Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Composition Analysis of Salsola grandis and Its Effects on Colon Cancer Cells

Author(s): Seda Şirin*, Hatice Gül Dursun and Canan Eroğlu Güneş

Volume 23, Issue 8, 2023

Published on: 10 November, 2022

Page: [967 - 978] Pages: 12

DOI: 10.2174/1871520623666221027100833

Price: $65

Abstract

Background: The success of drug treatment of colon cancer (CC), which is in the top three in terms of incidence and mortality among all cancers, is adversely affected by reasons, such as severe side effects and chemoresistance. Clinical, epidemiological and experimental studies have indicated the need for developing new alternative drugs for the treatment of CC. Plants are an important source of traditional medicines that have proven to be highly beneficial for the treatment of CC.

Aim: In this study, we aimed to reveal the antioxidant properties and anti-carcinogenic activity of Salsola grandis methanol extract (SGME) on HT-29.

Methods: For this purpose, we used spectrophotometric methods to determine the antioxidant properties of SGME and LC-MS/MS analysis to measure the phenolic acid composition. We applied 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, the thiazolyl blue (MTT) method, to evaluate its effects on cell viability and ELISA assay, realtime PCR, and western blot method to reveal its effects on apoptosis.

Results: Spectrophotometric analyzes showed that SGME has the highest phenolic acid content, inhibits plasma lipid peroxidation and shows chelating activity and radical scavenging activity. Gene and protein expression analysis revealed the effects of SGME treatment on apoptosis genes/proteins.

Conclusion: These findings showed that SGME has anticarcinogenic activity on CC due to its antioxidant, cell viability- suppressing and apoptosis-inducing properties.

Graphical Abstract

[1]
Sudha, T.; El-Far, A.H.; Mousa, D.S.; Mousa, S.A. Resveratrol and its nanoformulation attenuate growth and the angiogenesis of xenograft and orthotopic colon cancer models. Molecules, 2020, 25(6), 1412.
[http://dx.doi.org/10.3390/molecules25061412] [PMID: 32244860]
[2]
Weidner, C.; Rousseau, M.; Plauth, A.; Wowro, S.J.; Fischer, C.; Abdel-Aziz, H.; Sauer, S. Melissa officinalis extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species. Phytomedicine, 2015, 22(2), 262-270.
[http://dx.doi.org/10.1016/j.phymed.2014.12.008] [PMID: 25765831]
[3]
Larson, D.W.; Abd El Aziz, M.A.; Mandrekar, J.N. How many lives will delay of colon cancer surgery cost during the COVID-19 pandemic? An analysis based on the US national cancer database. Mayo Clin. Proc., 2020, 95(8), 1805-1807.
[http://dx.doi.org/10.1016/j.mayocp.2020.06.006] [PMID: 32753157]
[4]
Martínez-Urueña, N.; Macías, L.; Pérez-Cabornero, L.; Infante, M.; Lastra, E.; Cruz, J.J.; Miner, C.; González, R.; Durán, M. Incidence of −93 MLH1 promoter polymorphism in familial and sporadic colorectal cancer. Colorectal Dis., 2013, 15(3), e118-e123.
[http://dx.doi.org/10.1111/codi.12112] [PMID: 23374646]
[5]
Bishehsari, F.; Moossavi, S.; Engen, P.A.; Liu, X.; Zhang, Y. Abnormal food timing promotes alcohol-associated dysbiosis and colon carcinogenesis pathways. Front. Oncol., 2020, 10, 1029.
[http://dx.doi.org/10.3389/fonc.2020.01029] [PMID: 32850307]
[6]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Ichwan, S.J.A.; Soundharrajan, I.; Govindan, N. Nutraceuticals as potential therapeutic agents for colon cancer: A review. Acta Pharm. Sin. B, 2014, 4(3), 173-181.
[http://dx.doi.org/10.1016/j.apsb.2014.04.002] [PMID: 26579381]
[7]
Wagner, A.D.; Grothey, A.; Andre, T.; Dixon, J.G.; Wolmark, N.; Haller, D.G.; Allegra, C.J.; de Gramont, A.; VanCutsem, E.; Alberts, S.R.; George, T.J.; O’Connell, M.J.; Twelves, C.; Taieb, J.; Saltz, L.B.; Blanke, C.D.; Francini, E.; Kerr, R.; Yothers, G.; Seitz, J.F.; Marsoni, S.; Goldberg, R.M.; Shi, Q. Sex and adverse events of adjuvant chemotherapy in colon cancer: An analysis of 34 640 patients in the ACCENT database. J. Natl. Cancer Inst., 2021, 113(4), 400-407.
[http://dx.doi.org/10.1093/jnci/djaa124] [PMID: 32835356]
[8]
Demir, S.S.; Sarikaya, A.; Aktas, G.E.; Oz Puyan, F. Incidental detection of subcutaneous myopericytoma of trunk on FDG PET/CT and bone scintigraphy for imaging of colon cancer. Clin. Nucl. Med., 2016, 41(8), 668-670.
[http://dx.doi.org/10.1097/RLU.0000000000001244] [PMID: 27124684]
[9]
Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-derived natural products in cancer research: Extraction, mechanism of action, and drug formulation. Molecules, 2020, 25(22), 5319.
[http://dx.doi.org/10.3390/molecules25225319] [PMID: 33202681]
[10]
Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients, 2016, 8(3), 156.
[http://dx.doi.org/10.3390/nu8030156] [PMID: 26978396]
[11]
Gigante, I.; Milella, R.A.; Tutino, V.; Debiase, G.; Notarangelo, L.; Giannandrea, M.A.; De Nunzio, V.; Orlando, A.; D’Alessandro, R.; Caruso, M.G.; Notarnicola, M. Autumn royal and egnatia grape extracts differently modulate cell proliferation in human colorectal cancer cells. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(10), 1740-1750.
[http://dx.doi.org/10.2174/1871530320666200421102418] [PMID: 32316903]
[12]
Tutino, V.; Gigante, I.; Milella, R.A.; De Nunzio, V.; Flamini, R.; De Rosso, M.; Scavo, M.P.; Depalo, N.; Fanizza, E.; Caruso, M.G.; Notarnicola, M. Flavonoid and non-flavonoid compounds of autumn royal and egnatia grape skin extracts affect membrane PUFA’s profile and cell morphology in human colon cancer cell lines. Molecules, 2020, 25(15), 3352.
[http://dx.doi.org/10.3390/molecules25153352] [PMID: 32718061]
[13]
Orhan, I.E.; Kucukboyaci, N.; Calis, I.; Cerón-Carrasco, J.P.; den-Haan, H.; Peña-García, J.; Pérez-Sánchez, H. Acetylcholinesterase inhibitory assessment of isolated constituents from Salsola grandis Freitag, Vural & Adıgüzel and molecular modeling studies on N -acetyltryptophan. Phytochem. Lett., 2017, 20, 373-378.
[http://dx.doi.org/10.1016/j.phytol.2016.10.017]
[14]
Kucukboyacı, N.; Kupeli Akkol, E.; Suntar, I. In vivo anti-inflammatory and antinociceptive activities of the extracts and chemical constituents of an endemic turkish plant, Salsola grandis. Rec. Nat. Prod., 2016, 10, 369-379.
[15]
Klein, B.P.; Perry, A.K. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J. Food Sci., 1982, 47(3), 941-945.
[http://dx.doi.org/10.1111/j.1365-2621.1982.tb12750.x]
[16]
Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 1992, 39(10), 925-928.
[http://dx.doi.org/10.3136/nskkk1962.39.925]
[17]
Nigdelioglu Dolanbay, S.; Kocanci, F.G.; Aslim, B. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed. Pharmacother., 2021, 140111690
[http://dx.doi.org/10.1016/j.biopha.2021.111690] [PMID: 34004513]
[18]
Stanojević, L.; Stanković, M.; Nikolić, V.; Nikolić, L.; Ristić, D.; Čanadanovic-Brunet, J.; Tumbas, V. Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors (Basel), 2009, 9(7), 5702-5714.
[http://dx.doi.org/10.3390/s90705702] [PMID: 22346723]
[19]
Yaltirak, T.; Aslim, B.; Ozturk, S.; Alli, H. Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem. Toxicol., 2009, 47(8), 2052-2056.
[http://dx.doi.org/10.1016/j.fct.2009.05.029] [PMID: 19481130]
[20]
Karakas, F.P. Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiol. Biochem., 2020, 146, 384-391.
[http://dx.doi.org/10.1016/j.plaphy.2019.11.009] [PMID: 31790925]
[21]
Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 1994, 315(1), 161-169.
[http://dx.doi.org/10.1006/abbi.1994.1485] [PMID: 7979394]
[22]
Rodriguez-Martinez, M.A.; Ruiz-Torres, A. Homeostasis between lipid peroxidation and antioxidant enzyme activities in healthy human aging. Mech. Ageing Dev., 1992, 66(2), 213-222.
[http://dx.doi.org/10.1016/0047-6374(92)90137-3] [PMID: 1365846]
[23]
Arkan, T. Daphne oleoides subsp. oleoides ve Daphne sericea’nin farkli cozuculerle antioksidan ozellikleri; Selcuk Universitesi, 2011, pp. 1-75.
[24]
Okan, O.T.; Varlibas, H.; Oz, M.; Deniz, I. Antioxidant analysis methods and some herbal products of wood tooth that can be used as an antioxidant source in the eastern black sea region, Kastamonu University Journal of Forestry Faculty. Kastamonu Universitesi Orman Fakultesi Dergisi, 2013, 13, 48-59.
[25]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[26]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[27]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[28]
Veskoukis, A.S.; Tsatsakis, A.M.; Kouretas, D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones, 2012, 17(1), 11-21.
[http://dx.doi.org/10.1007/s12192-011-0293-3] [PMID: 21956695]
[29]
Kaga, E. The protective effect of black grape juice on homocysteine-induced oxidative stress; Afyon Kocatepe Universitesi, 2007.
[30]
Isbilir, S.S. Study of the antioxidant activities of some plants whose leaves are consumed as salads-spices; Trakya Universitesi, 2008, pp. 1-132.
[31]
Akhtar, S.; Karak, C.; Biswas, P.; Chattopadhyay, A.; Hazra, P. Indigenous leafy vegetables: A potential source of β-carotene and ascorbic acid. Int. J. Veg. Sci., 2012, 18(4), 370-375.
[http://dx.doi.org/10.1080/19315260.2011.649163]
[32]
Yoon, G.A.; Yeum, K.J.; Cho, Y.S.; Chen, C.Y.O.; Tang, G.; Blumberg, J.B.; Russell, R.M.; Yoon, S.; Lee-Kim, Y.C. Carotenoids and total phenolic contents in plant foods commonly consumed in Korea. Nutr. Res. Pract., 2012, 6(6), 481-490.
[http://dx.doi.org/10.4162/nrp.2012.6.6.481] [PMID: 23346297]
[33]
Kaur, R.; Arora, S. Alkaloids-important therapeutic secondary metabolites of plant origin. J. Crit. Rev., 2015, 2, 1-8.
[34]
Zhao, Y.X.; Ding, X.B. Studies on the alkaloids from Salsola collina Pall. Yao Xue Xue Bao, 2004, 39(8), 598-600.
[PMID: 15563059]
[35]
Tundis, R.; Menichini, F.; Conforti, F.; Loizzo, M.R.; Bonesi, M.; Statti, G.; Menichini, F. A potential role of alkaloid extracts from Salsola species (Chenopodiaceae) in the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 818-824.
[http://dx.doi.org/10.1080/14756360802399662] [PMID: 18720188]
[36]
Miller, N.J.; Ruiz-Larrea, M.B. Flavonoids and other plant phenols in the diet: Their significance as antioxidants. J. Nutr. Environ. Med., 2002, 12(1), 39-51.
[http://dx.doi.org/10.1080/13590840220123352]
[37]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[38]
Bilaloglu, G.Y.; Harmandar, M. Flavonoids: molecular structures, chemical properties, techniques of determination, biological activity; İstanbul, 2000, pp. 1-369.
[39]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[40]
Asan-Ozusaglam, M.; Erzengin, M.; Darilmaz, D.O.; Erkul, S.K.; Teksen, M.; Karakoca, K. Antimicrobial and antioxidant activity of various solvent extracts of Salsola stenoptera Wagenitz and Petrosimonia nigdeensis Aellen (Chenopodiaceae) plants. J. Sci., 2015, 42, 156-172.
[41]
Shehab, N.G.; Abu-Gharbieh, E. Phenolic profiling and evaluation of contraceptive effect of the ethanolic extract of Salsola imbricata Forssk. in male albino rats. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/695291] [PMID: 25587346]
[42]
Meral, R.; Dogan, I.S.; Kanberoglu, G.S. Fonksiyonel gida bileseni olarak antioksidanlar. Igdır Universitesi Fen Bilimleri Enstitusu Dergisi, 2012, 2, 45-50.
[43]
Nizamlioglu, N.M.; Nas, S. The phenolic compounds in vegetables and fruit; structures and their importance. Electr. J. Food Technol., 2010, 5, 20-35.
[44]
Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp. Dermatol., 2010, 19(8), 742-750.
[http://dx.doi.org/10.1111/j.1600-0625.2010.01091.x] [PMID: 20482617]
[45]
Tai, A.; Sawano, T.; Ito, H. Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci. Biotechnol. Biochem., 2012, 76(2), 314-318.
[http://dx.doi.org/10.1271/bbb.110700] [PMID: 22313772]
[46]
Acton, Q.A. Protective Agents: Advances in Research and Application; Scholarly Editions: Georgia, 2012, pp. 1-1002.
[47]
Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules, 2010, 15(10), 7208-7217.
[http://dx.doi.org/10.3390/molecules15107208] [PMID: 20959795]
[48]
Güven, M.; Aras, A.B.; Topaloğlu, N.; Özkan, A.; Şen, H.M.; Kalkan, Y.; Okuyucu, A.; Akbal, A.; Gökmen, F.; Coşar, M. The protective effect of syringic acid on ischemia injury in rat brain. Turk. J. Med. Sci., 2015, 45(1), 233-240.
[http://dx.doi.org/10.3906/sag-1402-71] [PMID: 25790559]
[49]
Karthik, G.; Vijayakumar, A.; Natarajapillai, S. Preliminary study on salubrious effect of syringic acid on apoptosis in human lung carcinoma A549 cells and in silico analysis through docking studies. Asian J. Pharm. Clin. Res., 2013, 1, 46-49.
[50]
Gheena, S.; Ezhilarasan, D. Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Hum. Exp. Toxicol., 2019, 38(6), 694-702.
[http://dx.doi.org/10.1177/0960327119839173] [PMID: 30924378]
[51]
Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/251754] [PMID: 23956973]
[52]
Boz, H. p -Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol., 2015, 50(11), 2323-2328.
[http://dx.doi.org/10.1111/ijfs.12898]
[53]
Rivas, F.J.; Beltrán, F.J.; Frades, J.; Buxeda, P. Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Res., 2001, 35(2), 387-396.
[http://dx.doi.org/10.1016/S0043-1354(00)00285-2] [PMID: 11228990]
[54]
Jaganathan, S.K.; Supriyanto, E.; Mandal, M. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol., 2013, 19(43), 7726-7734.
[http://dx.doi.org/10.3748/wjg.v19.i43.7726] [PMID: 24282361]
[55]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p -Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[56]
Ohnishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry, 1994, 36(3), 579-583.
[http://dx.doi.org/10.1016/S0031-9422(00)89778-2]
[57]
Andjelković, M.; Vancamp, J.; Demeulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem., 2006, 98(1), 23-31.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.044]
[58]
Xiang, Z.; Ning, Z. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. Lebensm. Wiss. Technol., 2008, 41(7), 1189-1203.
[http://dx.doi.org/10.1016/j.lwt.2007.08.006]
[59]
Yang, J.S.; Liu, C.W.; Ma, Y.S.; Weng, S.W.; Tang, N.Y.; Wu, S.H.; Kuo, C.L. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase-and mitochondria-dependent pathways. In Vivo, 2012, 26(6), 971-978.
[60]
Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr., 2008, 138(12), 2309-2315.
[http://dx.doi.org/10.3945/jn.108.095554] [PMID: 19022950]
[61]
Murtaza, G.; Sajjad, A.; Mehmood, Z.; Shah, S.H.; Siddiqi, A.R. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. Yao Wu Shi Pin Fen Xi, 2015, 23(1), 11-18.
[PMID: 28911433]
[62]
Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods, 2014, 6(10), 3203-3210.
[http://dx.doi.org/10.1039/C3AY41807C]
[63]
Jacobsen, C. Management in different industry sectors. In: Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E.A.; Elias, R.J.; McClements, D.J., Eds.; Woodhead Publishing: Cambrigde, 2010, pp. 1-551.
[64]
Chang, W.C.; Hsieh, C.H.; Hsiao, M.W.; Lin, W.C.; Hung, Y.C.; Ye, J.C. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan. J. Obstet. Gynecol., 2010, 49(4), 419-424.
[http://dx.doi.org/10.1016/S1028-4559(10)60092-7] [PMID: 21199742]
[65]
Locatelli, C.; Filippin-Monteiro, F.B.; Creczynski-Pasa, T.B. Alkyl esters of gallic acid as anticancer agents: A review. Eur. J. Med. Chem., 2013, 60, 233-239.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.056] [PMID: 23291333]
[66]
Bertazzo, A.; Comai, S.; Mangiarini, F. Nutrition and health.In: Chocolate in health and nutrition; Watson, R.R.; Preedy, V.R.; Zibadi, S., Eds.; Springer: Heidelberg, 2013, pp. 1-553.
[67]
Barcelo, J.M.; Guieb, M.; Ventura, A.; Nacino, A.; Pinasen, H.; Viernes, L. Antibacterial, prooxidative and genotoxic activities of gallic acid and its copper and iron complexes against Escherichia coli. Asia Pacific J. Multidiscipl. Res., 2014, 2, 45-56.
[68]
Subramanian, A.P.; John, A.A.; Vellayappan, M.V.; Balaji, A.; Jaganathan, S.K.; Supriyanto, E.; Yusof, M. Gallic acid: Prospects and molecular mechanisms of its anticancer activity. RSC Advances, 2015, 5(45), 35608-35621.
[http://dx.doi.org/10.1039/C5RA02727F]
[69]
Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal., 2015, 4(4), 305-315.
[http://dx.doi.org/10.4155/ppa.15.14] [PMID: 26174568]
[70]
Skolowska-Krzaczek, A.; Skalicka-Wozniak, K.; Czubkowska, K. Variation of phenolic acids from herb and roots of Salsola kali L. Acta Soc. Bot. Pol., 2009, 78, 197-201.
[71]
Uyumlu, A.B. Effects of whole body radiotherapy on brain tissue lipid peroxidation and antioxidant system parameters in rats of different age groups; Inonu Universitesi, 2007, pp. 1-84.
[72]
Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol., 2008, 331(11), 865-873.
[http://dx.doi.org/10.1016/j.crvi.2008.07.024] [PMID: 18940702]
[73]
Gawlik-Dziki, U.; Świeca, M.; Sułkowski, M.; Dziki, D.; Baraniak, B.; Czyż, J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts - In vitro study. Food Chem. Toxicol., 2013, 57, 154-160.
[http://dx.doi.org/10.1016/j.fct.2013.03.023] [PMID: 23537598]
[74]
Acer, B.C. Cord blood in meconium-dyed newborns MDA concentrations and their relationship with factors of the perinatal period; Ministry of Health, Bakirkoy Dr. Sadi Konuk Egitim and Research Hospital; Saglik Bakanligi, Bakirkoy Dr; Sadi Konuk Egitim ve Arastirma Hastanesi, 2006, pp. 1-128.
[75]
Gokçe, O.; Yilmaz, A.; Gurbuz, V.; Konac, E.; Ekmekci, A. Apoptotic effect of vinorelbin on Human cervical cancer hela cells. Journal of Dokuz Eylul, Universitesi Tip Fakultesi Dergisi, 2011, 25, 05-14.
[76]
McPhie, D.L.; Coopersmith, R.; Hines-Peralta, A.; Chen, Y.; Ivins, K.J.; Manly, S.P.; Kozlowski, M.R.; Neve, K.A.; Neve, R.L. DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci., 2003, 23(17), 6914-6927.
[http://dx.doi.org/10.1523/JNEUROSCI.23-17-06914.2003] [PMID: 12890786]
[77]
Ma, M.; Wang, X.; Liu, N.; Shan, F.; Feng, Y. Low-dose naltrexone inhibits colorectal cancer progression and promotes apoptosis by increasing M1-type macrophages and activating the Bax/Bcl-2/caspase-3/PARP pathway. Int. Immunopharmacol., 2020, 83106388
[http://dx.doi.org/10.1016/j.intimp.2020.106388] [PMID: 32171145]
[78]
Nazeri, M.; Mirzaie-asl, A.; Saidijam, M.; Moradi, M. Methanolic extract of Artemisia absinthium prompts apoptosis, enhancing expression of Bax/Bcl-2 ratio, cell cycle arrest, caspase-3 activation and mitochondrial membrane potential destruction in human colorectal cancer HCT-116 cells. Mol. Biol. Rep., 2020, 47(11), 8831-8840.
[http://dx.doi.org/10.1007/s11033-020-05933-2] [PMID: 33141288]
[79]
Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Statti, G.A.; Menichini, F. In vitro cytotoxic activity of Salsola oppositifolia Desf. (Amaranthaceae) in a panel of tumour cell lines. Z. Naturforsch. C J. Biosci., 2008, 63(5-6), 347-354.
[http://dx.doi.org/10.1515/znc-2008-5-607] [PMID: 18669019]
[80]
Oh, Y.N.; Jin, S.; Park, H.; Kwon, H.J.; Kim, B.W. Anti-oxidative and anti-cancer activities by cell cycle regulation of Salsola collina extract. Han’guk Misaengmul, Saengmyong Konghakhoe Chi., 2014, 42(1), 73-81.
[http://dx.doi.org/10.4014/kjmb.1311.11009]
[81]
Ryu, D.S.; Kim, S.H.; Lee, D.S. Anti-proliferative effect of polysaccharides from Salicornia herbacea on induction of G2/M arrest and apoptosis in human colon cancer cells. J. Microbiol. Biotechnol., 2009, 19(11), 1482-1489.
[PMID: 19996705]
[82]
Papi, A.; Farabegoli, F.; Iori, R.; Orlandi, M.; De Nicola, G.R.; Bagatta, M.; Angelino, D.; Gennari, L.; Ninfali, P. Vitexin-2-O-xyloside, raphasatin and (−)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chem., 2013, 138(2-3), 1521-1530.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.112] [PMID: 23411276]
[83]
Ryu, M.H.; Han, H-Y.; Kim, H.; Son, Y.H.; Lee, G.; Jeong, S-H. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells. Pharmacogn. Mag., 2014, 10(39)(Suppl. 3), 661.
[http://dx.doi.org/10.4103/0973-1296.139812] [PMID: 25298688]
[84]
Han, H.Y.; Lee, H.E.; Kim, H.J.; Jeong, S.H.; Kim, J.H.; Kim, H.; Ryu, M.H. Kochia scoparia induces apoptosis of oral cancer cells in vitro and in heterotopic tumors. J. Ethnopharmacol., 2016, 192, 431-441.
[http://dx.doi.org/10.1016/j.jep.2016.09.019] [PMID: 27616033]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy