Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Ellagic Acid Prevents Oxidative Stress and Memory Deficits in a Rat Model of Scopolamine-induced Alzheimer's Disease

Author(s): Amir Hossein Assaran, Mahsan Akbarian, Sabiheh Amirahmadi, Hossein Salmani, Shima Shirzad, Mahmoud Hosseini, Farimah Beheshti and Arezoo Rajabian*

Volume 22, Issue 3, 2022

Published on: 15 November, 2022

Page: [214 - 227] Pages: 14

DOI: 10.2174/1871524923666221027100949

Price: $65

Abstract

Background: Ellagic acid (EA) has various pharmacological effects such as antiinflammatory and anti-oxidant effects.

Objective: This study aimed to investigate the effects of EA on learning and memory dysfunction as well as oxidative stress in scopolamine-induced amnesic rats.

Methods: The studied rats were treated according to the following protocol: Control (group 1) and scopolamine (group 2) groups received saline (intraperitoneal injection (i.p.)) while the treatment groups (group 3-5) were given EA (25, 50, and 100 mg/kg, i.p.) for 3 weeks. Thereafter, their behavioral performance was evaluated using Morris water maze (MWM) and passive avoidance (PA) tasks. Notably, scopolamine was injected (into groups II-V at a dose of 2 mg/kg, i.p.) before conducting the tasks. Finally, the oxidative stress indicators in the brain were measured.

Results: EA reduced the escape latencies and distances during the learning phase of MWM. The results of probe trials also indicated that EA improved memory retrieval and helped animals recall the platform. Moreover, EA increased delay and light time, while decreasing the frequency of entries to the dark area of PA. In the EA-treated groups, the level of malondialdehyde was decreased, while the levels of total thiol groups, superoxide dismutase, and catalase were increased.

Conclusion: EA prevented the negative effects of scopolamine on learning and memory which is probably mediated via modulating oxidative stress. Hence, EA could be considered as a potential alternative therapy for dementia.

Graphical Abstract

[1]
Yoon, W.B.; Choi, H.J.; Kim, J.E.; Park, J.W.; Kang, M.J.; Bae, S.J.; Lee, Y.J.; Choi, Y.S.; Kim, K.S.; Jung, Y.S.; Cho, J.Y.; Hwang, D.Y.; Song, H.K. Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks. Lab. Anim. Res., 2018, 34(4), 317-328.
[http://dx.doi.org/10.5625/lar.2018.34.4.317] [PMID: 30671121]
[2]
Shabani, S.; Mirshekar, M.A. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed. Pharmacother., 2018, 108, 1376-1383.
[http://dx.doi.org/10.1016/j.biopha.2018.09.127] [PMID: 30372840]
[3]
Caylak, E. A review of association and linkage studies for genetical analyses of learning disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2007, 144B(7), 923-943.
[http://dx.doi.org/10.1002/ajmg.b.30537] [PMID: 17510947]
[4]
Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative Diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci., 2018, 8(9), 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[5]
Di Bari, M.; Di Pinto, G.; Reale, M.; Mengod, G.; Tata, A.M. Cholinergic system and neuroinflammation: Implication in multiple sclerosis. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17(2), 109-115.
[http://dx.doi.org/10.2174/1871524916666160822115133] [PMID: 27550615]
[6]
Kim, M.S.; Jeon, W.K.; Lee, K.W.; Park, Y.H.; Han, J.S. Ameliorating effects of ethanol extract of Fructus mume on scopolamine-induced memory impairment in mice. Evid.-based Complement. Altern. Med., 2015, 2015, 102734.
[http://dx.doi.org/10.1155/2015/102734] [PMID: 25705233]
[7]
Hosseini, Z.; Mansouritorghabeh, F.; Kakhki, F.S.H.; Hosseini, M.; Rakhshandeh, H.; Hosseini, A.; Hasanpour, M.; Iranshahi, M.; Rajabi-an, A. Effect of Sanguisorba minor on scopolamine-induced memory loss in rat: Involvement of oxidative stress and acetylcholinesterase. Metab. Brain Dis., 2022, 37(2), 473-488.
[http://dx.doi.org/10.1007/s11011-021-00898-y] [PMID: 34982352]
[8]
Chen, W.N.; Yeong, K.Y. Scopolamine, a toxin-induced experimental model, used for research in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets, 2020, 19(2), 85-93.
[http://dx.doi.org/10.2174/1871527319666200214104331] [PMID: 32056532]
[9]
Tang, K.S. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s bi-omarkers. Life Sci., 2019, 233, 116695.
[http://dx.doi.org/10.1016/j.lfs.2019.116695] [PMID: 31351082]
[10]
Ghasemi, S.; Moradzadeh, M.; Hosseini, M.; Beheshti, F.; Sadeghnia, H.R. Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: Protection against acetylcholinesterase activity and neuronal oxidative damage. Drug Chem. Toxicol., 2019, 42(2), 167-175.
[http://dx.doi.org/10.1080/01480545.2018.1463238] [PMID: 29745257]
[11]
Marefati, N.; Mokhtari-Zaer, A.; Beheshti, F.; Karimi, S.; Mahdian, Z.; Khodamoradi, M.; Hosseini, M. The effects of soy on scopola-mine-induced spatial learning and memory impairments are comparable to the effects of estradiol. Horm. Mol. Biol. Clin. Investig., 2019, 39(3)
[http://dx.doi.org/10.1515/hmbci-2018-0084] [PMID: 31483756]
[12]
Salmani, H.; Hosseini, M.; Beheshti, F.; Baghcheghi, Y.; Sadeghnia, H.R.; Soukhtanloo, M.; Shafei, M.N.; Khazaei, M. Angiotensin recep-tor blocker, losartan ameliorates neuroinflammation and behavioral consequences of lipopolysaccharide injection. Life Sci., 2018, 203, 161-170.
[http://dx.doi.org/10.1016/j.lfs.2018.04.033] [PMID: 29684446]
[13]
Beheshti, F.; Hosseini, M.; Hashemzehi, M.; Soukhtanloo, M.; Khazaei, M.; Shafei, M.N. The effects of PPAR-γ agonist pioglitazone on hippocampal cytokines, brain-derived neurotrophic factor, memory impairment, and oxidative stress status in lipopolysaccharide-treated rats. Iran. J. Basic Med. Sci., 2019, 22(8), 940-948.
[PMID: 31579451]
[14]
Hosseini, M.; Salmani, H.; Baghcheghi, Y. Losartan improved hippocampal long‐term potentiation impairment induced by repeated LPS injection in rats. Physiol. Rep., 2021, 9(10), e14874.
[http://dx.doi.org/10.14814/phy2.14874] [PMID: 34042283]
[15]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[16]
Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective potential of ellagic acid: A critical review. Adv. Nutr., 2021, 12(4), 1211-1238.
[http://dx.doi.org/10.1093/advances/nmab007] [PMID: 33693510]
[17]
Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent advances in the production and applications of ellagic acid and its derivatives. A re-view. Molecules, 2020, 25(12), 2745.
[http://dx.doi.org/10.3390/molecules25122745] [PMID: 32545813]
[18]
Javaid, N.; Shah, M.A.; Rasul, A.; Chauhdary, Z.; Saleem, U.; Khan, H.; Ahmed, N.; Uddin, M.S.; Mathew, B.; Behl, T.; Blundell, R. Neu-roprotective effects of ellagic acid in Alzheimer’s Disease: Focus on underlying molecular mechanisms of therapeutic potential. Curr. Pharm. Des., 2021, 27(34), 3591-3601.
[http://dx.doi.org/10.2174/1381612826666201112144006] [PMID: 33183192]
[19]
Ramadan, W.S.; Alkarim, S. Ellagic acid modulates the amyloid precursor protein gene via superoxide dismutase regulation in the entorhi-nal cortex in an experimental Alzheimer’s Model. Cells, 2021, 10(12), 3511.
[http://dx.doi.org/10.3390/cells10123511] [PMID: 34944019]
[20]
Kiasalari, Z.; Heydarifard, R.; Khalili, M.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Zahedi, E.; Sanaierad, A.; Roghani, M. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer’s disease: An exploration of underlying mechanisms. Psychopharmacology (Berl.), 2017, 234(12), 1841-1852.
[http://dx.doi.org/10.1007/s00213-017-4589-6] [PMID: 28303372]
[21]
Akbarian, M.; Mirzavi, F.; Amirahmadi, S.; Hosseini, M.; Alipour, M.; Feizi, H.; Rajabian, A. Amelioration of oxidative stress, cholinergic dysfunction, and neuroinflammation in scopolamine-induced amnesic rats fed with pomegranate seed. Inflammopharmacology, 2022, 30(3), 1021-1035.
[http://dx.doi.org/10.1007/s10787-022-00971-7] [PMID: 35348947]
[22]
Sadeghian, R.; Fereidoni, M.; Soukhtanloo, M.; Azizi-Malekabadi, H.; Hosseini, M. Decreased nitric oxide levels in the hippocampus may play a role in learning and memory deficits in ovariectomized rats treated by a high dose of estradiol. Arq. Neuropsiquiatr., 2012, 70(11), 874-879.
[http://dx.doi.org/10.1590/S0004-282X2012001100010] [PMID: 23175201]
[23]
Saffarzadeh, F.; Eslamizade, M.; Nemati Karimooy, H.; Hadjzadeh, M.; Khazaei, M.; Hosseini, M. The effect of L-Arginin on Morris water maze tasks of ovariectomized rats. Acta Physiol. Hung., 2010, 97(2), 216-223.
[http://dx.doi.org/10.1556/APhysiol.97.2010.2.8] [PMID: 20511131]
[24]
Anaeigoudari, A.; Shafei, M.N.; Soukhtanloo, M.; Sadeghnia, H.R.; Reisi, P.; Beheshti, F.; Mohebbati, R.; Mousavi, S.M.; Hosseini, M. Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole. Arq. Neuropsiquiatr., 2015, 73(9), 784-790.
[http://dx.doi.org/10.1590/0004-282X20150121] [PMID: 26352498]
[25]
Hakimi, Z.; Salmani, H.; Marefati, N.; Arab, Z.; Gholamnezhad, Z.; Beheshti, F.; Shafei, M.N.; Hosseini, M. Protective effects of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide-challenged rats. Neurotox. Res., 2020, 37(4), 965-976.
[http://dx.doi.org/10.1007/s12640-019-00144-5] [PMID: 31811590]
[26]
Boroushaki, M.T.; Rajabian, A.; Farzadnia, M.; Hoseini, A.; Poorlashkari, M.; Taghavi, A.; Dolati, K.; Bazmandegan, G. Protective effect of pomegranate seed oil against cisplatin-induced nephrotoxicity in rat. Ren. Fail., 2015, 37(8), 1338-1343.
[http://dx.doi.org/10.3109/0886022X.2015.1073496]
[27]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[28]
Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1(2), 848-858.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[29]
Burwell, R.D.; Saddoris, M.P.; Bucci, D.J.; Wiig, K.A. Corticohippocampal contributions to spatial and contextual learning. J. Neurosci., 2004, 24(15), 3826-3836.
[http://dx.doi.org/10.1523/JNEUROSCI.0410-04.2004] [PMID: 15084664]
[30]
Baarendse, P.J.J.; van Grootheest, G.; Jansen, R.F.; Pieneman, A.W.; Ögren, S.O.; Verhage, M.; Stiedl, O. Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus, 2008, 18(1), 11-19.
[http://dx.doi.org/10.1002/hipo.20356] [PMID: 17696168]
[31]
Cottrell, G.A.; Nakajima, S. Effect of corticosteroids in the hippocampus on passive avoidance behavior in the rat. Pharmacol. Biochem. Behav., 1977, 7(3), 277-280.
[http://dx.doi.org/10.1016/0091-3057(77)90146-0] [PMID: 928484]
[32]
Lorenzini, C.A.; Baldi, E.; Bucherelli, C.; Sacchetti, B.; Tassoni, G. Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response: A tetrodotoxin functional inactivation study. Brain Res., 1996, 730(1-2), 32-39.
[http://dx.doi.org/10.1016/0006-8993(96)00427-1] [PMID: 8883885]
[33]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alz-heimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[34]
Caylak, E.; Aytekin, M.; Halifeoglu, I. Antioxidant effects of methionine, α-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp. Toxicol. Pathol., 2008, 60(4-5), 289-294.
[http://dx.doi.org/10.1016/j.etp.2007.11.004] [PMID: 18407480]
[35]
Sohn, E.; Kim, Y.J.; Kim, J.H.; Jeong, S.J. Ficus erecta Thunb leaves alleviate memory loss induced by scopolamine in mice via regulation of oxidative stress and cholinergic system. Mol. Neurobiol., 2021, 58(8), 3665-3676.
[http://dx.doi.org/10.1007/s12035-021-02358-1] [PMID: 33797061]
[36]
Farbood, Y.; Rashno, M.; Ghaderi, S.; Khoshnam, S.E.; Sarkaki, A.; Rashidi, K.; Rashno, M.; Badavi, M. Ellagic acid protects against diabetes-associated behavioral deficits in rats: Possible involved mechanisms. Life Sci., 2019, 225, 8-19.
[http://dx.doi.org/10.1016/j.lfs.2019.03.078] [PMID: 30943382]
[37]
Zhong, L.; Liu, H.; Zhang, W.; Liu, X.; Jiang, B.; Fei, H.; Sun, Z. Ellagic acid ameliorates learning and memory impairment in APP/PS1 transgenic mice via inhibition of β amyloid production and tau hyperphosphorylation. Exp. Ther. Med., 2018, 16(6), 4951-4958.
[http://dx.doi.org/10.3892/etm.2018.6860] [PMID: 30542451]
[38]
Jha, A.B.; Panchal, S.S.; Shah, A. Ellagic acid: Insights into its neuroprotective and cognitive enhancement effects in sporadic Alzheimer’s disease. Pharmacol. Biochem. Behav., 2018, 175, 33-46.
[http://dx.doi.org/10.1016/j.pbb.2018.08.007] [PMID: 30171934]
[39]
Shen, Y.C.; Juan, C.W.; Lin, C.S.; Chen, C.C.; Chang, C.L. Neuroprotective effect of Terminalia chebula extracts and ellagic acid in PC12 cells. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4), 22-30.
[http://dx.doi.org/10.21010/ajtcam.v14i4.3] [PMID: 28638863]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy