Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Role of Mitophagy in Cigarette Smoke-induced Lung Epithelial Cell Injury In Vitro

Author(s): Suwen Wang, Xiaomin Song, Liangyu Wei, Qi Liu, Chenfei Li and Jiong Wang*

Volume 23, Issue 10, 2023

Published on: 28 November, 2022

Page: [1130 - 1140] Pages: 11

DOI: 10.2174/1566524023666221025100002

Price: $65

Abstract

Background: Mitochondria mediate airway inflammatory responses to cigarette smoke (CS). Removal of damaged or defective mitochondrial (mitophagy) may prevent the detrimental impact of CS extract (CSE) on airway and lung epithelial cells.

Methods: We studied the effect of a mitophagy activator (Urolithin A, UA) and a mitophagy inhibitor (Liensinine diperchlorate, Ld) on CSE-exposed alveolar (A549) and airway (BEAS-2B) epithelial cell proliferation, intracellular and mitochondrial ROS, inflammatory response, mitochondrial membrane potential (Δψm), mitochondrial morphology, mitochondrial complex activities, and protein levels of mitochondrial fission (DRP1, MFF) and mitophagy (SQSTM1/p62, LC3B). In both cell types, CSE exposure led to increased intracellular and mitochondrial oxidative stress, decreased Δψm and resulted in structural disruption of the mitochondrial network. CSE increased the expression of DRP1, MFF and SQSTM1/p62 while decreasing LC3B-II/I protein expression ratio. CSE also increased inflammatory (IL-1β, IL-6, IL-18, CXCL1, CXCL8) and necroptosis factors (RIPK1, RIPK3, MLKL) mRNA expression.

Results: Pre-treatment with UA attenuated CSE-induced oxidative stress, inflammatory and necroptosis gene expression and restored mitochondrial structure and function. UA also prevented CSE-evoked increases in DRP1, MFF and SQSTM1/p62 protein expression and increased LC3B-II/I ratio. Conversely, pre-treatment with Ld aggravated CSE-induced cellular and mitochondrial responses.

Conclusion: In conclusion, mitophagy mediates CSE-induced damage and inflammation of lung epithelial cells and may represent a therapeutic target in CS-driven diseases.

[1]
Fang L, Gao P, Bao H, et al. Chronic obstructive pulmonary disease in China: A nationwide prevalence study. Lancet Respir Med 2018; 6(6): 421-30.
[http://dx.doi.org/10.1016/S2213-2600(18)30103-6] [PMID: 29650407]
[2]
Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: The GOLD science committee report 2019. Eur Respir J 2019; 53(5): 1900164.
[http://dx.doi.org/10.1183/13993003.00164-2019] [PMID: 30846476]
[3]
Menezes AMB, Hallal PC. Role of passive smoking on COPD risk in non-smokers. Lancet 2007; 370(9589): 716-7.
[http://dx.doi.org/10.1016/S0140-6736(07)61353-1] [PMID: 17765504]
[4]
Fang T, Wang M, Xiao H, Wei X. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 2019; 35(6): 493-502.
[http://dx.doi.org/10.1007/s10565-019-09473-9] [PMID: 31119467]
[5]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial Reactive Oxygen Species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[6]
Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans 2016; 44(6): 1725-35.
[http://dx.doi.org/10.1042/BST20160129] [PMID: 27913683]
[7]
Hara H, Kuwano K, Araya J. Mitochondrial quality control in COPD and IPF. Cells 2018; 7(8): 86.
[http://dx.doi.org/10.3390/cells7080086] [PMID: 30042371]
[8]
Araya J, Tsubouchi K, Sato N, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019; 15(3): 510-26.
[http://dx.doi.org/10.1080/15548627.2018.1532259] [PMID: 30290714]
[9]
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: Interplay between mitophagy and apoptosis. Biol Chem 2020; 402(1): 73-88.
[http://dx.doi.org/10.1515/hsz-2020-0231] [PMID: 33544491]
[10]
Mizumura K, Justice MJ, Schweitzer KS, et al. Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure. FASEB J 2018; 32(4): 1880-90.
[http://dx.doi.org/10.1096/fj.201700571R] [PMID: 29196503]
[11]
A A MA, Ameenudeen S, Kumar A, Hemalatha S, Ahmed N, Ali N, AlAsmari AF, Aashique M, Waseem M. Emerging role of mi-tophagy in inflammatory diseases: Cellular and molecular episodes. Curr Pharm Des 2020; 26(4): 485-91.
[12]
Yuk JM, Silwal P, Jo EK. Inflammasome and mitophagy connection in health and disease. Int J Mol Sci 2020; 21(13): 4714.
[http://dx.doi.org/10.3390/ijms21134714] [PMID: 32630319]
[13]
Winters NI, Burman A, Kropski JA, Blackwell TS. Epithelial injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis. Am J Med Sci 2019; 357(5): 374-8.
[http://dx.doi.org/10.1016/j.amjms.2019.01.010] [PMID: 31010463]
[14]
Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: A crucial pathogenic mediator of human disease. JCI Insight 2019; 4(15): e128834.
[http://dx.doi.org/10.1172/jci.insight.128834] [PMID: 31391333]
[15]
Mizumura K, Cloonan SM, Nakahira K, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 2014; 124(9): 3987-4003.
[http://dx.doi.org/10.1172/JCI74985] [PMID: 25083992]
[16]
Wu X, Poulsen KL, Sanz-Garcia C, et al. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J Hepatol 2020; 73(3): 616-27.
[http://dx.doi.org/10.1016/j.jhep.2020.03.023] [PMID: 32220583]
[17]
Wang M, Zhang Y, Xu M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke induced airway epithelial cell injury model. Free Radic Biol Med 2019; 134: 229-38.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.004] [PMID: 30639616]
[18]
Aravamudan B, Kiel A, Freeman M, et al. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human air-way smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 306(9): L840-54.
[http://dx.doi.org/10.1152/ajplung.00155.2013] [PMID: 24610934]
[19]
Xu M, Zhang Y, Wang M, et al. TRPV1 and TRPA1 in lung inflammation and airway hyperresponsiveness induced by fine par-ticulate matter (PM2.5). Oxid Med Cell Longev 2019; 2019: 1-15.
[http://dx.doi.org/10.1155/2019/7450151] [PMID: 31281589]
[20]
Wiegman CH, Li F, Ryffel B, Togbe D, Chung KF. Oxidative stress in ozone-induced chronic lung inflammation and emphy-sema: A facet of chronic obstructive pulmonary disease. Front Immunol 2020; 11: 1957.
[http://dx.doi.org/10.3389/fimmu.2020.01957] [PMID: 32983127]
[21]
Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim Biophys Acta, Gen Subj 2018; 1862(1): 61-70.
[http://dx.doi.org/10.1016/j.bbagen.2017.10.006] [PMID: 29031765]
[22]
Wang Y, Qiu Z, Zhou B, et al. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol In Vitro 2015; 29(5): 1107-15.
[http://dx.doi.org/10.1016/j.tiv.2015.04.008] [PMID: 25910917]
[23]
Bialonska D, Kasimsetty SG, Khan SI, Ferreira D. Urolithins, intestinal microbial metabolites of Pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. J Agric Food Chem 2009; 57(21): 10181-6.
[http://dx.doi.org/10.1021/jf9025794] [PMID: 19824638]
[24]
Zhou J, Li G, Zheng Y, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 2015; 11(8): 1259-79.
[http://dx.doi.org/10.1080/15548627.2015.1056970] [PMID: 26114658]
[25]
Yang J, Yu K, Si X, et al. Liensinine inhibited gastric cancer cell growth through ROS generation and the PI3K/AKT pathway. J Cancer 2019; 10(25): 6431-8.
[http://dx.doi.org/10.7150/jca.32691] [PMID: 31772676]
[26]
Wu K, Luan G, Xu Y, et al. Cigarette smoke extract increases mitochondrial membrane permeability through activation of ade-nine nucleotide translocator (ANT) in lung epithelial cells. Biochem Biophys Res Commun 2020; 525(3): 733-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.160] [PMID: 32143825]
[27]
Haji G, Wiegman CH, Michaeloudes C, et al. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir Res 2020; 21(1): 262.
[http://dx.doi.org/10.1186/s12931-020-01527-5] [PMID: 33046036]
[28]
Sundar IK, Maremanda KP, Rahman I. Mitochondrial dysfunction is associated with Miro1 reduction in lung epithelial cells by cigarette smoke. Toxicol Lett 2019; 317: 92-101.
[http://dx.doi.org/10.1016/j.toxlet.2019.09.022] [PMID: 31593750]
[29]
Kyung SY, Kim YJ, Son ES, Jeong SH, Park JW. The phosphodiesterase 4 inhibitor roflumilast protects against cigarette smoke extract-induced mitophagy-dependent cell death in epithelial cells. Tuberc Respir Dis 2018; 81(2): 138-47.
[http://dx.doi.org/10.4046/trd.2017.0115] [PMID: 29589382]
[30]
Mercado N, Colley T, Baker JR, et al. Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary dis-ease. FASEB Bioadv 2019; 1(11): 688-705.
[http://dx.doi.org/10.1096/fba.2018-00055] [PMID: 32123815]
[31]
Jaber N, Dou Z, Chen JS, et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci 2012; 109(6): 2003-8.
[http://dx.doi.org/10.1073/pnas.1112848109] [PMID: 22308354]
[32]
Yamada T, Murata D, Adachi Y, et al. Mitochondrial stasis reveals p62-mediated ubiquitination in parkin-independent mitopha-gy and mitigates nonalcoholic fatty liver disease. Cell Metab 2018; 28(4): 588-604.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.06.014] [PMID: 30017357]
[33]
Wu Y, Jin Y, Sun T, et al. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a criti-cal role in silica nanoparticle-induced airway inflammation via NF-κB activation. J Nanobiotechnology 2020; 18(1): 77.
[http://dx.doi.org/10.1186/s12951-020-00634-1] [PMID: 32429946]
[34]
Kesireddy VS, Chillappagari S, Ahuja S, et al. Susceptibility of microtubule‐associated protein 1 light chain 3β (MAP1LC3B/LC3B) knockout mice to lung injury and fibrosis. FASEB J 2019; 33(11): 12392-408.
[http://dx.doi.org/10.1096/fj.201900854R] [PMID: 31431059]
[35]
Yang X, Jing T, Li Y, et al. Hydroxytyrosol attenuates LPS-induced acute lung injury in mice by regulating autophagy and sirtuin expression. Curr Mol Med 2017; 17(2): 149-59.
[PMID: 28429673]
[36]
Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117(13): 2805-12.
[http://dx.doi.org/10.1242/jcs.01131] [PMID: 15169837]
[37]
Basit F, van Oppen LMPE, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 2017; 8(3): e2716.
[http://dx.doi.org/10.1038/cddis.2017.133] [PMID: 28358377]
[38]
Lee SB, Kim JJ, Han SA, et al. The AMPK–Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol 2019; 21(8): 940-51.
[http://dx.doi.org/10.1038/s41556-019-0356-8] [PMID: 31358971]
[39]
Dionísio PEA, Oliveira SR, Amaral JSJD, Rodrigues CMP. Loss of microglial parkin inhibits necroptosis and contributes to neuroinflammation. Mol Neurobiol 2019; 56(4): 2990-3004.
[http://dx.doi.org/10.1007/s12035-018-1264-9] [PMID: 30074231]
[40]
Pouwels SD, Zijlstra GJ, van der Toorn M, et al. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2016; 310(4): L377-86.
[http://dx.doi.org/10.1152/ajplung.00174.2015] [PMID: 26719146]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy