Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Protective Effect of Chrysin Against Chlorpyrifos-induced Hepatotoxicity in Rats: Biochemical and Histopathological Approaches in a Sub-chronic Study

Author(s): Babak Roshanravan, Tahereh Farkhondeh, Majid Darroudi and Saeed Samarghandian*

Volume 24, Issue 10, 2023

Published on: 29 November, 2022

Page: [1291 - 1296] Pages: 6

DOI: 10.2174/1389201024666221025094643

Price: $65

Abstract

Background: Chrysin (CH) is one of the important natural flavonoids with antioxidant and anti-inflammatory activity. The aim of this study was to assess the protective effects of CH on biochemical indexes and histopathological changes in the liver of male Wistar rats exposed to chlorpyrifos (CPF).

Methods: We induced sub-chronic toxicity in rats using CPF (10 mg/kg/day, orally) and administrated CH at 12.5, 25, and 50 mg/kg/day for 45 days.

Results: In this study, CPF increased liver enzyme activities compared with the control group (p < 0.05), and co-treated CH with CPF reduced them compared with the non-treated CPF group (p < 0.05). A significant reduction in the liver GSH concentration along with a significant elevation in the concentrations of MDA and NO in the CPF group was observed compared with the control group (p < 0.001). However, CH at a dose of 50 mg could reverse them nearly to the control group (p < 0.001). In the CPF, CPF + CH1, and CPF + CH2 groups, a marked (p < 0.05) increase was found in the serum concentration of IL-6 compared with the control animals. No significant changes were found in the IL-6 concentration of the CPF + CH3 compared with the controls. Moreover, the coadministration of CH plus CPF induced histopathological alterations in liver.

Conclusion: These results suggest that CH attenuates hepatic enzymes and histopathological alterations induced by CPF via modulating oxidative stress and inflammatory indices in rats.

Graphical Abstract

[1]
Huang, X.; Cui, H.; Duan, W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol. Environ. Saf., 2020, 200, 110731.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110731] [PMID: 32450436]
[2]
Maggio, S.A.; Janney, P.K.; Jenkins, J.J. Neurotoxicity of chlorpyrifos and chlorpyrifos-oxon to Daphnia magna. Chemosphere, 2021, 276, 130120.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130120] [PMID: 33706179]
[3]
Zhang, X.; Cui, W.; Wang, K.; Chen, R.; Chen, M.; Lan, K.; Wei, Y.; Pan, C.; Lan, X. Chlorpyrifos inhibits sperm maturation and induces a decrease in mouse male fertility. Environ. Res., 2020, 188, 109785.
[http://dx.doi.org/10.1016/j.envres.2020.109785] [PMID: 32798940]
[4]
Farkhondeh, T.; Mehrpour, O.; Sadeghi, M.; Aschner, M.; Aramjoo, H.; Roshanravan, B.; Samarghandian, S. A systematic review on the metabolic effects of chlorpyrifos. Rev. Environ. Health, 2022, 37(1), 137-151.
[http://dx.doi.org/10.1515/reveh-2020-0150] [PMID: 33962508]
[5]
Mestre, A.P.; Amavet, P.S.; van der Sloot, I.S.; Carletti, J.V.; Poletta, G.L.; Siroski, P.A. Effects of glyphosate, cypermethrin, and chlorpyrifos on hematological parameters of the tegu lizard (Salvator merianae) in different embryo stages. Chemosphere, 2020, 252, 126433.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126433] [PMID: 32182507]
[6]
Albasher, G.; Almeer, R.; Al-Otibi, F.O.; Al-Kubaisi, N.; Mahmoud, A.M. Ameliorative effect of Beta vulgaris root extract on chlorpyri-fos-induced oxidative stress, inflammation and liver injury in rats. Biomolecules, 2019, 9(7), 261.
[http://dx.doi.org/10.3390/biom9070261] [PMID: 31284640]
[7]
Hajzadeh, M.A.; Rajaei, Z.; Shafiee, S.; Alavinejhad, A.; Samarghandian, S.; Ahmadi, M. Effect of barberry fruit (Berberis vulgaris) o serum glu-cose ad lipids i streptozotoci-diabetic rats. Pharmacol. Online, 2011, 1, 809-817.
[http://dx.doi.org/10.1016/J.CLINBIOCHEM.2011.08.825]
[8]
Boroumand, N.; Samarghandian, S.; Hashemy, S.I. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J. Herbmed Pharmacol., 2018, 7(4), 211-219.
[http://dx.doi.org/10.15171/jhp.2018.33]
[9]
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[10]
Samarghandian, S.; Foadoddin, M.; Zardast, M.; Mehrpour, O.; Sadighara, P.; Roshanravan, B.; Farkhondeh, T. The impact of age-related sub-chronic exposure to chlorpyrifos on metabolic indexes in male rats. Environ. Sci. Pollut. Res. Int., 2020, 27(18), 22390-22399.
[http://dx.doi.org/10.1007/s11356-020-08814-0] [PMID: 32314281]
[11]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F. Preventive effect of safranal against oxidative damage in aged male rat brain. Exp. Animals, 2015, 64(1), 65-71.
[http://dx.doi.org/10.1538/expanim.14-0027]
[12]
Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.R.; Albu-querque, E.X. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: From clinical findings to preclinical mod-els and potential mechanisms. J. Neurochem., 2017, 142(Suppl. 2), 162-177.
[http://dx.doi.org/10.1111/jnc.14077] [PMID: 28791702]
[13]
Kaur, S.; Singla, N.; Dhawan, D.K. Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug Chem. Toxicol., 2019, 42(2), 220-230.
[http://dx.doi.org/10.1080/01480545.2019.1569022] [PMID: 30747009]
[14]
Wang, H.P.; Liang, Y.J.; Sun, Y.J.; Hou, W.Y.; Chen, J.X.; Long, D.X.; Xu, M.Y.; Wu, Y.J. Subchronic neurotoxicity of chlorpyrifos, carbaryl, and their combination in rats. Environ. Toxicol., 2014, 29(10), 1193-1200.
[http://dx.doi.org/10.1002/tox.21851] [PMID: 23418109]
[15]
Taha, M.A.I.; Badawy, M.E.I.; Abdel-Razik, R.K.; Younis, H.M.; Abo-El-Saad, M.M. Mitochondrial dysfunction and oxidative stress in liver of male albino rats after exposing to sub-chronic intoxication of chlorpyrifos, cypermethrin, and imidacloprid. Pestic. Biochem. Physiol., 2021, 178, 104938.
[http://dx.doi.org/10.1016/j.pestbp.2021.104938] [PMID: 34446205]
[16]
Samini, M. Chrysin’s impact on oxidative and inflammation damages in the liver of aged male rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(4), 743-748.
[http://dx.doi.org/10.2174/1871530320666200717162304]
[17]
Soliman, M.M.; Aldhahrani, A.; Gaber, A.; Alsanie, W.F.; Mohamed, W.A.; Metwally, M.M.M.; Elbadawy, M.; Shukry, M. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, in-flammatory cytokines, and apoptosis biomarkers. Toxicol. Res., 2022, 11(1), 235-244.
[http://dx.doi.org/10.1093/toxres/tfac003] [PMID: 35237428]
[18]
Baykalir, B.G. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int. J. Vitam. Nutr. Res., 2020.
[PMID: 32349632]
[19]
Laskin, J.D.; Heck, D.E.; Gardner, C.R.; Laskin, D.L. Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxid. Redox Signal., 2001, 3(2), 261-271.
[http://dx.doi.org/10.1089/152308601300185214] [PMID: 11396480]
[20]
Küçükler, S.; Çomaklı, S.; Özdemir, S.; Çağlayan, C.; Kandemir, F.M. Hesperidin protects against the chlorpyrifos‐induced chronic hepa-to‐renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up‐regulation of PARP‐1/VEGF. Environ. Toxicol., 2021, 36(8), 1600-1617.
[http://dx.doi.org/10.1002/tox.23156] [PMID: 33908150]
[21]
Feng, X.; Qin, H.; Shi, Q.; Zhang, Y.; Zhou, F.; Wu, H.; Ding, S.; Niu, Z.; Lu, Y.; Shen, P. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem. Pharmacol., 2014, 89(4), 503-514.
[http://dx.doi.org/10.1016/j.bcp.2014.03.016] [PMID: 24704474]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy