Acute Myeloid Leukaemia. PJMHS, 2019, 13(4), 1330-1334.
[11]
Rostami, G.; Assad, D.; Ghadyani, F.; Hamid, M.; Karami, A.; Jalaeikhoo, H.; Kalahroodi, R.A. Influence of glutathione S;transferases (GSTM1, GSTT1, and GSTP1) genetic polymorphisms and smoking on susceptibility risk of chronic myeloid leukemia and treatment response. Mol. Genet. Genomic Med., 2019, 7(7), e00717.
[http://dx.doi.org/10.1002/mgg3.717] [PMID: 31111691]
[12]
Enríquez-Mejía, M.G.; Flores-Merino, M.V.; Camacho, A.L.; Castillo-Cadena, J. Frequency of single and combined genotypes of GSTM1, GSTT1 and GSTP1 in Mexican individuals: A pilot study. Biomed Res J, 2017, 28(7), 2961-2965.
[13]
Drozdz-Afelt, J.M.; Koim-Puchowska, B.; Klosowski, G.; Kaminski, P. Polymorphism of glutathione S-transferase in the population of polish patients with carcinoma of the prostate. Environ Sci Pollut Res Int, 2020, 27(16), 19375-19382.
[14]
Yang, F.; Xiong, J.; Jia, X.E.; Gu, Z.H.; Shi, J.Y.; Zhao, Y.; Li, J.M.; Chen, S.J.; Zhao, W.L. GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression. PLoS One, 2014, 9(2), e89302.
[http://dx.doi.org/10.1371/journal.pone.0089302] [PMID: 24586676]
[15]
Jurkovic Mlakar, S.; Uppugunduri, S.C.R.; Nava, T.; Mlakar, V.; Golay, H.; Robin, S. GSTM1 and GSTT1 double null genotypes determining cell fate and proliferation as potential risk factors of relapse in children with hematological malignancies after hematopoietic stem cell transplantation. J. Cancer Res. Clin. Oncol., 2021, 148(1), 71-86.
[PMID: 34499222]
[16]
Lee, N.; Park, S.M.; Yee, J.; Yoon, H.Y.; Han, J.M.; Gwak, H.S. Association between glutathione-S-transferase gene polymorphisms and responses to tyrosine kinase inhibitor treatment in patients with chronic myeloid leukemia: A meta-analysis. Target. Oncol., 2020, 15(1), 47-54.
[http://dx.doi.org/10.1007/s11523-020-00696-z] [PMID: 31974831]
[17]
Kassogue, Y.; Dehbi, H.; Quachouh, M.; Quessar, A.; Benchekroun, S.; Nadifi, S. Association of glutathione S-transferase (GSTM1 and GSTT1) genes with chronic myeloid leukemia. Springerplus, 2015, 4(1), 210.
[http://dx.doi.org/10.1186/s40064-015-0966-y] [PMID: 25969820]
[18]
Wang, Y.Y.; Wang, W.; Yang, J.; Li, G.L.; Zhuang, L.K.; Lu, L.L. Relationship of GSTT1 and GSTM1 gene polymorphisms and PAH-DNA adducts with pathogenesis of multiple myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2015, 23(3), 728-732.
[PMID: 26117026]
[19]
Özten, N. ; Sunguroğlu, A.; Bosland, M.C. Variations in glutathione-S-transferase genes influence risk of chronic myeloid leukemia. Hematol. Oncol., 2012, 30(3), 150-155.
[http://dx.doi.org/10.1002/hon.1018] [PMID: 21969307]
[20]
Taspinar, M.; Aydos, S.E.; Comez, O.; Elhan, A.H.; Karabulut, H.G.; Sunguroglu, A. CYP1A1, GST gene polymorphisms and risk of chronic myeloid leukemia. Swiss Med. Wkly., 2008, 138(1-2), 12-17.
[PMID: 18224491]
[21]
Ito, M.; Imai, M.; Muraki, M.; Miyado, K.; Qin, J.; Kyuwa, S.; Yoshikawa, Y.; Hosoi, Y.; Saito, H.; Takahashi, Y. GSTT1 is upregulated by oxidative stress through p38-MK2 signaling pathway in human granulosa cells: Possible association with mitochondrial activity. Aging , 2011, 3(12), 1213-1223.
[http://dx.doi.org/10.18632/aging.100418] [PMID: 22207314]
[22]
Kumar, S.; Trivedi, P.K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci., 2018, 9(2), 751-756.
[http://dx.doi.org/10.3389/fpls.2018.00751] [PMID: 29930563]
[23]
Idris, H.M.E.; Elderdery, A.Y.; Khalil, H.B.; Mills, J. Genetic polymorphism of GSTP1, GSTM1 and GSTT1 genes and susceptibility to chronic myeloid leukaemia. Asian Pac. J. Cancer Prev., 2020, 21(2), 499-503.
[http://dx.doi.org/10.31557/APJCP.2020.21.2.499] [PMID: 32102530]
[24]
Wang, Y.; He, J.; Ma, T.J.; Lei, W.; Li, F.; Shen, H.; Shen, Z.Y. GSTT1 null genotype significantly increases the susceptibility to urinary system cancer: Evidences from 63,876 subjects. J. Cancer, 2016, 7(12), 1680-1693.
[http://dx.doi.org/10.7150/jca.15494] [PMID: 27698905]
[25]
Bajpai, P.; Tripathi, A.K.; Agrawal, D. Increased frequencies of glutathione-S-transferase (GSTM1 and GSTT1) null genotypes in Indian patients with chronic myeloid leukemia. Leuk. Res., 2007, 31(10), 1359-1363.
[http://dx.doi.org/10.1016/j.leukres.2007.02.003] [PMID: 17420047]
[26]
Ovsepian, V.A.; Vinogradova, E.Iu.; Sherstneva, E.S. Cytochrome P4501A1, glutathione S-transferase M1 and T1 gene polymorphisms in chronic myeloid leukemia. Genetika, 2010, 46(10), 1360-1362.
[PMID: 21254556]
[27]
Tsabouri, S.; Georgiou, I.; Katsaraki, A.; Bourantas, K.L. Glutathione sulfur transferase M1 and T1 genotypes in chronic lymphoblastic leukemia. Hematol. J., 2004, 5(6), 500-504.
[http://dx.doi.org/10.1038/sj.thj.6200555] [PMID: 15570292]
[28]
Ye, Z.; Song, H. Glutathione s-transferase polymorphisms (GSTM1, GSTP1 and GSTT1) and the risk of acute leukaemia: A systematic review and meta-analysis. Eur. J. Cancer, 2005, 41(7), 980-989.
[http://dx.doi.org/10.1016/j.ejca.2005.01.014] [PMID: 15862746]
[29]
Zhou, L.; Zhu, Y-Y.; Zhang, X-D.; Li, Y.; Liu, Z-G. Risk effects of GST gene polymorphisms in patients with acute myeloid leukemia: A prospective study. APJCP, 2013, 14(6), 3861-3864.
[PMID: 23886197]
[30]
Bin, Q.; Luo, J. Role of polymorphisms of GSTM1, GSTT1 and GSTP1 Ile105Val in Hodgkin and non-Hodgkin lymphoma risk: A Human Genome Epidemiology (HuGE). review Leuk. Lymphoma, 2013, 54(1), 14-20.
[http://dx.doi.org/10.3109/10428194.2012.706284] [PMID: 22734843]
[31]
Wei, Y.; Zhou, T.; Lin, H.; Sun, M.; Wang, D.; Li, H.; Li, B. Significant associations between GSTM1/GSTT1 polymorphisms and nasopharyngeal cancer risk. Tumour Biol., 2013, 34(2), 887-894.
[http://dx.doi.org/10.1007/s13277-012-0623-9] [PMID: 23275251]
[32]
Kimi, L.; Ghatak, S.; Yadav, R.P.; Chhuani, L.; Lallawmzuali, D.; Pautu, J.L.; Senthil Kumar, N. Relevance of GSTM1, GSTT1 and GSTP1 gene polymorphism to breast cancer susceptibility in Mizoram population. Northeast India. Biochem. Genet., 2016, 54(1), 41-49.
[http://dx.doi.org/10.1007/s10528-015-9698-5] [PMID: 26407578]
[33]
Adibhesami, G.; Shahsavari, G.R.; Amiri, A.; Emami Razavi, A.N.; Shamaei, M.; Birjandi, M. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) Polymorphisms and lung cancer risk among a select group of Iranian people. APJCP, 2018, 19(10), 2921-2927.
[PMID: 30362324]
[34]
He, H.R.; You, H.S.; Sun, J.Y.; Hu, S.S.; Ma, Y.; Dong, Y.L.; Lu, J. Glutathione S-transferase gene polymorphisms and susceptibility to acute myeloid leukemia: Meta-analyses. J. Clin. Oncol., 2014, 44(11), 1070-1081.
[http://dx.doi.org/10.1093/jjco/hyu121] [PMID: 25145382]
[35]
Mota, P.; Silva, H.C.; Soares, M.J.; Pego, A.; Loureiro, M.; Cordeiro, C.R.; Regateiro, F.J. Genetic polymorphisms of phase I and phase II metabolic enzymes as modulators of lung cancer susceptibility. J. Cancer Res. Clin. Oncol., 2015, 141(5), 851-860.
[http://dx.doi.org/10.1007/s00432-014-1868-z] [PMID: 25388590]
[36]
Khabaz, M.N.; Nedjadi, T.; Gari, M.A.; Al-Maghrabi, J.A.; Atta, H.M.; Bakarman, M.; Gazzaz, Z.J. GSTM1 gene polymorphism and the risk of colorectal cancer in a Saudi Arabian population. Genet. Mol. Res., 2016, 15(1)
[http://dx.doi.org/10.4238/gmr.15017551] [PMID: 26909940]
[37]
Chen, D-K.; Huang, W-W.; Li, L-J.; Pan, Q-W.; Bao, W-S. Glutathione S-transferase M1 and T1 null genotypes and bladder cancer risk: A meta-analysis in a single ethnic group. J. Cancer Res. Ther., 2018, 14(12), S993-S997.
[PMID: 30539835]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy