Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Prediction Models based on miRNA-disease Relationship: Diagnostic Relevance to Multiple Diseases Including COVID-19

Author(s): Varruchi Sharma, Anil K. Sharma*, Mukesh Yadav, Nirmala Sehrawat, Vikas Kumar, Sunil Kumar, Ajay Gupta, Pooja Sharma and Sasanka Chakrabarti

Volume 24, Issue 10, 2023

Published on: 21 November, 2022

Page: [1213 - 1227] Pages: 15

DOI: 10.2174/1389201024666221025114500

Price: $65

Abstract

Background: Small, non-coding microRNAs, usually of 20-25 nucleotides, are known to regulate the post-transcriptional gene expression, which has a significant role in human biological processes, including immune-biogenesis, homeostasis and infection control as differential expression of such miRNAs is responsible for fine-tuning the organismic development.

Methods: A search of bibliographic databases was carried out with a focused question on microRNA- Disease Prediction. A deductive qualitative content analysis approach was employed to assess the research's overall outcomes, review articles on prediction tools in miRNA-Diseases, and analyse the interventions.

Results: Diagnosis and therapeutics of diseases and miRNA prediction methods hold importance in identifying the regulatory mechanisms. Collections of efficient miRNA prediction methods to identify miRNA-mRNA-disease regulatory relationships have been presented through this review, consolidating the potential of miRNAs as a diagnostic and prognostic biomarker of multiple diseases, including COVID-19.

Conclusion: The role of miRNA in the aetiology and pathogenesis of wide-range of pathologies, including viral, bacterial to chronic diseases such as cancer, is quite feasible through the modern tools in bioinformatics which has been elaborated focusing upon miRNA-disease prediction methods and their application potential establishing miRNAs as a robust and reliable biomarker in clinicomedical studies.

Next »
Graphical Abstract

[1]
Ambros, V.; Lee, R.C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol., 2004, 265, 131-158.
[2]
Felekkis, K.; Touvana, E.; Stefanou, Ch.; Deltas, C. MicroRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia, 2010, 14(4), 236-240.
[PMID: 21311629]
[3]
Wang, Y.; Li, X.; Tao, B. Improving classification of mature microRNA by solving class imbalance problem. Sci. Rep., 2016, 6(1), 25941.
[http://dx.doi.org/10.1038/srep25941] [PMID: 27181057]
[4]
Chen, X.; Guan, N.N.; Sun, Y.Z.; Li, J.Q.; Qu, J. MicroRNA-small molecule association identification: From experimental results to com-putational models. Brief. Bioinform., 2018, 21(1), 47-61.
[http://dx.doi.org/10.1093/bib/bby098] [PMID: 30325405]
[5]
Liu, B.; Zhu, X.; Zhang, L.; Liang, Z.; Li, Z. Combined embedding model for miRNA-disease association prediction. BMC Bioinformatics, 2021, 22(1), 161.
[http://dx.doi.org/10.1186/s12859-021-04092-w] [PMID: 33765909]
[6]
Zeng, X.; Wang, W.; Deng, G.; Bing, J.; Zou, Q. Prediction of potential disease-associated microRNAs by using neural networks. Mol. Ther. Nucleic Acids, 2019, 16, 566-575.
[http://dx.doi.org/10.1016/j.omtn.2019.04.010] [PMID: 31077936]
[7]
Zhang, L.; Liu, B.; Li, Z.; Zhu, X.; Liang, Z.; An, J. Predicting miRNA-disease associations by multiple meta-paths fusion graph embed-ding model. BMC Bioinformatics, 2020, 21(1), 470.
[http://dx.doi.org/10.1186/s12859-020-03765-2] [PMID: 33087064]
[8]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[9]
Xie, G.; Huang, S.; Luo, Y.; Ma, L.; Lin, Z.; Sun, Y. LLCLPLDA: A novel model for predicting lncRNA–disease associations. Mol. Genet. Genomics, 2019, 294(6), 1477-1486.
[http://dx.doi.org/10.1007/s00438-019-01590-8] [PMID: 31250107]
[10]
Qu, Y.; Zhang, H.; Lyu, C.; Liang, C. LLCMDA: A novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding. Front. Genet., 2018, 9, 576.
[http://dx.doi.org/10.3389/fgene.2018.00576] [PMID: 30555511]
[11]
Santos, L.D.; Piwowarski, B.; Denoyer, L.; Gallinari, P. Representation learning for classification in heterogeneous graphs with application to social networks. ACM Trans. Knowl. Discov. Data, 2018, 12(5), 1-33.
[http://dx.doi.org/10.1145/3201603]
[12]
Chen, X.; Zhang, D.H.; You, Z.H. A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med., 2018, 16(1), 348.
[http://dx.doi.org/10.1186/s12967-018-1722-1] [PMID: 30537965]
[13]
Zhu, Xiaojin; Ghahramani, Zoubin Learning from labeled and unlabeled data with label propagation 2002, CMU-CALD-02–107.
[14]
Yu, S.P.; Liang, C.; Xiao, Q.; Li, G.H.; Ding, P.J.; Luo, J.W. MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation. J. Cell. Mol. Med., 2019, 23(2), 1427-1438.
[http://dx.doi.org/10.1111/jcmm.14048] [PMID: 30499204]
[15]
Hansen, P. Mladenovi? N. Variable neighborhood search for the p-median. Location Sci., 1997, 5(4), 207-226.
[16]
Zhu, R.; Ji, C.; Wang, Y.; Cai, Y.; Wu, H. Heterogeneous graph convolutional networks and matrix completion for miRNA-disease associ-ation prediction. Front. Bioeng. Biotechnol., 2020, 8, 901-909.
[http://dx.doi.org/10.3389/fbioe.2020.00901] [PMID: 32974293]
[17]
Li, C.; Liu, H.; Hu, Q.; Que, J.; Yao, J. A novel computational model for predicting microRNA–disease associations based on heterogene-ous graph convolutional networks. Cells, 2019, 8(9), 977.
[http://dx.doi.org/10.3390/cells8090977] [PMID: 31455028]
[18]
Pearson, K. On the general theory of skew correlation and non-linear regression; Dulau and Company, 1905.
[19]
Zhao, Y.; Chen, X.; Yin, J.; Qu, J. SNMFSMMA: Using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association. RNA Biol., 2020, 17(2), 281-291.
[http://dx.doi.org/10.1080/15476286.2019.1694732] [PMID: 31739716]
[20]
Zhao, Y.; Chen, X.; Yin, J. A novel computational method for the identification of potential miRNA-disease association based on sym-metric non-negative matrix factorization and Kronecker regularized least square. Front. Genet., 2018, 9, 324.
[http://dx.doi.org/10.3389/fgene.2018.00324] [PMID: 30186308]
[21]
Chen, X.; Yin, J.; Qu, J.; Huang, L. MDHGI: Matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLOS Comput. Biol., 2018, 14(8), e1006418.
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[22]
Chen, X.; Sun, L.G.; Zhao, Y. NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief. Bioinform., 2021, 22(1), 485-496.
[http://dx.doi.org/10.1093/bib/bbz159] [PMID: 31927572]
[23]
Assmann, T.S.; Milagro, F.I.; Martinez, J.A. miRNAs-target genes, miRNA-lncRNA, and miRNA-small molecules interactions involved in metabolic diseases. Endo. Abstr., 2019, 63, 914.
[http://dx.doi.org/10.1530/endoabs.63.P914]
[24]
Wrinch, D.; Jeffreys, H. XLII. On certain fundamental principles of scientific inquiry. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1921, 42(249), 369-390.
[25]
Yan, C.; Wang, J.; Ni, P.; Lan, W.; Wu, F.X.; Pan, Y. DNRLMF-MDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE/ACM Trans. Comput. Biol. Bioinform., 2019, 16(1), 233-243.
[http://dx.doi.org/10.1109/TCBB.2017.2776101] [PMID: 29990253]
[26]
Li, L.; Gao, Z.; Wang, Y.T.; Zhang, M.W.; Ni, J.C.; Zheng, C.H.; Su, Y. SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization. PLOS Comput. Biol., 2021, 17(7), e1009165.
[http://dx.doi.org/10.1371/journal.pcbi.1009165] [PMID: 34252084]
[27]
Zhou, S.; Xuan, Z.; Wang, L.; Ping, P.; Pei, T. A novel model for predicting associations between diseases and LncRNA-miRNA pairs based on a newly constructed bipartite network. Comput. Math. Methods Med., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/6789089] [PMID: 29853986]
[28]
Zhao, X.; Yang, Y.; Yin, M. MHRWR: Prediction of lncRNA-disease associations based on multiple heterogeneous networks. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(6), 2577-2585.
[http://dx.doi.org/10.1109/TCBB.2020.2974732] [PMID: 32086216]
[29]
Gokilavani, N.; Bharathi, B. Novel fuzzy based density based clustering algorithm for effective cluster prioritization in WSN. Int. J. Adv. Soft Comput. App., 2021, 13(2), 123-138.
[30]
Li, X.; Lin, Y.; Gu, C.; Li, Z. SRMDAP: SimRank and density-based clustering recommender model for miRNA-disease association prediction. BioMed Res. Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/5747489] [PMID: 29750163]
[31]
Chen, I.P.; Bender, M.; Spassova, I.; Henning, S.; Kubat, L.; Fan, K.; Degenhardt, S.; Mhamdi-Ghodbani, M.; Sriram, A.; Volkmer, B.; Boukamp, P.; Becker, J.C.; Greinert, R. UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines. J. Cancer Res. Clin. Oncol., 2020, 146(12), 3215-3231.
[http://dx.doi.org/10.1007/s00432-020-03358-9] [PMID: 32865618]
[32]
Li, X.; Lin, Y.; Gu, C.; Yang, J. FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs. BMC Syst. Biol., 2019, 13(S2), 26.
[http://dx.doi.org/10.1186/s12918-019-0696-9] [PMID: 30953512]
[33]
Chu, Y.; Wang, X.; Dai, Q.; Wang, Y.; Wang, Q.; Peng, S.; Wei, X.; Qiu, J.; Salahub, D.R.; Xiong, Y.; Wei, D.Q. MDA-GCNFTG: Identify-ing miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief. Bioinform., 2021, 22(6), bbab165.
[http://dx.doi.org/10.1093/bib/bbab165] [PMID: 34009265]
[34]
Li, J.; Wang, S.; Chen, Z.; Wang, Y. A bipartite network module-based project to predict pathogen–host association. Front. Genet., 2020, 10, 1357.
[http://dx.doi.org/10.3389/fgene.2019.01357] [PMID: 32038713]
[35]
Wang, S.; Li, J.; Wang, Y. WMMDCA: Prediction of drug responses by weight-based modular mapping in cancer cell lines. IEEE/ACM Trans. Comput. Biol. Bioinform., 2021, 18(6), 2733-2740.
[http://dx.doi.org/10.1109/TCBB.2020.2976997] [PMID: 32142453]
[36]
Zhang, L.; Chen, J.; Ma, J.; Liu, H. A heterogeneous network based on convolutional neural network for m7 G site disease association prediction. Front. Genet., 2021, 12, 655284.
[http://dx.doi.org/10.3389/fgene.2021.655284] [PMID: 33747055]
[37]
Li, J.; Zhang, S.; Liu, T.; Ning, C.; Zhang, Z.; Zhou, W. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics, 2020, 36(8), 2538-2546.
[http://dx.doi.org/10.1093/bioinformatics/btz965] [PMID: 31904845]
[38]
Xiao, Q.; Luo, J.; Dai, J. Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework. IEEE J. Biomed. Health Inform., 2019, 23(6), 2661-2669.
[http://dx.doi.org/10.1109/JBHI.2019.2891779] [PMID: 30629521]
[39]
Shao, B.; Liu, B.; Yan, C. SACMDA: MiRNA-disease association prediction with short acyclic connections in heterogeneous graph. Neuroinformatics, 2018, 16(3-4), 373-382.
[http://dx.doi.org/10.1007/s12021-018-9373-1] [PMID: 29644547]
[40]
Chen, X.; Wang, L.Y.; Huang, L. NDAMDA: Network distance analysis for miRNA-disease association prediction. J. Cell. Mol. Med., 2018, 22(5), 2884-2895.
[http://dx.doi.org/10.1111/jcmm.13583] [PMID: 29532987]
[41]
Li, H.Y.; Chen, H.Y.; Wang, L.; Song, S.J.; You, Z.H.; Yan, X.; Yu, J.Q. A structural deep network embedding model for predicting associations between miRNA and disease based on molecular association network. Sci. Rep., 2021, 11(1), 12640.
[http://dx.doi.org/10.1038/s41598-021-91991-w] [PMID: 34135401]
[42]
Huang, Z.; Liu, L.; Gao, Y.; Shi, J.; Cui, Q.; Li, J.; Zhou, Y. Benchmark of computational methods for predicting microRNA-disease asso-ciations. Genome Biol., 2019, 20(1), 202.
[http://dx.doi.org/10.1186/s13059-019-1811-3] [PMID: 31594544]
[43]
Zeng, X.; Liu, L.; Lü, L.; Zou, Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics, 2018, 34(14), 2425-2432.
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[44]
Zhao, Q.; Xie, D.; Liu, H.; Wang, F.; Yan, G.Y.; Chen, X. SSCMDA: spy and super cluster strategy for miRNA-disease association predic-tion. Oncotarget, 2018, 9(2), 1826-1842.
[http://dx.doi.org/10.18632/oncotarget.22812] [PMID: 29416734]
[45]
Wu, Q.; Wang, Y.; Gao, Z.; Ni, J.; Zheng, C. MSCHLMDA: Multi-similarity based combinative hypergraph learning for predicting miRNA-disease association. Front. Gene., 2020, 11, 354.
[http://dx.doi.org/10.3389/fgene.2020.00354]
[46]
Xu, L.; Li, X.; Yang, Q.; Tan, L.; Liu, Q.; Liu, Y. Application of bidirectional generative adversarial networks to predict potential miRNAs associated with diseases. Front. Genet., 2022, 13, 936823.
[http://dx.doi.org/10.3389/fgene.2022.936823] [PMID: 35903359]
[47]
Chen, X.; Niu, Y.W.; Wang, G.H.; Yan, G.Y. MKRMDA: Multiple kernel learning-based Kronecker regularized least squares for miRNA–disease association prediction. J. Transl. Med., 2017, 15(1), 251.
[http://dx.doi.org/10.1186/s12967-017-1340-3] [PMID: 29233191]
[48]
Xie, G.; Fan, Z.; Sun, Y.; Wu, C.; Ma, L. WBNPMD: Weighted bipartite network projection for microRNA-disease association prediction. J. Transl. Med., 2019, 17(1), 322.
[http://dx.doi.org/10.1186/s12967-019-2063-4] [PMID: 31547811]
[49]
Huang, Y.A.; You, Z.H.; Li, L.P.; Huang, Z.A.; Xiang, L.X.; Li, X.F.; Lv, L.T. EPMDA: An expression-profile based computational model for microRNA-disease association prediction. Oncotarget, 2017, 8(50), 87033-87043.
[http://dx.doi.org/10.18632/oncotarget.18788] [PMID: 29152061]
[50]
Li, H.Y.; You, Z.H.; Wang, L.; Yan, X.; Li, Z.W. DF-MDA: An effective diffusion-based computational model for predicting miRNA-disease association. Mol. Ther., 2021, 29(4), 1501-1511.
[http://dx.doi.org/10.1016/j.ymthe.2021.01.003] [PMID: 33429082]
[51]
Dong, Y.; Sun, Y.; Qin, C.; Zhu, W. EPMDA: Edge perturbation based method for miRNA-disease association prediction. IEEE/ACM Trans. Comput. Biol. Bioinform., 2020, 17(6), 2170-2175.
[http://dx.doi.org/10.1109/TCBB.2019.2940182] [PMID: 31514148]
[52]
You, Z.H.; Huang, Z.A.; Zhu, Z.; Yan, G.Y.; Li, Z.W.; Wen, Z.; Chen, X. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLOS Comput. Biol., 2017, 13(3), e1005455.
[http://dx.doi.org/10.1371/journal.pcbi.1005455] [PMID: 28339468]
[53]
Ding, P.; Luo, J.; Xiao, Q.; Chen, X. A path-based measurement for human miRNA functional similarities using miRNA-disease associa-tions. Sci. Rep., 2016, 6(1), 32533.
[http://dx.doi.org/10.1038/srep32533] [PMID: 27585796]
[54]
Luo, J.; Huang, C.; Ding, P. A meta-path-based prediction method for human miRNA-target association. Biomed Res. Int., 2016, 2016, 7460740.
[http://dx.doi.org/10.1155/2016/7460740]
[55]
Chen, X.; Zhu, C.C.; Yin, J. Ensemble of decision tree reveals potential miRNA-disease associations. PLOS Comput. Biol., 2019, 15(7), e1007209.
[http://dx.doi.org/10.1371/journal.pcbi.1007209] [PMID: 31329575]
[56]
Zhang, X.; Zeng, X. Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. In: Bio-inspired Computing Models and Algorithms; Tao, S.; Dennis, W.; Pan, Z.; Mou, L.; Xun, W., Eds.; , 2019; pp. 75-105.
[http://dx.doi.org/10.1142/9789813143180_0003]
[57]
Fiannaca, A.; Rosa, M.L.; Paglia, L.L.; Rizzo, R.; Urso, A. miRNATIP: A SOM-based miRNA-target interactions predictor. BMC Bioinformatics, 2016, 17(S11), 321.
[http://dx.doi.org/10.1186/s12859-016-1171-x] [PMID: 28185545]
[58]
Liu, H.; Yue, D.; Chen, Y.; Gao, S.J.; Huang, Y. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics, 2010, 11(1), 476.
[http://dx.doi.org/10.1186/1471-2105-11-476] [PMID: 20860840]
[59]
Li, J.Q.; Rong, Z.H.; Chen, X.; Yan, G.Y.; You, Z.H. MCMDA: Matrix completion for miRNA-disease association prediction. Oncotarget, 2017, 8(13), 21187-21199.
[http://dx.doi.org/10.18632/oncotarget.15061] [PMID: 28177900]
[60]
Ha, J.; Park, C.; Park, C.; Park, S. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization. J. Biomed. Inform., 2020, 102, 103358.
[http://dx.doi.org/10.1016/j.jbi.2019.103358] [PMID: 31857202]
[61]
Chen, X.; Wang, L.; Qu, J.; Guan, N.N.; Li, J.Q. Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics, 2018, 34(24), 4256-4265.
[http://dx.doi.org/10.1093/bioinformatics/bty503] [PMID: 29939227]
[62]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H.; Huang, Y.A.; Yan, G.Y. HGIMDA: Heterogeneous graph inference for miRNA-disease associ-ation prediction. Oncotarget, 2016, 7(40), 65257-65269.
[http://dx.doi.org/10.18632/oncotarget.11251] [PMID: 27533456]
[63]
Li, C.; Zhao, Z.; Zhou, J.; Liu, Y.; Wang, H.; Zhao, X. Relationship between the TERT, TNIP1 and OBFC1 genetic polymorphisms and susceptibility to colorectal cancer in Chinese Han population. Oncotarget, 2017, 8(34), 56932-56941.
[http://dx.doi.org/10.18632/oncotarget.18378] [PMID: 28915643]
[64]
Ding, L.; Wang, M.; Sun, D.; Li, A. A novel method for identifying potential disease-related miRNAs via a disease–miRNA–target heterogeneous network. Mol. Biosyst., 2017, 13(11), 2328-2337.
[http://dx.doi.org/10.1039/C7MB00485K] [PMID: 28920619]
[65]
Sun, D.; Li, A.; Feng, H.; Wang, M. NTSMDA: Prediction of miRNA–disease associations by integrating network topological similarity. Mol. Biosyst., 2016, 12(7), 2224-2232.
[http://dx.doi.org/10.1039/C6MB00049E] [PMID: 27153230]
[66]
Gong, Y.; Niu, Y.; Zhang, W.; Li, X. A network embedding-based multiple information integration method for the miRNA-disease associ-ation prediction. BMC Bioinformatics, 2019, 20(1), 468.
[http://dx.doi.org/10.1186/s12859-019-3063-3] [PMID: 31510919]
[67]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H.; Deng, L.; Liu, Y.; Zhang, Y.; Dai, Q. WBSMDA: Within and between score for miRNA-disease association prediction. Sci. Rep., 2016, 6(1), 21106.
[http://dx.doi.org/10.1038/srep21106] [PMID: 26880032]
[68]
Ding, T.; Gao, J.; Zhu, S.; Xu, J.; Wu, M. Predicting microRNA-disease association based on microRNA structural and functional similari-ty network. Quant. Biol., 2019, 7(2), 138-146.
[http://dx.doi.org/10.1007/s40484-019-0170-0]
[69]
Smolensky, P. Restricted boltzmann machine; Stellenbosch Stellenbosch University, 2014.
[70]
Yu, D.L.; Yu, Z.G.; Han, G.S.; Li, J.; Anh, V. Heterogeneous types of miRNA-disease associations stratified by multi-layer network em-bedding and prediction. Biomedicines, 2021, 9(9), 1152.
[http://dx.doi.org/10.3390/biomedicines9091152] [PMID: 34572337]
[71]
Ha, J.; Park, C. MLMD: Metric learning for predicting miRNA-disease associations. IEEE Access, 2021, 9, 78847-78858.
[http://dx.doi.org/10.1109/ACCESS.2021.3084148]
[72]
Griffiths-Jones, S.; Saini, H.K.; van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res., 2008, 36(Suppl. 1), D154-D158.
[PMID: 17991681]
[73]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[74]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[75]
Hasham, K.; Ahmed, N.; Zeshan, B. Circulating microRNAs in oncogenic viral infections: Potential diagnostic biomarkers. SN Appl. Sci., 2020, 2(3), 442.
[http://dx.doi.org/10.1007/s42452-020-2251-0]
[76]
Sharma, A.K.; Sharma, V.; Sharma, A.; Pallikkuth, S.; Sharma, A.K. Current paradigms in COVID-19 research: Proposed treatment strate-gies, recent trends and future directions. Curr. Med. Chem., 2021, 28(16), 3173-3192.
[http://dx.doi.org/10.2174/0929867327666200711153829] [PMID: 32651959]
[77]
Jha, D.; Sharma, V.; Sharma, V.; Sharma, J.K.; Kumar, S.; Sharma, A.K. Gender-bias susceptibility of corona virus disease: Peeping into the factors responsible and emerging trends from indian perspective. Biochem. Cell. Arch., 2020, 20(2), 4451-4456.
[78]
Jafarinejad-Farsangi, S.; Jazi, M.M.; Rostamzadeh, F.; Hadizadeh, M. High affinity of host human microRNAs to SARS-CoV-2 genome: An in silico analysis. Noncoding RNA Res., 2020, 5(4), 222-231.
[http://dx.doi.org/10.1016/j.ncrna.2020.11.005] [PMID: 33251388]
[79]
Jha, D.; Sharma, V.; Sharma, J.K.; Kumar, S.; Sharma, V.; Kamboj, P.; Upadhyay, S.K.; Sharma, A.K. Plausible state-specific plans and recommendations to avert COVID-19 community transmission. Bullet. Pure Appl. Sci. Zoo., 2020, 39(2A), 447-454.
[http://dx.doi.org/10.5958/2320-3188.2020.00051.0]
[80]
Tohidinia, M.; Sefid, F. Identification B and T-Cell epitopes and functional exposed amino acids of S protein as a potential vaccine candi-date against SARS-CoV-2/COVID-19. Microb. Pathog., 2020, 148, 104459.
[http://dx.doi.org/10.1016/j.micpath.2020.104459] [PMID: 32835775]
[81]
Hasan, M.M.; Akter, R.; Ullah, M.S.; Abedin, M.J.; Ullah, G.M.A.; Hossain, M.Z. A computational approach for predicting role of human microRNAs in MERS-CoV genome. Adv. Bioinforma., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/967946] [PMID: 25610462]
[82]
Fayyad-Kazan, M.; Makki, R.; Skafi, N.; El Homsi, M.; Hamade, A.; El Majzoub, R.; Hamade, E.; Fayyad-Kazan, H.; Badran, B. Circulat-ing miRNAs: Potential diagnostic role for coronavirus disease 2019 (COVID-19). Infect. Genet. Evol., 2021, 94, 105020.
[http://dx.doi.org/10.1016/j.meegid.2021.105020] [PMID: 34343725]
[83]
Visacri, M.B.; Nicoletti, A.S.; Pincinato, E.C.; Loren, P.; Saavedra, N.; Saavedra, K.; Salazar, L.A.; Moriel, P. Role of miRNAs as bi-omarkers of COVID-19: A scoping review of the status and future directions for research in this field. Biomarkers Med., 2021, 15(18), 1785-1795.
[http://dx.doi.org/10.2217/bmm-2021-0348] [PMID: 34784802]
[84]
Agwa, S.H.A.; Elghazaly, H.; Meteini, M.S.E.; Shawky, S.M.; Ali, M.; Abd Elsamee, A.M.; Sayed, S.M.; Sherif, N.; Sharaf, H.M.; Alha-didy, M.A.; Matboli, M. In silico identification and clinical validation of a novel long non-coding RNA/mRNA/miRNA molecular network for potential biomarkers for discriminating SARS CoV-2 infection severity. Cells, 2021, 10(11), 3098.
[http://dx.doi.org/10.3390/cells10113098] [PMID: 34831321]
[85]
McDonald, J.T.; Enguita, F.J.; Taylor, D.; Griffin, R.J.; Priebe, W.; Emmett, M.R.; Sajadi, M.M.; Harris, A.D.; Clement, J.; Dybas, J.M.; Aykin-Burns, N.; Guarnieri, J.W.; Singh, L.N.; Grabham, P.; Baylin, S.B.; Yousey, A.; Pearson, A.N.; Corry, P.M.; Saravia-Butler, A.; Aunins, T.R.; Sharma, S.; Nagpal, P.; Meydan, C.; Foox, J.; Mozsary, C.; Cerqueira, B.; Zaksas, V.; Singh, U.; Wurtele, E.S.; Costes, S.V.; Davanzo, G.G.; Galeano, D.; Paccanaro, A.; Meinig, S.L.; Hagan, R.S.; Bowman, N.M.; Wolfgang, M.C.; Altinok, S.; Sapoval, N.; Treangen, T.J.; Moraes-Vieira, P.M.; Vanderburg, C.; Wallace, D.C.; Schisler, J.C.; Mason, C.E.; Chatterjee, A.; Meller, R.; Beheshti, A.; Wallet, S.M.; Maile, R.; Wolfgang, M.C.; Hagan, R.S.; Mock, J.R.; Bowman, N.M.; Torres-Castillo, J.L.; Love, M.K.; Meinig, S.L.; Lovell, W.; Rice, C.; Mitchem, O.; Burgess, D.; Suggs, J.; Jacobs, J. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep., 2021, 37(3), 109839.
[http://dx.doi.org/10.1016/j.celrep.2021.109839] [PMID: 34624208]
[86]
Fani, M.; Zandi, M.; Ebrahimi, S.; Soltani, S.; Abbasi, S. The role of miRNAs in COVID-19 disease. Future Virol., 2021, 16(4), 301-306.
[http://dx.doi.org/10.2217/fvl-2020-0389]
[87]
Paul, S.; Bravo Vázquez, L.A.; Reyes-Pérez, P.R.; Estrada-Meza, C.; Aponte Alburquerque, R.A.; Pathak, S.; Banerjee, A.; Bandyopadh-yay, A.; Chakraborty, S.; Srivastava, A. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res., 2022, 308, 198631.
[http://dx.doi.org/10.1016/j.virusres.2021.198631] [PMID: 34788642]
[88]
Chen, H.; Xie, K.; Wang, H.; Zhao, C. Scene image classification using locality-constrained linear coding based on histogram intersection. Multimedia Tools Appl., 2018, 77(3), 4081-4092.
[http://dx.doi.org/10.1007/s11042-017-4830-7]
[89]
Liu, Y.; Zeng, X.; He, Z.; Zou, Q. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(4), 905-915.
[http://dx.doi.org/10.1109/TCBB.2016.2550432] [PMID: 27076459]
[90]
Huang, Z.; Shi, J.; Gao, Y.; Cui, C.; Zhang, S.; Li, J.; Zhou, Y.; Cui, Q. HMDD v3.0: A database for experimentally supported human microRNA–disease associations. Nucleic Acids Res., 2019, 47(D1), D1013-D1017.
[http://dx.doi.org/10.1093/nar/gky1010] [PMID: 30364956]
[91]
Wang, C.; Sun, K.; Wang, J.; Guo, M. Data fusion-based algorithm for predicting miRNA–Disease associations. Comput. Biol. Chem., 2020, 88, 107357.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107357] [PMID: 32835915]
[92]
Marycz, K.; Kornicka, K.; Röcken, M. Static magnetic field (SMF) as a regulator of stem cell fate–new perspectives in regenerative medi-cine arising from an underestimated tool. Stem Cell Rev., 2018, 14(6), 785-792.
[http://dx.doi.org/10.1007/s12015-018-9847-4] [PMID: 30225821]
[93]
Li, Y.; Qiu, C.; Tu, J.; Geng, B.; Yang, J.; Jiang, T.; Cui, Q. HMDD v2.0: A database for experimentally supported human microRNA and disease associations. Nucleic Acids Res., 2014, 42(D1), D1070-D1074.
[http://dx.doi.org/10.1093/nar/gkt1023] [PMID: 24194601]
[94]
Yin, J.; Chen, X.; Wang, C.C.; Zhao, Y.; Sun, Y.Z. Prediction of small molecule–microRNA associations by sparse learning and heteroge-neous graph inference. Mol. Pharm., 2019, 16(7), 3157-3166.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00384] [PMID: 31136190]
[95]
Awerbuch, B.; Berger, B.; Cowen, L.; Peleg, D. Near-linear time construction of sparse neighborhood covers. SIAM J. Comput., 1998, 28(1), 263-277.
[http://dx.doi.org/10.1137/S0097539794271898]
[96]
Peng, W.; Du, J.; Dai, W.; Lan, W. Predicting miRNA-disease association based on modularity preserving heterogeneous network embed-ding. Front. Cell Dev. Biol., 2021, 9, 603758.
[http://dx.doi.org/10.3389/fcell.2021.603758] [PMID: 34178973]
[97]
Xuan, Z.; Feng, X.; Yu, J.; Ping, P.; Zhao, H.; Zhu, X.; Wang, L. A novel method for predicting disease-associated LncRNA-miRNA Pairs based on the higher-order orthogonal iteration. Comput. Math. Methods Med., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/7614850] [PMID: 31191710]
[98]
Cai, Y.; Huang, T.; Yang, J. Applications of bioinformatics and systems biology in precision medicine and immunooncology. BioMed Res. Int., 2018, 2018, 1-2.
[http://dx.doi.org/10.1155/2018/1427978] [PMID: 30364014]
[99]
Thomas, J.P.; Ölbei, M.; Brooks-Warburton, J.; Korcsmaros, T.; Modos, D. Analysing miRNA-Target gene networks in inflammatory bowel disease and other complex diseases using transcriptomic data. Genes, 2022, 13(2), 370.
[http://dx.doi.org/10.3390/genes13020370] [PMID: 35205414]
[100]
Chen, X.; Liu, M.X.; Yan, G.Y. RWRMDA: Predicting novel human microRNA–disease associations. Mol. Biosyst., 2012, 8(10), 2792-2798.
[http://dx.doi.org/10.1039/c2mb25180a] [PMID: 22875290]
[101]
Jiang, L.; Zhu, J. Review of miRNA-disease association prediction. Curr. Protein Pept. Sci., 2020, 21(11), 1044-1053.
[http://dx.doi.org/10.2174/1389203721666200210102751] [PMID: 32039677]
[102]
Liu, Y.; Luo, J.; Ding, P. Inferring microRNA targets based on restricted Boltzmann machines. IEEE J. Biomed. Health Inform., 2019, 23(1), 427-436.
[http://dx.doi.org/10.1109/JBHI.2018.2814609] [PMID: 29993787]
[103]
Ahmad, I.; Valverde, A.; Siddiqui, H.; Schaller, S.; Naqvi, A.R. Viral microRNAs: Interfering the interferon signaling. Curr. Pharm. Des., 2020, 26(4), 446-454.
[http://dx.doi.org/10.2174/1381612826666200109181238] [PMID: 31924149]
[104]
Yin, M.M.; Cui, Z.; Gao, M.M.; Liu, J.X.; Gao, Y.L. LWPCMF: Logistic weighted profile-based collaborative matrix factorization for pre-dicting miRNA-disease associations. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(3), 1122-1129.
[http://dx.doi.org/10.1109/TCBB.2019.2937774] [PMID: 31478868]
[105]
Yan, C.; Duan, G.; Li, N.; Zhang, L.; Wu, F.X.; Wang, J. PDMDA: Predicting deep-level miRNA–disease associations with graph neural networks and sequence features. Bioinformatics, 2022, 38(8), 2226-2234.
[http://dx.doi.org/10.1093/bioinformatics/btac077] [PMID: 35150255]
[106]
Gottwein, E.; Mukherjee, N.; Sachse, C.; Frenzel, C.; Majoros, W.H.; Chi, J.T.A.; Braich, R.; Manoharan, M.; Soutschek, J.; Ohler, U.; Cullen, B.R. A viral microRNA functions as an orthologue of cellular miR-155. Nature, 2007, 450(7172), 1096-1099.
[http://dx.doi.org/10.1038/nature05992] [PMID: 18075594]
[107]
Jiang, P.; Wu, H.; Wang, W.; Ma, W.; Sun, X.; Lu, Z. MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res., 2007, 35(Suppl. 2), W339-W344.
[http://dx.doi.org/10.1093/nar/gkm368] [PMID: 17553836]
[108]
Chirayil, R.; Kincaid, R.P.; Dahlke, C.; Kuny, C.V.; Dälken, N.; Spohn, M.; Lawson, B.; Grundhoff, A.; Sullivan, C.S. Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathog., 2018, 14(7), e1007156.
[http://dx.doi.org/10.1371/journal.ppat.1007156] [PMID: 30048533]
[109]
Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel mi-croRNA genes in seven animal clades. Nucleic Acids Res., 2012, 40(1), 37-52.
[http://dx.doi.org/10.1093/nar/gkr688] [PMID: 21911355]
[110]
Liao, F.; Chen, X.; Peng, P.; Dong, W. RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer. Aging, 2020, 12(20), 20512-20522.
[http://dx.doi.org/10.18632/aging.103907] [PMID: 33033230]
[111]
Hsu, P.W.C.; Lin, L.Z.; Hsu, S.D.; Hsu, J.B.K.; Huang, H.D. ViTa: Prediction of host microRNAs targets on viruses. Nucleic Acids Res., 2007, 35, D381-D385.
[http://dx.doi.org/10.1093/nar/gkl1009] [PMID: 17148483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy