Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Extracellular Matrix Remodeling Biomarkers in Coronary Artery Disease

Author(s): Panagiotis Theofilis*, Marios Sagris, Evangelos Oikonomou, Alexios S Antonopoulos, George Lazaros, Anastasios Theofilis, Charalambos Papastamos, Spyridon Papaioannou, Gerasimos Siasos, Kostas Tsioufis and Dimitris Tousoulis

Volume 22, Issue 28, 2022

Published on: 31 October, 2022

Page: [2355 - 2367] Pages: 13

DOI: 10.2174/1568026623666221024091758

Price: $65

Abstract

Atherosclerosis and one of its most serious consequences, coronary artery disease, are important sources of morbidity and mortality globally, necessitating early detection and treatment. Considering their complex pathophysiology, including several harmful processes, a comprehensive approach to diagnosis, prognosis, and therapy is very desirable. Extracellular matrix remodeling is a major component of this dangerous cascade, including the cleavage of constituents (collagen, elastin, proteoglycans) and the propagation or exacerbation of the inflammatory response. Several extracellular matrix degradation indicators have been hypothesized to correlate with the existence, severity, and prognosis of coronary artery disease. The potency of matrix metalloproteinases, notably collagenases and gelatinases, has been the most thoroughly investigated in clinical studies. Stromelysins, matrilysins, transmembrane matrix metalloproteinases, collagen and laminin turnover indicators, as well as fibronectin, have also been studied to a lesser level. Among the most well-studied markers, MMP-1, MMP-2, MMP-8, and MMP-9 have been found increased in patients with cardiovascular risk factors such as metabolic syndrome, its components (obesity, dyslipidemia, diabetes mellitus), and smoking. Increasing concentrations are detected in acute coronary syndromes compared to stable angina pectoris and healthy control groups. It should also be stressed that those extracellular matrix biomarkers may also be detected in high concentrations in other vascular pathologies such as peripheral artery disease, carotid artery disease, aortic aneurysms, and dissections. Despite the advances gained, future research should focus on their importance and, more crucially, their added utility as biomarkers in identifying persons at risk of developing overt coronary artery disease. At the same time, determining the prognosis of coronary artery disease patients using such biomarkers may be important for their adequate care.

Graphical Abstract

[1]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S. B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990-2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Dai, H.; Much, A.A.; Maor, E.; Asher, E.; Younis, A.; Xu, Y.; Lu, Y.; Liu, X.; Shu, J.; Bragazzi, N.L. Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990-2017: Results from the Global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes, 2022, 8(1), 50-60.
[http://dx.doi.org/10.1093/ehjqcco/qcaa076] [PMID: 33017008]
[3]
Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; Agewall, S.; Dickstein, K.; Edvardsen, T.; Escaned, J.; Gersh, B.J.; Svitil, P.; Gilard, M.; Hasdai, D.; Hatala, R.; Mahfoud, F.; Masip, J.; Muneretto, C.; Valgimigli, M.; Achenbach, S.; Bax, J.J.; Neumann, F-J.; Sechtem, U.; Banning, A.P.; Bonaros, N.; Bueno, H.; Bugiardini, R.; Chieffo, A.; Crea, F.; Czerny, M.; Delgado, V.; Dendale, P.; Flachskampf, F.A.; Gohlke, H.; Grove, E.L.; James, S.; Katritsis, D.; Landmesser, U.; Lettino, M.; Matter, C.M.; Nathoe, H.; Niessner, A.; Patrono, C.; Petronio, A.S.; Pettersen, S.E.; Piccolo, R.; Piepoli, M.F.; Popescu, B.A.; Räber, L.; Richter, D.J.; Roffi, M.; Roithinger, F.X.; Shlyakhto, E.; Sibbing, D.; Silber, S.; Simpson, I.A.; Sousa-Uva, M.; Vardas, P.; Witkowski, A.; Zamorano, J.L.; Achenbach, S.; Agewall, S.; Barbato, E.; Bax, J.J.; Capodanno, D.; Cuisset, T.; Deaton, C.; Dickstein, K.; Edvardsen, T.; Escaned, J.; Funck-Brentano, C.; Gersh, B.J.; Gilard, M.; Hasdai, D.; Hatala, R.; Mahfoud, F.; Masip, J.; Muneretto, C.; Prescott, E.; Saraste, A.; Storey, R.F.; Svitil, P.; Valgimigli, M.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Benkhedda, S.; Metzler, B.; Sujayeva, V.; Cosyns, B.; Kusljugic, Z.; Velchev, V.; Panayi, G.; Kala, P.; Haahr-Pedersen, S.A.; Kabil, H.; Ainla, T.; Kaukonen, T.; Cayla, G.; Pagava, Z.; Woehrle, J.; Kanakakis, J.; Tóth, K.; Gudnason, T.; Peace, A.; Aronson, D.; Riccio, C.; Elezi, S.; Mirrakhimov, E.; Hansone, S.; Sarkis, A.; Babarskiene, R.; Beissel, J.; Maempel, A.J.C.; Revenco, V.; de Grooth, G.J.; Pejkov, H.; Juliebø, V.; Lipiec, P.; Santos, J.; Chioncel, O.; Duplyakov, D.; Bertelli, L.; Dikic, A.D. Studenčan, M.; Bunc, M.; Alfonso, F.; Bäck, M.; Zellweger, M.; Addad, F.; Yildirir, A.; Sirenko, Y.; Clapp, B. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J., 2020, 41(3), 407-477.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[4]
Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N. Vascular extracellular matrix in atherosclerosis. Cardiol. Rev., 2013, 21(6), 270-288.
[http://dx.doi.org/10.1097/CRD.0b013e31828c5ced] [PMID: 23422022]
[5]
Steinberg, D.; Witztum, J.L. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2311-2316.
[http://dx.doi.org/10.1161/ATVBAHA.108.179697] [PMID: 21084697]
[6]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[7]
Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines, 2021, 9(7), 781.
[http://dx.doi.org/10.3390/biomedicines9070781] [PMID: 34356845]
[8]
Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, C.; Oikonomou, E.; Antoniades, C.; Crea, F.; Kaski, J.C.; Tousoulis, D. Inflammatory mechanisms in COVID-19 and atherosclerosis: Current pharmaceutical perspectives. Int. J. Mol. Sci., 2021, 22(12), 6607.
[http://dx.doi.org/10.3390/ijms22126607] [PMID: 34205487]
[9]
Nowak, W.N.; Deng, J.; Ruan, X.Z.; Xu, Q. Reactive oxygen species generation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(5), e41-e52.
[http://dx.doi.org/10.1161/ATVBAHA.117.309228] [PMID: 28446473]
[10]
Oikonomou, E.; Leopoulou, M.; Theofilis, P.; Antonopoulos, A.S.; Siasos, G.; Latsios, G.; Mystakidi, V.C.; Antoniades, C.; Tousoulis, D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis, 2020, 309, 16-26.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.07.027] [PMID: 32858395]
[11]
Miano, J.M.; Fisher, E.A.; Majesky, M.W. Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation, 2021, 143(21), 2110-2116.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.049922] [PMID: 34029141]
[12]
Gomez, D.; Owens, G.K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res., 2012, 95(2), 156-164.
[http://dx.doi.org/10.1093/cvr/cvs115] [PMID: 22406749]
[13]
Shankman, L.S.; Gomez, D.; Cherepanova, O.A.; Salmon, M.; Alencar, G.F.; Haskins, R.M.; Swiatlowska, P.; Newman, A.A.C.; Greene, E.S.; Straub, A.C.; Isakson, B.; Randolph, G.J.; Owens, G.K. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med., 2015, 21(6), 628-637.
[http://dx.doi.org/10.1038/nm.3866] [PMID: 25985364]
[14]
Kolodgie, F.D.; Burke, A.P.; Farb, A.; Gold, H.K.; Yuan, J.; Narula, J.; Finn, A.V.; Virmani, R. The thin-cap fibroatheroma: A type of vulnerable plaque: The major precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol., 2001, 16(5), 285-292.
[http://dx.doi.org/10.1097/00001573-200109000-00006] [PMID: 11584167]
[15]
Ruddy, J.M.; Ikonomidis, J.S.; Jones, J.A. Multidimensional contribution of matrix metalloproteinases to atherosclerotic plaque vulnerability: Multiple mechanisms of inhibition to promote stability. J. Vasc. Res., 2016, 53(1-2), 1-16.
[http://dx.doi.org/10.1159/000446703] [PMID: 27327039]
[16]
Bäck, M.; Ketelhuth, D.F.J.; Agewall, S. Matrix metalloproteinases in atherothrombosis. Prog. Cardiovasc. Dis., 2010, 52(5), 410-428.
[http://dx.doi.org/10.1016/j.pcad.2009.12.002] [PMID: 20226959]
[17]
Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm., 2013, 2013, 928315.
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[18]
Brauer, P.R. MMPs-role in cardiovascular development and disease. Front. Biosci., 2006, 11(1), 447-478.
[http://dx.doi.org/10.2741/1810] [PMID: 16146744]
[19]
Ikeda, U.; Shimada, K. Matrix metalloproteinases and coronary artery diseases. Clin. Cardiol., 2003, 26(2), 55-59.
[http://dx.doi.org/10.1002/clc.4960260203] [PMID: 12625594]
[20]
Choudhary, S.; Higgins, C.L.; Chen, I.Y.; Reardon, M.; Lawrie, G.; Vick, G.W., III; Karmonik, C.; Via, D.P.; Morrisett, J.D. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler. Thromb. Vasc. Biol., 2006, 26(10), 2351-2358.
[http://dx.doi.org/10.1161/01.ATV.0000239461.87113.0b] [PMID: 16888239]
[21]
Libby, P. Collagenases and cracks in the plaque. J. Clin. Invest., 2013, 123(8), 3201-3203.
[http://dx.doi.org/10.1172/JCI67526] [PMID: 23908120]
[22]
Galis, Z.S.; Muszynski, M.; Sukhova, G.K.; Simon-Morrissey, E.; Libby, P. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann. N. Y. Acad. Sci., 1994, 748(1), 501-507.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb17348.x] [PMID: 7695193]
[23]
Wen, G.; Zhang, C.; Chen, Q.; Luong, L.A.; Mustafa, A.; Ye, S.; Xiao, Q. A novel role of matrix metalloproteinase-8 in macrophage differentiation and polarization. J. Biol. Chem., 2015, 290(31), 19158-19172.
[http://dx.doi.org/10.1074/jbc.M114.634022] [PMID: 26092731]
[24]
Lin, J.; Kakkar, V.; Lu, X. Impact of matrix metalloproteinases on atherosclerosis. Curr. Drug Targets, 2014, 15(4), 442-453.
[http://dx.doi.org/10.2174/1389450115666140211115805] [PMID: 24517161]
[25]
Spiegel, S.; Foster, D.; Kolesnick, R. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol., 1996, 8(2), 159-167.
[http://dx.doi.org/10.1016/S0955-0674(96)80061-5] [PMID: 8791422]
[26]
Morillas, P.; Quiles, J.; de Andrade, H.; Castillo, J.; Tarazón, E.; Roselló, E.; Portolés, M.; Rivera, M.; Bertomeu-Martínez, V. Circulating biomarkers of collagen metabolism in arterial hypertension. J. Hypertens., 2013, 31(8), 1611-1617.
[http://dx.doi.org/10.1097/HJH.0b013e3283614c1c] [PMID: 23615327]
[27]
Kostov, K.; Blazhev, A. Changes in serum levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1 in patients with essential hypertension. Bioengineering, 2022, 9(3), 119.
[http://dx.doi.org/10.3390/bioengineering9030119] [PMID: 35324807]
[28]
Boumiza, S.; Chahed, K.; Tabka, Z.; Jacob, M.P.; Norel, X.; Ozen, G. MMPs and TIMPs levels are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. Sci. Rep., 2021, 11(1), 20052.
[http://dx.doi.org/10.1038/s41598-021-99577-2] [PMID: 34625635]
[29]
Tanindi, A.; Sahinarslan, A.; Elbeg, S.; Cemri, M. Relationship between MMP-1, MMP-9, TIMP-1, IL-6 and risk factors, clinical presentation, extent and severity of atherosclerotic coronary artery disease. Open Cardiovasc. Med. J., 2011, 5(1), 110-116.
[http://dx.doi.org/10.2174/1874192401105010110] [PMID: 21772929]
[30]
Polonskaya, Y.V.; Kashtanova, E.V.; Murashov, I.S.; Striukova, E.V.; Kurguzov, A.V.; Stakhneva, E.M.; Shramko, V.S.; Maslatsov, N.A.; Chernyavsky, A.M.; Ragino, Y.I. Association of matrix metalloproteinases with coronary artery calcification in patients with CHD. J. Pers. Med., 2021, 11(6), 506.
[http://dx.doi.org/10.3390/jpm11060506] [PMID: 34205079]
[31]
Lehrke, M.; Greif, M.; Broedl, U.C.; Lebherz, C.; Laubender, R.P.; Becker, A.; von Ziegler, F.; Tittus, J.; Reiser, M.; Becker, C.; Göke, B.; Steinbeck, G.; Leber, A.W.; Parhofer, K.G. MMP-1 serum levels predict coronary atherosclerosis in humans. Cardiovasc. Diabetol., 2009, 8(1), 50.
[http://dx.doi.org/10.1186/1475-2840-8-50] [PMID: 19751510]
[32]
Rabkin, S.W. The role matrix metalloproteinases in the production of aortic aneurysm. Prog. Mol. Biol. Transl. Sci., 2017, 147, 239-265.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.002] [PMID: 28413030]
[33]
Bayoglu, B.; Arslan, C.; Tel, C.; Ulutin, T.; Dirican, A.; Deser, S.B.; Cengiz, M. Genetic variants rs1994016 and rs3825807 in ADAMTS7 affect its mRNA expression in atherosclerotic occlusive peripheral arterial disease. J. Clin. Lab. Anal., 2018, 32(1), e22174.
[http://dx.doi.org/10.1002/jcla.22174] [PMID: 28205274]
[34]
Gonçalves, F.M.; Jacob-Ferreira, A.L.B.; Gomes, V.A.; Casella-Filho, A.; Chagas, A.C.P.; Marcaccini, A.M.; Gerlach, R.F.; Tanus-Santos, J.E. Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin. Chim. Acta, 2009, 403(1-2), 173-177.
[http://dx.doi.org/10.1016/j.cca.2009.02.013] [PMID: 19254704]
[35]
Kato, R.; Momiyama, Y.; Ohmori, R.; Taniguchi, H.; Nakamura, H.; Ohsuzu, F. Plasma matrix metalloproteinase-8 concentrations are associated with the presence and severity of coronary artery disease. Circ. J., 2005, 69(9), 1035-1040.
[http://dx.doi.org/10.1253/circj.69.1035] [PMID: 16127182]
[36]
Allal-Elasmi, M.; Zayani, Y.; Zidi, W.; Zaroui, A.; Feki, M.; Mourali, S.; Mechmeche, R.; Kaabachi, N. The measurement of circulating matrix metalloproteinase-8 and its tissue inhibitor and their association with inflammatory mediators in patients with acute coronary syndrome. Clin. Lab., 2014, 60(06/2014), 951-956.
[http://dx.doi.org/10.7754/Clin.Lab.2013.130346] [PMID: 25016699]
[37]
Momiyama, Y.; Ohmori, R.; Tanaka, N.; Kato, R.; Taniguchi, H.; Adachi, T.; Nakamura, H.; Ohsuzu, F. High plasma levels of matrix metalloproteinase-8 in patients with unstable angina. Atherosclerosis, 2010, 209(1), 206-210.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.07.037] [PMID: 19674746]
[38]
Tuomainen, A.M.; Kormi, I.; Havulinna, A.S.; Tervahartiala, T.; Salomaa, V.; Sorsa, T.; Pussinen, P.J. Serum tissue-degrading proteinases and incident cardiovascular disease events. Eur. J. Prev. Cardiol., 2014, 21(7), 806-812.
[http://dx.doi.org/10.1177/2047487312465524] [PMID: 23079500]
[39]
Fertin, M.; Lemesle, G.; Turkieh, A.; Beseme, O.; Chwastyniak, M.; Amouyel, P.; Bauters, C.; Pinet, F. Serum MMP-8: A novel indicator of left ventricular remodeling and cardiac outcome in patients after acute myocardial infarction. PLoS One, 2013, 8(8), e71280.
[http://dx.doi.org/10.1371/journal.pone.0071280] [PMID: 23967183]
[40]
Guizani, I.; Zidi, W.; Zayani, Y.; Boudiche, S.; Hadj-Taieb, S.; Sanhaji, H.; Zaroui, A.; Mechmeche, R.; Mourali, M.S.; Feki, M.; Allal-Elasmi, M. Matrix metalloproteinase-3 predicts clinical cardiovascular outcomes in patients with coronary artery disease: A 5 years cohort study. Mol. Biol. Rep., 2019, 46(5), 4699-4707.
[http://dx.doi.org/10.1007/s11033-019-04914-4] [PMID: 31218540]
[41]
Lau, E.S.; Paniagua, S.M.; Guseh, J.S.; Bhambhani, V.; Zanni, M.V.; Courchesne, P.; Lyass, A.; Larson, M.G.; Levy, D.; Ho, J.E. Sex differences in circulating biomarkers of cardiovascular disease. J. Am. Coll. Cardiol., 2019, 74(12), 1543-1553.
[http://dx.doi.org/10.1016/j.jacc.2019.06.077] [PMID: 31537263]
[42]
Salminen, A.; Vlachopoulou, E.; Havulinna, A.S.; Tervahartiala, T.; Sattler, W.; Lokki, M.L.; Nieminen, M.S.; Perola, M.; Salomaa, V.; Sinisalo, J.; Meri, S.; Sorsa, T.; Pussinen, P.J. Genetic variants contributing to circulating matrix metalloproteinase 8 levels and their association with cardiovascular diseases. Circ. Cardiovasc. Genet., 2017, 10(6), e001731.
[http://dx.doi.org/10.1161/CIRCGENETICS.117.001731] [PMID: 29212897]
[43]
Suzuki, H.; Kusuyama, T.; Sato, R.; Yokota, Y.; Tsunoda, F.; Sato, T.; Shoji, M.; Iso, Y.; Koba, S.; Katagiri, T. Elevation of matrix metalloproteinases and interleukin-6 in the culprit coronary artery of myocardial infarction. Eur. J. Clin. Invest., 2008, 38(3), 166-173.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01919.x] [PMID: 18257779]
[44]
Minukhina, D.; Zaikina, T.; Koteliukh, M.; Titova, G.; Zolotaikina, V. Impact of percutaneous coronary intervention on markers of matrix degradation and endothelial-dependent mediators in patients with acute myocardial infarction and diabetes mellitus type 2. Georgian Med. News, 2020, (299), 70-74.
[PMID: 32242848]
[45]
Vašků A.; Meluzín, J.; Blahák, J.; Kincl, V.; Pávková Goldbergová, M.; Sitar, J.; Zlámal, F.; Bienertová-Vašků J.; Vítovec, J. Matrix metalloproteinase 13 genotype in rs640198 polymorphism is associated with severe coronary artery disease. Dis. Markers, 2012, 33(1), 43-49.
[http://dx.doi.org/10.1155/2012/795739] [PMID: 22710868]
[46]
Galis, Z.S.; Muszynski, M.; Sukhova, G.K.; Simon-Morrissey, E.; Unemori, E.N.; Lark, M.W.; Amento, E.; Libby, P. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res., 1994, 75(1), 181-189.
[http://dx.doi.org/10.1161/01.RES.75.1.181] [PMID: 8013077]
[47]
Hanemaaijer, R.; Koolwijk, P.; le Clercq, L.; de Vree, W.J.A.; van Hinsbergh, V.W.M. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor α interleukin 1 and phorbol ester. Biochem. J., 1993, 296(3), 803-809.
[http://dx.doi.org/10.1042/bj2960803] [PMID: 8280080]
[48]
Brown, D.L.; Hibbs, M.S.; Kearney, M.; Loushin, C.; Isner, J.M. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation, 1995, 91(8), 2125-2131.
[http://dx.doi.org/10.1161/01.CIR.91.8.2125] [PMID: 7697840]
[49]
Guo, Z.Y.; Zhang, B.; Yan, Y.H.; Gao, S.S.; Liu, J.J.; Xu, L.; Hui, P.J. Specific matrix metalloproteinases and calcification factors are associated with the vulnerability of human carotid plaque. Exp. Ther. Med., 2018, 16(3), 2071-2079.
[http://dx.doi.org/10.3892/etm.2018.6424] [PMID: 30186442]
[50]
Müller, A.; Krämer, S.D.; Meletta, R.; Beck, K.; Selivanova, S.V.; Rancic, Z.; Kaufmann, P.A.; Vos, B.; Meding, J.; Stellfeld, T.; Heinrich, T.K.; Bauser, M.; Hütter, J.; Dinkelborg, L.M.; Schibli, R.; Ametamey, S.M. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nucl. Med. Biol., 2014, 41(7), 562-569.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.04.085] [PMID: 24853402]
[51]
Peeters, S.A.; Engelen, L.; Buijs, J.; Jorsal, A.; Parving, H.H.; Tarnow, L.; Rossing, P.; Schalkwijk, C.G.; Stehouwer, C.D.A. Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes: A 12-year follow-up study. Cardiovasc. Diabetol., 2017, 16(1), 55.
[http://dx.doi.org/10.1186/s12933-017-0539-1] [PMID: 28446168]
[52]
Derosa, G.; Maffioli, P.; D’Angelo, A.; Salvadeo, S.A.T.; Ferrari, I.; Fogari, E.; Gravina, A.; Mereu, R.; Palumbo, I.; Randazzo, S.; Cicero, A.F.G. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in combined dyslipidemia. Clin. Invest. Med., 2009, 32(2), 124.
[http://dx.doi.org/10.25011/cim.v32i2.6030] [PMID: 19331801]
[53]
Derosa, G.; Ferrari, I.; D’Angelo, A.; Tinelli, C.; Salvadeo, S.A.T.; Ciccarelli, L.; Piccinni, M.N.; Gravina, A.; Ramondetti, F.; Maffioli, P.; Cicero, A.F.G. Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium, 2008, 15(4), 219-224.
[http://dx.doi.org/10.1080/10623320802228815] [PMID: 18663625]
[54]
Yu, A.P.; Tam, B.T.; Yau, W.Y.; Chan, K.S.; Yu, S.S.; Chung, T.L.; Siu, P.M. Association of endothelin-1 and matrix metallopeptidase-9 with metabolic syndrome in middle-aged and older adults. Diabetol. Metab. Syndr., 2015, 7(1), 111.
[http://dx.doi.org/10.1186/s13098-015-0108-2] [PMID: 26692905]
[55]
Ezhov, M.; Safarova, M.; Afanasieva, O.; Mitroshkin, M.; Matchin, Y.; Pokrovsky, S. Matrix metalloproteinase 9 as a predictor of coronary atherosclerotic plaque instability in stable coronary heart disease patients with elevated lipoprotein(a) levels. Biomolecules, 2019, 9(4), 129.
[http://dx.doi.org/10.3390/biom9040129] [PMID: 30934954]
[56]
Kai, H.; Ikeda, H.; Yasukawa, H.; Kai, M.; Seki, Y.; Kuwahara, F.; Ueno, T.; Sugi, K.; Imaizumi, T. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J. Am. Coll. Cardiol., 1998, 32(2), 368-372.
[http://dx.doi.org/10.1016/S0735-1097(98)00250-2] [PMID: 9708462]
[57]
Inokubo, Y.; Hanada, H.; Ishizaka, H.; Fukushi, T.; Kamada, T.; Okumura, K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am. Heart J., 2001, 141(2), 211-217.
[http://dx.doi.org/10.1067/mhj.2001.112238] [PMID: 11174334]
[58]
Li, C.; Zhang, Z.; Peng, Y.; Gao, H.; Wang, Y.; Zhao, J.; Pan, C. Plasma neutrophil gelatinase-associated lipocalin levels are associated with the presence and severity of coronary heart disease. PLoS One, 2019, 14(8), e0220841.
[http://dx.doi.org/10.1371/journal.pone.0220841] [PMID: 31387110]
[59]
Li, Y.; Li, L.; Wang, K.; Wu, P.; Cui, Y. Investigation on risk stratification and the prognostic value of hs-TnT combined with MMP-2 in patients with acute coronary syndrome. BioMed Res. Int., 2021, 2021, 1040171.
[http://dx.doi.org/10.1155/2021/1040171] [PMID: 34859099]
[60]
Li, Y.; Qin, L.; Bai, Q.; Zhang, J.; Chen, R.; Song, K. CD100 modulates cytotoxicity of CD8+ T cells in patients with acute myocardial infarction. BMC Immunol., 2021, 22(1), 13.
[http://dx.doi.org/10.1186/s12865-021-00406-y] [PMID: 33593275]
[61]
Dhillon, O.S.; Khan, S.Q.; Narayan, H.K.; Ng, K.H.; Mohammed, N.; Quinn, P.A.; Squire, I.B.; Davies, J.E.; Ng, L.L. Matrix metalloproteinase-2 predicts mortality in patients with acute coronary syndrome. Clin. Sci., 2010, 118(4), 249-257.
[http://dx.doi.org/10.1042/CS20090226] [PMID: 19583569]
[62]
Hamed, G.M.; Fattah, M.F.A. Clinical relevance of matrix metalloproteinase 9 in patients with acute coronary syndrome. Clin. Appl. Thromb. Hemost., 2015, 21(8), 705-711.
[http://dx.doi.org/10.1177/1076029614567309] [PMID: 25616488]
[63]
Goliopoulou, A.; Oikonomou, E.; Antonopoulos, A.; Koumallos, N.; Gazouli, M.; Theofilis, P.; Mystakidi, V.C.; Pantelidis, P.; Vavuranakis, M.A.; Siasos, G.; Tousoulis, D. Expression of tissue microRNAs in ascending aortic aneurysms and dissections. Angiology, 2022. [Epub ahead of print].
[http://dx.doi.org/10.1177/00033197221098295] [PMID: 35503041]
[64]
Olson, F.J.; Schmidt, C.; Gummesson, A.; Sigurdardottir, V.; Hulthe, J.; Wiklund, O.; Fagerberg, B. Circulating matrix metalloproteinase 9 levels in relation to sampling methods, femoral and carotid atherosclerosis. J. Intern. Med., 2008, 263(6), 626-635.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01927.x] [PMID: 18341531]
[65]
Signorelli, S.S.; Malaponte, G.; Libra, M.; Pino, L.D.; Celotta, G.; Bevelacqua, V.; Petrina, M.; Nicotra, G.S.; Indelicato, M.; Navolanic, P.M.; Pennisi, G.; Mazzarino, M.C. Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc. Med., 2005, 10(1), 1-6.
[http://dx.doi.org/10.1191/1358863x05vm582oa] [PMID: 15920993]
[66]
Henney, A.M.; Wakeley, P.R.; Davies, M.J.; Foster, K.; Hembry, R.; Murphy, G.; Humphries, S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc. Natl. Acad. Sci., 1991, 88(18), 8154-8158.
[http://dx.doi.org/10.1073/pnas.88.18.8154] [PMID: 1896464]
[67]
Silence, J.; Lupu, F.; Collen, D.; Lijnen, H.R. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler. Thromb. Vasc. Biol., 2001, 21(9), 1440-1445.
[http://dx.doi.org/10.1161/hq0901.097004] [PMID: 11557669]
[68]
Rodriguez, J.A.; Orbe, J.; Martinez de Lizarrondo, S.; Calvayrac, O.; Rodriguez, C.; Martinez-Gonzalez, J.; Paramo, J.A. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli. Front. Biosci., 2008, 13(13), 2916-2921.
[http://dx.doi.org/10.2741/2896] [PMID: 17981764]
[69]
van der Leeuw, J.; Beulens, J.W.J.; van Dieren, S.; Schalkwijk, C.G.; Glatz, J.F.C.; Hofker, M.H.; Verschuren, W.M.M.; Boer, J.M.A.; van der Graaf, Y.; Visseren, F.L.J.; Peelen, L.M.; van der Schouw, Y.T. Novel biomarkers to improve the prediction of cardiovascular event risk in type 2 diabetes mellitus. J. Am. Heart Assoc., 2016, 5(6), e003048.
[http://dx.doi.org/10.1161/JAHA.115.003048] [PMID: 27247335]
[70]
Wu, T.C.; Leu, H.B.; Lin, W.T.; Lin, C.P.; Lin, S.J.; Chen, J.W. Plasma matrix metalloproteinase-3 level is an independent prognostic factor in stable coronary artery disease. Eur. J. Clin. Invest., 2005, 35(9), 537-545.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01548.x] [PMID: 16128859]
[71]
Kelly, D.; Khan, S.; Cockerill, G.; Ng, L.L.; Thompson, M.; Samani, N.J.; Squire, I.B. Circulating stromelysin-1 (MMP-3): A novel predictor of LV dysfunction, remodelling and all-cause mortality after acute myocardial infarction. Eur. J. Heart Fail., 2008, 10(2), 133-139.
[http://dx.doi.org/10.1016/j.ejheart.2007.12.009] [PMID: 18234553]
[72]
Cavusoglu, E.; Marmur, J.D.; Kassotis, J.T.; Yanamadala, S.; Chopra, V.; Eng, C. Usefulness of plasma matrix metalloproteinase-3 levels to predict myocardial infarction in men with and without acute coronary syndrome. Am. J. Cardiol., 2016, 117(6), 881-886.
[http://dx.doi.org/10.1016/j.amjcard.2015.12.022] [PMID: 26805660]
[73]
Lien, L.M.; Hsieh, Y.C.; Bai, C.H.; Chen, W.H.; Chiu, H.C.; Hsieh, F.I.; Shyu, K.G.; Chiou, H.Y.; Hsu, C.Y. Association of blood active matrix metalloproteinase-3 with carotid plaque score from a community population in Taiwan. Atherosclerosis, 2010, 212(2), 595-600.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.05.040] [PMID: 20609440]
[74]
Carrell, T.W.G.; Burnand, K.G.; Wells, G.M.A.; Clements, J.M.; Smith, A. Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation, 2002, 105(4), 477-482.
[http://dx.doi.org/10.1161/hc0402.102621] [PMID: 11815431]
[75]
Páramo, J.A.; Beloqui, O.; Rodríguez, J.A.; Diez, J.; Orbe, J. Association between matrix metalloproteinase-10 concentration and smoking in individuals without cardiovascular disease. Rev. Esp. Cardiol., 2008, 61(12), 1267-1273.
[PMID: 19080965]
[76]
Orbe, J.; Montero, I.; Rodríguez, J.A.; Beloqui, O.; Roncal, C.; Páramo, J.A. Independent association of matrix metalloproteinase-10, cardiovascular risk factors and subclinical atherosclerosis. J. Thromb. Haemost., 2007, 5(1), 91-97.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02276.x] [PMID: 17059420]
[77]
Coll, B.; Rodríguez, J.A.; Craver, L.; Orbe, J.; Martínez-Alonso, M.; Ortiz, A.; Díez, J.; Beloqui, O.; Borras, M.; Valdivielso, J.M.; Fernández, E.; Páramo, J.A. Serum levels of matrix metalloproteinase-10 are associated with the severity of atherosclerosis in patients with chronic kidney disease. Kidney Int., 2010, 78(12), 1275-1280.
[http://dx.doi.org/10.1038/ki.2010.329] [PMID: 20844474]
[78]
Martinez-Aguilar, E.; Gomez-Rodriguez, V.; Orbe, J.; Rodriguez, J.A.; Fernández-Alonso, L.; Roncal, C.; Páramo, J.A. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J. Vasc. Surg., 2015, 61(2), 428-435.
[http://dx.doi.org/10.1016/j.jvs.2014.09.002] [PMID: 25441671]
[79]
Nilsson, L.; Jonasson, L.; Nijm, J.; Hamsten, A.; Eriksson, P. Increased plasma concentration of matrix metalloproteinase-7 in patients with coronary artery disease. Clin. Chem., 2006, 52(8), 1522-1527.
[http://dx.doi.org/10.1373/clinchem.2006.067439] [PMID: 16762997]
[80]
Moreno-Ajona, D.; Irimia, P.; Rodríguez, J.A.; García-Velloso, M.J.; López-Fidalgo, J.; Fernández-Alonso, L.; Grochowitz, L.; Muñoz, R.; Domínguez, P.; Gállego-Culleré, J.; Martínez-Vila, E. Elevated circulating metalloproteinase 7 predicts recurrent cardiovascular events in patients with carotid stenosis: A prospective cohort study. BMC Cardiovasc. Disord., 2020, 20(1), 93.
[http://dx.doi.org/10.1186/s12872-020-01387-3] [PMID: 32101136]
[81]
Uzui, H.; Harpf, A.; Liu, M.; Doherty, T.M.; Shukla, A.; Chai, N.N.; Tripathi, P.V.; Jovinge, S.; Wilkin, D.J.; Asotra, K.; Shah, P.K.; Rajavashisth, T.B. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: Role of activated macrophages and inflammatory cytokines. Circulation, 2002, 106(24), 3024-3030.
[http://dx.doi.org/10.1161/01.CIR.0000041433.94868.12] [PMID: 12473546]
[82]
Barasch, E.; Gottdiener, J.S.; Aurigemma, G.; Kitzman, D.W.; Han, J.; Kop, W.J.; Tracy, R.P. The relationship between serum markers of collagen turnover and cardiovascular outcome in the elderly: The cardiovascular health study. Circ. Heart Fail., 2011, 4(6), 733-739.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.111.962027] [PMID: 21900186]
[83]
Duprez, D.A.; Gross, M.D.; Sanchez, O.A.; Kizer, J.R.; Ix, J.H.; Lima, J.; Tracy, R.P.; Jacobs, D.R., Jr Collagen turnover markers in relation to future cardiovascular and noncardiovascular disease: The multi-ethnic study of atherosclerosis. Clin. Chem., 2017, 63(7), 1237-1247.
[http://dx.doi.org/10.1373/clinchem.2016.270520] [PMID: 28515098]
[84]
Manhenke, C.; Ørn, S.; Squire, I.; Radauceanu, A.; Alla, F.; Zannad, F.; Dickstein, K. The prognostic value of circulating markers of collagen turnover after acute myocardial infarction. Int. J. Cardiol., 2011, 150(3), 277-282.
[http://dx.doi.org/10.1016/j.ijcard.2010.04.034] [PMID: 20493567]
[85]
Otaki, Y.; Watanabe, T.; Takahashi, H.; Yamaura, G.; Nishiyama, S.; Arimoto, T.; Shishido, T.; Miyamoto, T.; Kubota, I. Serum carboxy-terminal telopeptide of type I collagen (I-CTP) is predictive of clinical outcome in peripheral artery disease patients following endovascular therapy. Heart Vessels, 2017, 32(2), 149-156.
[http://dx.doi.org/10.1007/s00380-016-0858-2] [PMID: 27251570]
[86]
Holm Nielsen, S.; Tengryd, C.; Edsfeldt, A.; Brix, S.; Genovese, F.; Bengtsson, E.; Karsdal, M.; Leeming, D.J.; Nilsson, J.; Goncalves, I. A biomarker of collagen type I degradation is associated with cardiovascular events and mortality in patients with atherosclerosis. J. Intern. Med., 2019, 285(1), 118-123.
[http://dx.doi.org/10.1111/joim.12819] [PMID: 30156050]
[87]
Bertelsen, D.M.; Neergaard, J.S.; Bager, C.L.; Nielsen, S.H.; Secher, N.H.; Svendsen, J.H.; Bihlet, A.R.; Andersen, J.R.; Karsdal, M.A.; Christiansen, C.; Nielsen, H.B. Matrix metalloproteinase mediated type I collagen degradation is an independent predictor of increased risk of acute myocardial infarction in postmenopausal women. Sci. Rep., 2018, 8(1), 5371.
[http://dx.doi.org/10.1038/s41598-018-23458-4] [PMID: 29599489]
[88]
Wang, H.; Liu, D.; Zhang, H. Investigation of the underlying genes and mechanism of macrophage-enriched ruptured atherosclerotic plaques using bioinformatics method. J. Atheroscler. Thromb., 2019, 26(7), 636-658.
[http://dx.doi.org/10.5551/jat.45963] [PMID: 30643084]
[89]
Bode, M.K.; Mosorin, M.; Satta, J.; Risteli, L.; Juvonen, T.; Risteli, J. Complete processing of type III collagen in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol., 1999, 19(6), 1506-1511.
[http://dx.doi.org/10.1161/01.ATV.19.6.1506] [PMID: 10364082]
[90]
Kong, C.H.; Lin, X.Y.; Woo, C.C.; Wong, H.C.; Lee, C.N.; Richards, A.M.; Sorokin, V.A. Characteristics of aortic wall extracellular matrix in patients with acute myocardial infarction: Tissue microarray detection of collagen I, collagen III and elastin levels. Interact. Cardiovasc. Thorac. Surg., 2013, 16(1), 11-15.
[http://dx.doi.org/10.1093/icvts/ivs421] [PMID: 23049084]
[91]
Velagaleti, R.S.; Gona, P.; Sundström, J.; Larson, M.G.; Siwik, D.; Colucci, W.S.; Benjamin, E.J.; Vasan, R.S. Relations of biomarkers of extracellular matrix remodeling to incident cardiovascular events and mortality. Arterioscler. Thromb. Vasc. Biol., 2010, 30(11), 2283-2288.
[http://dx.doi.org/10.1161/ATVBAHA.110.208462] [PMID: 20798380]
[92]
Nishimura, M.; Tokoro, T.; Takatani, T.; Sato, N.; Hashimoto, T.; Kobayashi, H.; Ono, T. Circulating aminoterminal propeptide of Type III procollagen as a biomarker of cardiovascular events in patients undergoing hemodialysis. J. Atheroscler. Thromb., 2019, 26(4), 340-350.
[http://dx.doi.org/10.5551/jat.45138] [PMID: 30111669]
[93]
Eschalier, R.; Fertin, M.; Fay, R.; Bauters, C.; Zannad, F.; Pinet, F.; Rossignol, P. Extracellular matrix turnover biomarkers predict long-term left ventricular remodeling after myocardial infarction: Insights from the REVE-2 study. Circ. Heart Fail., 2013, 6(6), 1199-1205.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000403] [PMID: 23983248]
[94]
Osokina, A.; Karetnikova, V.; Polikutina, O.; Ivanova, A.; Gruzdeva, O.; Dyleva, Y.; Kokov, A.; Brel, N.; Pecherina, T.; Barbarash, O. Prognostic potential of cardiac structural and functional parameters and N-terminal propeptide of type III procollagen in predicting cardiac fibrosis one year after myocardial infarction with preserved left ventricular ejection fraction. Aging, 2021, 13(1), 194-203.
[http://dx.doi.org/10.18632/aging.202495] [PMID: 33431713]
[95]
Lee, C.H.; Lee, W.C.; Chang, S.H.; Wen, M.S.; Hung, K.C. The N-terminal propeptide of type III procollagen in patients with acute coronary syndrome: A link between left ventricular end-diastolic pressure and cardiovascular events. PLoS One, 2015, 10(1), e114097.
[http://dx.doi.org/10.1371/journal.pone.0114097] [PMID: 25559610]
[96]
Gao, H.; Zhang, X.S.; Zhao, Q.; Ma, L.L.; Wang, L.X. Predictive value of serum collagen biomakers on the outcome of acute myocardial infarction treated with percutaneous coronary intervention. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2015, 159(2), 272-276.
[http://dx.doi.org/10.5507/bp.2013.091] [PMID: 24441293]
[97]
Stienen, S.; Rossignol, P.; Barros, A.; Girerd, N.; Pitt, B.; Zannad, F.; Ferreira, J.P. Determinants of anti-fibrotic response to mineralocorticoid receptor antagonist therapy: Insights from the eplerenone post-acute myocardial infarction heart failure efficacy and survival study (EPHESUS) and early eplerenone treatment in patients with acute st-elevation myocardial infarction without heart failure (REMINDER) trials. Clin. Res. Cardiol., 2020, 109(2), 194-204.
[http://dx.doi.org/10.1007/s00392-019-01500-3] [PMID: 31250134]
[98]
Chang, Y.Y.; Wu, Y.W.; Lee, J.K.; Lin, Y.M.; Lin, Y.T.; Kao, H.L.; Hung, C.S.; Lin, H.J.; Lin, Y.H. Effects of 12 weeks of atorvastatin therapy on myocardial fibrosis and circulating fibrosis biomarkers in statin-naïve patients with hypertension with atherosclerosis. J. Investig. Med., 2016, 64(7), 1194-1199.
[http://dx.doi.org/10.1136/jim-2016-000092] [PMID: 27430242]
[99]
Wilson, K.A.; Lindholt, J.S.; Hoskins, P.R.; Heickendorff, L.; Vammen, S.; Bradbury, A.W. The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism. Eur. J. Vasc. Endovasc. Surg., 2001, 21(2), 175-178.
[http://dx.doi.org/10.1053/ejvs.2001.1303] [PMID: 11237793]
[100]
Ormezzano, O.; Baguet, J.P.; Thony, F.; Blin, D.; Chavanon, O.; Toussaint, B.; Trocmé, C.; Vanzetto, G.; Faure, P. Aminoterminal propeptide of type III procollagen (PIIINP) is associated with ascending aortic aneurysm growth rate. Int. J. Cardiol., 2010, 145(2), 379-380.
[http://dx.doi.org/10.1016/j.ijcard.2010.02.051] [PMID: 20227120]
[101]
Nana, P.; Dakis, K.; Brodis, A.; Spanos, K.; Kouvelos, G. Circulating biomarkers for the prediction of abdominal aortic aneurysm growth. J. Clin. Med., 2021, 10(8), 1718.
[http://dx.doi.org/10.3390/jcm10081718] [PMID: 33923412]
[102]
Murashov, I.S.; Volkov, A.M.; Kazanskaya, G.M.; Kliver, E.E.; Savchenko, S.V.; Klochkova, S.V.; Lushnikova, E.L. Immunohistochemical phenotypes of stable and unstable occlusive atherosclerotic plaques in coronary arteries. Bull. Exp. Biol. Med., 2018, 165(6), 798-802.
[http://dx.doi.org/10.1007/s10517-018-4268-6] [PMID: 30353330]
[103]
Murata, K.; Motayama, T.; Kotake, C. Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis, 1986, 60(3), 251-262.
[http://dx.doi.org/10.1016/0021-9150(86)90172-3] [PMID: 3089234]
[104]
Shekhonin, B.V.; Domogatsky, S.P.; Muzykantov, V.R.; Idelson, G.L.; Rukosuev, V.S. Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: Immunomorphological characteristics. Coll. Relat. Res., 1985, 5(4), 355-368.
[http://dx.doi.org/10.1016/S0174-173X(85)80024-8] [PMID: 3902343]
[105]
Nielsen, S.H.; Mygind, N.D.; Michelsen, M.M.; Bechsgaard, D.F.; Suhrs, H.E.; Genovese, F.; Nielsen, H.B.; Brix, S.; Karsdal, M.; Prescott, E.; Kastrup, J. Accelerated collagen turnover in women with angina pectoris without obstructive coronary artery disease: An iPOWER substudy. Eur. J. Prev. Cardiol., 2018, 25(7), 719-727.
[http://dx.doi.org/10.1177/2047487318758750] [PMID: 29436257]
[106]
Holm Nielsen, S.; Tengryd, C.; Edsfeldt, A.; Brix, S.; Genovese, F.; Bengtsson, E.; Karsdal, M.; Leeming, D.J.; Nilsson, J.; Goncalves, I. Markers of basement membrane remodeling are associated with higher mortality in patients with known atherosclerosis. J. Am. Heart Assoc., 2018, 7(21), e009193.
[http://dx.doi.org/10.1161/JAHA.118.009193] [PMID: 30608207]
[107]
Rohwedder, I.; Montanez, E.; Beckmann, K.; Bengtsson, E.; Dunér, P.; Nilsson, J.; Soehnlein, O.; Fässler, R. Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation. EMBO Mol. Med., 2012, 4(7), 564-576.
[http://dx.doi.org/10.1002/emmm.201200237] [PMID: 22514136]
[108]
Ekmekci, H.; Ekmekci, O.B.; Sonmez, H.; Ozturk, Z.; Domanic, N.; Kokoglu, E. Evaluation of fibronectin, vitronectin, and leptin levels in coronary artery disease: Impacts on thrombosis and thrombolysis. Clin. Appl. Thromb. Hemost., 2005, 11(1), 63-70.
[http://dx.doi.org/10.1177/107602960501100107] [PMID: 15678274]
[109]
Örem, C. Durmuş .; Klç, K.; Baykan, M.; Gökçe, M.; Örem, A.; Topbaş M. Plasma fibronectin level and its association with coronary artery disease and carotid intima-media thickness. Coron. Artery Dis., 2003, 14(3), 219-224.
[http://dx.doi.org/10.1097/01.mca.0000066454.28270.fb] [PMID: 12702925]
[110]
Song, K.S.; Kim, H.K.; Shim, W.; Jee, S.H. Plasma fibronectin levels in ischemic heart disease. Atherosclerosis, 2001, 154(2), 449-453.
[http://dx.doi.org/10.1016/S0021-9150(00)00490-1] [PMID: 11166778]
[111]
Vavalle, J.P.; Wu, S.S.; Hughey, R.; Madamanchi, N.R.; Stouffer, G.A. Plasma fibronectin levels and coronary artery disease. J. Thromb. Haemost., 2007, 5(4), 864-866.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02420.x] [PMID: 17266699]
[112]
Zhang, Y.; Zhou, X.; Krepinsky, J.C.; Wang, C.; Segbo, J.; Zheng, F. Association study between fibronectin and coronary heart disease. Clin. Chem. Lab. Med., 2006, 44(1), 37-42.
[http://dx.doi.org/10.1515/CCLM.2006.008] [PMID: 16375583]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy