Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

White Matter Damage in Alzheimer’s Disease: Contribution of Oligodendrocytes

Author(s): Jinyu Zhou, Peng Zhang, Bo Zhang and Yuhan Kong*

Volume 19, Issue 9, 2022

Published on: 31 October, 2022

Page: [629 - 640] Pages: 12

DOI: 10.2174/1567205020666221021115321

Price: $65

Abstract

Alzheimer’s disease (AD) is an age-related neurodegenerative disease seriously influencing the quality of life and is a global health problem. Many factors affect the onset and development of AD, but specific mechanisms underlying the disease are unclear. Most studies investigating AD have focused on neurons and the gray matter in the central nervous system (CNS) but have not led to effective treatments. Recently, an increasing number of studies have focused on white matter (WM). Magnetic resonance imaging and pathology studies have shown different degrees of WM abnormality during the progression of AD. Myelin sheaths, the main component of WM in the CNS, wrap and insulate axons to ensure conduction of the rapid action potential and axonal integrity. WM damage is characterized by progressive degeneration of axons, oligodendrocytes (OLs), and myelin in one or more areas of the CNS. The contributions of OLs to AD progression have, until recently, been largely overlooked. OLs are integral to myelin production, and the proliferation and differentiation of OLs, an early characteristic of AD, provide a promising target for preclinical diagnosis and treatment. However, despite some progress, the key mechanisms underlying the contributions of OLs to AD remain unclear. Given the heavy burden of medical treatment, a better understanding of the pathophysiological mechanisms underlying AD is vital. This review comprehensively summarizes the results on WM abnormalities in AD and explores the relationship between OL progenitor cells and the pathogenesis of AD. Finally, the underlying molecular mechanisms and potential future research directions are discussed.

Next »
[1]
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer related signaling pathways in Alzheimer’s disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 341-58.
[http://dx.doi.org/10.1016/j.bbcan.2017.07.001] [PMID: 28694093]
[2]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[3]
Hodson R. Alzheimer’s disease. Nature 2018; 559(7715): S1.
[http://dx.doi.org/10.1038/d41586-018-05717-6] [PMID: 30046078]
[4]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[5]
Sun BL, Li WW, Zhu C, et al. Clinical research on Alzheimer’s disease: Progress and perspectives. Neurosci Bull 2018; 34(6): 1111-8.
[http://dx.doi.org/10.1007/s12264-018-0249-z] [PMID: 29956105]
[6]
Lee W, Kim SH. Autophagy at synapses in neurodegenerative diseases. Arch Pharm Res 2019; 42(5): 407-15.
[http://dx.doi.org/10.1007/s12272-019-01148-7] [PMID: 30937842]
[7]
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. Curr Neuropharmacol 2018; 16(5): 508-18.
[http://dx.doi.org/10.2174/1570159X15666170720095240] [PMID: 28730967]
[8]
Ivanova N, Liu Q, Agca C, et al. White matter inflammation and cognitive function in a co-morbid metabolic syndrome and prodromal Alzheimer’s disease rat model. J Neuroinflammation 2020; 17(1): 29.
[http://dx.doi.org/10.1186/s12974-020-1698-7] [PMID: 31964387]
[9]
Raj D, Yin Z, Breur M, et al. Increased white matter inflammation in aging and Alzheimer’s disease brain. Front Mol Neurosci 2017; 10: 206.
[http://dx.doi.org/10.3389/fnmol.2017.00206] [PMID: 28713239]
[10]
Fernández JA, Rojo L, Kuljis RO, Maccioni RB. The damage signals hypothesis of Alzheimer’s disease pathogenesis. J Alzheimers Dis 2008; 14(3): 329-33.
[http://dx.doi.org/10.3233/JAD-2008-14307] [PMID: 18599959]
[11]
Lorenzini L, Fernandez M, Baldassarro VA, et al. White matter and neuroprotection in Alzheimer’s dementia. Molecules 2020; 25(3): 503.
[http://dx.doi.org/10.3390/molecules25030503] [PMID: 31979414]
[12]
Wang Y, Cao W, Sun Y, et al. White matter integrity in subcortical vascular cognitive impairment: A multimodal structural MRI study. Curr Alzheimer Res 2017; 14(9): 991-9.
[PMID: 28356046]
[13]
Bozzali M, Giulietti G, Basile B, et al. Damage to the cingulum contributes to Alzheimer’s disease pathophysiology by deafferentation mechanism. Hum Brain Mapp 2012; 33(6): 1295-308.
[http://dx.doi.org/10.1002/hbm.21287] [PMID: 21520352]
[14]
Bendlin BB, Ries ML, Canu E, et al. White matter is altered with parental family history of Alzheimer’s disease. Alzheimers Dement 2010; 6(5): 394-403.
[http://dx.doi.org/10.1016/j.jalz.2009.11.003] [PMID: 20713315]
[15]
Takahashi S, Yonezawa H, Takahashi J, Kudo M, Inoue T, Tohgi H. Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett 2002; 332(1): 45-8.
[http://dx.doi.org/10.1016/S0304-3940(02)00914-X] [PMID: 12377381]
[16]
Mielke MM, Kozauer NA, Chan KCG, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2009; 46(1): 47-55.
[http://dx.doi.org/10.1016/j.neuroimage.2009.01.054] [PMID: 19457371]
[17]
Liang Y, Chen Y, Li H, et al. Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients. Curr Alzheimer Res 2015; 12(3): 255-65.
[http://dx.doi.org/10.2174/1567205012666150302155336] [PMID: 25731624]
[18]
Lüders E, Steinmetz H, Jäncke L. Brain size and grey matter volume in the healthy human brain. Neuroreport 2002; 13(17): 2371-4.
[http://dx.doi.org/10.1097/00001756-200212030-00040] [PMID: 12488829]
[19]
Ozgen H, Baron W, Hoekstra D, Kahya N. Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 2016; 73(17): 3291-310.
[http://dx.doi.org/10.1007/s00018-016-2228-8] [PMID: 27141942]
[20]
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867(6): 166117.
[http://dx.doi.org/10.1016/j.bbadis.2021.166117] [PMID: 33667627]
[21]
Kang M, Yao Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci Ther 2019; 25(10): 1075-84.
[http://dx.doi.org/10.1111/cns.13193] [PMID: 31410988]
[22]
Roncagliolo M, Schlageter C, León C, Couve E, Bonansco C, Eguibar JR. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats. Brain Res 2006; 1067(1): 78-84.
[http://dx.doi.org/10.1016/j.brainres.2005.10.010] [PMID: 16360123]
[23]
Tallantyre EC, Bø L, Al-Rawashdeh O, et al. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain 2009; 132(5): 1190-9.
[http://dx.doi.org/10.1093/brain/awp106] [PMID: 19420101]
[24]
Dean DC III, Hurley SA, Kecskemeti SR, et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer’s disease. JAMA Neurol 2017; 74(1): 41-9.
[http://dx.doi.org/10.1001/jamaneurol.2016.3232] [PMID: 27842175]
[25]
A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol 2019; 57(2): 87-105.
[http://dx.doi.org/10.5114/fn.2019.85929] [PMID: 31556570]
[26]
Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’s disease; A review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256: 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[27]
Xiao Q, Ye T, Wang X, et al. A network pharmacology-based study on key pharmacological pathways and targets of Qi Fu Yin acting on Alzheimer’s disease. Exp Gerontol 2021; 149: 111336.
[http://dx.doi.org/10.1016/j.exger.2021.111336] [PMID: 33785395]
[28]
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 2020; 23(10): 1183-93.
[http://dx.doi.org/10.1038/s41593-020-0687-6] [PMID: 32778792]
[29]
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J Neurochem 2020; 154(6): 583-97.
[http://dx.doi.org/10.1111/jnc.15007] [PMID: 32180217]
[30]
Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016; 6: 42-9.
[http://dx.doi.org/10.1016/j.ebiom.2016.03.035] [PMID: 27211547]
[31]
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 2015; 18(6): 794-9.
[http://dx.doi.org/10.1038/nn.4017] [PMID: 26007212]
[32]
Walsh DM, Selkoe DJ. Amyloid β-protein and beyond: The path forward in Alzheimer’s disease. Curr Opin Neurobiol 2020; 61: 116-24.
[http://dx.doi.org/10.1016/j.conb.2020.02.003] [PMID: 32197217]
[33]
Ray WJ, Buggia-Prevot V. Novel targets for Alzheimer’s disease: A view beyond amyloid. Annu Rev Med 2021; 72(1): 15-28.
[http://dx.doi.org/10.1146/annurev-med-052919-120219] [PMID: 32867590]
[34]
Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q. Insights into lncRNAs in Alzheimer’s disease mechanisms. RNA Biol 2021; 18(7): 1037-47.
[http://dx.doi.org/10.1080/15476286.2020.1788848] [PMID: 32605500]
[35]
Canepa E, Fossati S. Impact of tau on neurovascular pathology in Alzheimer’s disease. Front Neurol 2021; 11: 573324.
[http://dx.doi.org/10.3389/fneur.2020.573324] [PMID: 33488493]
[36]
Sotiropoulos I, Galas MC, Silva JM, et al. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun 2017; 5(1): 91.
[http://dx.doi.org/10.1186/s40478-017-0489-6] [PMID: 29187252]
[37]
Drummond E, Pires G, MacMurray C, et al. Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain 2020; 143(9): 2803-17.
[http://dx.doi.org/10.1093/brain/awaa223] [PMID: 32812023]
[38]
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[39]
Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci 2002; 99(9): 6364-9.
[http://dx.doi.org/10.1073/pnas.092136199] [PMID: 11959919]
[40]
Vossel KA, Zhang K, Brodbeck J, et al. Tau reduction prevents Abeta-induced defects in axonal transport. Science 2010; 330(6001): 198.
[http://dx.doi.org/10.1126/science.1194653] [PMID: 20829454]
[41]
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between wine consumption, diet and microbiome modulation in Alzheimer’s disease. Nutrients 2020; 12(10): 3082.
[http://dx.doi.org/10.3390/nu12103082] [PMID: 33050383]
[42]
Zhao T, Ye S, Tang Z, et al. Loss of function of p53 isoform Δ113p53 accelerates brain aging in zebrafish. Cell Death Dis 2021; 12(2): 151.
[http://dx.doi.org/10.1038/s41419-021-03438-9] [PMID: 33542214]
[43]
Carmona JJ, Michan S. Biology of healthy aging and longevity. Clin Respir J 2016; 68(1): 7-16.
[44]
Gräff J, Rei D, Guan JS, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012; 483(7388): 222-6.
[http://dx.doi.org/10.1038/nature10849] [PMID: 22388814]
[45]
Unnikrishnan A, Hadad N, Masser DR, Jackson J, Freeman WM, Richardson A. Revisiting the genomic hypomethylation hypothesis of aging. Ann N Y Acad Sci 2018; 1418(1): 69-79.
[http://dx.doi.org/10.1111/nyas.13533] [PMID: 29363785]
[46]
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018; 144(5): 617-33.
[http://dx.doi.org/10.1111/jnc.14271] [PMID: 29210074]
[47]
Bae HG, Kim TK, Suk HY, Jung S, Jo DG. White matter and neurological disorders. Arch Pharm Res 2020; 43(9): 920-31.
[http://dx.doi.org/10.1007/s12272-020-01270-x] [PMID: 32975736]
[48]
de Lange AMG, Bråthen ACS, Grydeland H, et al. White matter integrity as a marker for cognitive plasticity in aging. Neurobiol Aging 2016; 47: 74-82.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.007] [PMID: 27565301]
[49]
Liu H, Yang Y, Xia Y, et al. Aging of cerebral white matter. Ageing Res Rev 2017; 34: 64-76.
[http://dx.doi.org/10.1016/j.arr.2016.11.006] [PMID: 27865980]
[50]
Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 2012; 60(1): 340-52.
[http://dx.doi.org/10.1016/j.neuroimage.2011.11.094] [PMID: 22178809]
[51]
Klosinski LP, Yao J, Yin F, et al. White matter lipids as a ketogenic fuel supply in aging female brain: Implications for Alzheimer’s disease. EBioMedicine 2015; 2(12): 1888-904.
[http://dx.doi.org/10.1016/j.ebiom.2015.11.002] [PMID: 26844268]
[52]
Inano S, Takao H, Hayashi N, Abe O, Ohtomo K. Effects of age and gender on white matter integrity. AJNR Am J Neuroradiol 2011; 32(11): 2103-9.
[http://dx.doi.org/10.3174/ajnr.A2785] [PMID: 21998104]
[53]
Phillips OR, Joshi SH, Piras F, et al. The superficial white matter in Alzheimer’s disease. Hum Brain Mapp 2016; 37(4): 1321-34.
[http://dx.doi.org/10.1002/hbm.23105] [PMID: 26801955]
[54]
Codron P, Letournel F, Marty S, et al. STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain. Neuropathol Appl Neurobiol 2021; 47(1): 127-42.
[http://dx.doi.org/10.1111/nan.12646] [PMID: 32688444]
[55]
Mito R, Raffelt D, Dhollander T, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 2018; 141(3): 888-902.
[http://dx.doi.org/10.1093/brain/awx355] [PMID: 29309541]
[56]
Catheline G, Periot O, Amirault M, et al. Distinctive alterations of the cingulum bundle during aging and Alzheimer’s disease. Neurobiol Aging 2010; 31(9): 1582-92.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.012] [PMID: 18829135]
[57]
Choo ILH, Lee DY, Oh JS, et al. Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2010; 31(5): 772-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.06.015] [PMID: 18687503]
[58]
Toniolo S, Serra L, Olivito G, et al. Cerebellar white matter disruption in Alzheimer’s disease patients: A diffusion tensor imaging study. J Alzheimers Dis 2020; 74(2): 615-24.
[http://dx.doi.org/10.3233/JAD-191125] [PMID: 32065792]
[59]
Li X, Wang H, Tian Y, et al. Impaired white matter connections of the limbic system networks associated with impaired emotional memory in Alzheimer’s disease. Front Aging Neurosci 2016; 8: 250.
[http://dx.doi.org/10.3389/fnagi.2016.00250] [PMID: 27833549]
[60]
Bozoki AC, Korolev IO, Davis NC, Hoisington LA, Berger KL. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: A DTI/FDG-PET Study. Hum Brain Mapp 2012; 33(8): 1792-802.
[http://dx.doi.org/10.1002/hbm.21320] [PMID: 21674695]
[61]
Huang H, Fan X, Weiner M, et al. Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiol Aging 2012; 33(9): 2029-45.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.027] [PMID: 21872362]
[62]
Lin YC, Shih YC, Tseng WYI, et al. Cingulum correlates of cognitive functions in patients with mild cognitive impairment and early Alzheimer’s disease: A diffusion spectrum imaging study. Brain Topogr 2014; 27(3): 393-402.
[http://dx.doi.org/10.1007/s10548-013-0346-2] [PMID: 24414091]
[63]
Fieremans E, Benitez A, Jensen JH, et al. Novel white matter tract integrity metrics sensitive to Alzheimer’s disease progression. AJNR Am J Neuroradiol 2013; 34(11): 2105-12.
[http://dx.doi.org/10.3174/ajnr.A3553] [PMID: 23764722]
[64]
Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014; 62(11): 1856-77.
[http://dx.doi.org/10.1002/glia.22716] [PMID: 25056210]
[65]
Elbaz B, Popko B. Molecular control of oligodendrocyte development. Trends Neurosci 2019; 42(4): 263-77.
[http://dx.doi.org/10.1016/j.tins.2019.01.002] [PMID: 30770136]
[66]
Chacon-De-La-Rocha I, Fryatt G, Rivera AD, et al. Accelerated dystrophy and decay of oligodendrocyte precursor cells in the APP/PS1 model of Alzheimer’s-like pathology. Front Cell Neurosci 2020; 14: 575082.
[http://dx.doi.org/10.3389/fncel.2020.575082] [PMID: 33343301]
[67]
Chen JF, Liu K, Hu B, et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 2021; 109(14): 2292-2307.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.05.012] [PMID: 34102111]
[68]
Chu TH, Cummins K, Sparling JS, et al. Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal cord. PLoS One 2017; 12(11): e0188218.
[http://dx.doi.org/10.1371/journal.pone.0188218] [PMID: 29176903]
[69]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single cell transcriptomic analysis of Alzheimer’s disease. Nature 2019; 570(7761): 332-7.
[http://dx.doi.org/10.1038/s41586-019-1195-2] [PMID: 31042697]
[70]
Hanf KJM, Arndt JW, Liu Y, et al. Functional activity of anti-LINGO-1 antibody opicinumab requires target engagement at a secondary binding site. MAbs 2020; 12(1): 1713648.
[http://dx.doi.org/10.1080/19420862.2020.1713648] [PMID: 31928294]
[71]
Wu D, Tang X, Gu LH, et al. LINGO ‐1 antibody ameliorates myelin impairment and spatial memory deficits in the early stage of 5 XFAD mice. CNS Neurosci Ther 2018; 24(5): 381-93.
[http://dx.doi.org/10.1111/cns.12809] [PMID: 29427384]
[72]
Goldstein EZ, Church JS, Hesp ZC, Popovich PG, McTigue DM. A silver lining of neuroinflammation: Beneficial effects on myelination. Exp Neurol 2016; 283(Pt B): 550-9.
[73]
Sun X-H, Dong Y-X, Zhang H-Y, Li H-Y, Liu P-H, Sui Y. Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regen Res 2018; 13(5): 908-14.
[http://dx.doi.org/10.4103/1673-5374.232486] [PMID: 29863022]
[74]
Hoy AR, Ly M, Carlsson CM, et al. Microstructural white matter alterations in preclinical Alzheimer’s disease detected using free water elimination diffusion tensor imaging. PLoS One 2017; 12(3): e0173982.
[http://dx.doi.org/10.1371/journal.pone.0173982] [PMID: 28291839]
[75]
Tascone LS, Payne ME, MacFall J, et al. Cortical brain volume abnormalities associated with few or multiple neuropsychiatric symptoms in Alzheimer’s disease. PLoS One 2017; 12(5): e0177169.
[http://dx.doi.org/10.1371/journal.pone.0177169] [PMID: 28481904]
[76]
Zhan X, Jickling G, Ander B, et al. Myelin injury and degraded myelin vesicles in Alzheimer’s disease. Curr Alzheimer Res 2014; 11(3): 232-8.
[http://dx.doi.org/10.2174/1567205011666140131120922] [PMID: 24484278]
[77]
Grubman A, Chew G, Ouyang JF, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell type specific gene expression regulation. Nat Neurosci 2019; 22(12): 2087-97.
[http://dx.doi.org/10.1038/s41593-019-0539-4] [PMID: 31768052]
[78]
Agarwal D, Sandor C, Volpato V, et al. A single cell atlas of the human substantia nigra reveals cell specific pathways associated with neurological disorders. Nat Commun 2020; 11(1): 4183.
[http://dx.doi.org/10.1038/s41467-020-17876-0] [PMID: 32826893]
[79]
Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med 2020; 26(1): 131-42.
[http://dx.doi.org/10.1038/s41591-019-0695-9] [PMID: 31932797]
[80]
Wu Y, Ma Y, Liu Z, Geng Q, Chen Z, Zhang Y. Alterations of myelin morphology and oligodendrocyte development in early stage of Alzheimer’s disease mouse model. Neurosci Lett 2017; 642: 102-6.
[http://dx.doi.org/10.1016/j.neulet.2017.02.007] [PMID: 28174059]
[81]
Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012; 487(7408): 443-8.
[http://dx.doi.org/10.1038/nature11314] [PMID: 22801498]
[82]
Wen Q, Risacher SL, Xie L, et al. Tau related white matter alterations along spatially selective pathways. Neuroimage 2021; 226: 117560.
[http://dx.doi.org/10.1016/j.neuroimage.2020.117560] [PMID: 33189932]
[83]
Honjo Y, Ayaki T, Tomiyama T, et al. Increased GADD34 in oligodendrocytes in Alzheimer’s disease. Neurosci Lett 2015; 602: 50-5.
[http://dx.doi.org/10.1016/j.neulet.2015.06.052] [PMID: 26142647]
[84]
Philips T, Rothstein JD. Oligodendroglia: Metabolic supporters of neurons. J Clin Invest 2017; 127(9): 3271-80.
[http://dx.doi.org/10.1172/JCI90610] [PMID: 28862639]
[85]
Zhang X, Wang R, Hu D, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv 2020; 6(49): eabb8680.
[http://dx.doi.org/10.1126/sciadv.abb8680] [PMID: 33277246]
[86]
Hughes MM, O’Neill LAJ. Metabolic regulation of NLRP3. Immunol Rev 2018; 281(1): 88-98.
[http://dx.doi.org/10.1111/imr.12608] [PMID: 29247992]
[87]
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mechanisms of ageing and development 2017; 161(Pt A): 37-50.
[http://dx.doi.org/10.1016/j.mad.2016.05.006]
[88]
Gagyi E, Kormos B, Castellanos KJ, et al. Decreased oligodendrocyte nuclear diameter in Alzheimer’s disease and Lewy body dementia. Brain Pathol 2012; 22(6): 803-10.
[http://dx.doi.org/10.1111/j.1750-3639.2012.00595.x] [PMID: 22429607]
[89]
Li JS, Yao ZX. Modulation of FGF receptor signaling as an intervention and potential therapy for myelin breakdown in Alzheimer’s disease. Med Hypotheses 2013; 80(4): 341-4.
[http://dx.doi.org/10.1016/j.mehy.2012.12.008] [PMID: 23321060]
[90]
Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in development, myelin generation and beyond. Cells 2019; 8(11): 1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[91]
Duncan ID, Radcliff AB, Heidari M, Kidd G, August BK, Wierenga LA. The adult oligodendrocyte can participate in remyelination. Proc Natl Acad Sci USA 2018; 115(50): E11807-16.
[http://dx.doi.org/10.1073/pnas.1808064115] [PMID: 30487224]
[92]
Duran-Aniotz C, Hetz C. Glucose metabolism: A sweet relief of Alzheimer’s disease. Curr Biol 2016; 26(17): R806-9.
[http://dx.doi.org/10.1016/j.cub.2016.07.060] [PMID: 27623263]
[93]
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169: 24-54.
[http://dx.doi.org/10.1016/j.pneurobio.2018.07.004] [PMID: 30077775]
[94]
Vanzulli I, Papanikolaou M, De-La-Rocha IC, et al. Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 2020; 94: 130-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.05.016] [PMID: 32619874]
[95]
Rodríguez JJ, Butt AM, Gardenal E, Parpura V, Verkhratsky A. Complex and differential glial responses in Alzheimer’s disease and ageing. Curr Alzheimer Res 2016; 13(4): 343-58.
[http://dx.doi.org/10.2174/1567205013666160229112911] [PMID: 26923267]
[96]
Nielsen HM, Ek D, Avdic U, et al. NG2 cells, a new trail for Alzheimer’s disease mechanisms? Acta Neuropathol Commun 2013; 1(1): 7.
[http://dx.doi.org/10.1186/2051-5960-1-7] [PMID: 24252600]
[97]
Jennings AR, Carroll WM. Oligodendrocyte lineage cells in chronic demyelination of multiple sclerosis optic nerve. Brain Pathol 2015; 25(5): 517-30.
[http://dx.doi.org/10.1111/bpa.12193] [PMID: 25175564]
[98]
Neumann B, Baror R, Zhao C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 2019; 25(4): 473-485.e8.
[http://dx.doi.org/10.1016/j.stem.2019.08.015] [PMID: 31585093]
[99]
Segel M, Neumann B, Hill MFE, et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 2019; 573(7772): 130-4.
[http://dx.doi.org/10.1038/s41586-019-1484-9] [PMID: 31413369]
[100]
Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 2019; 22(5): 719-28.
[http://dx.doi.org/10.1038/s41593-019-0372-9] [PMID: 30936558]
[101]
Behrendt G, Baer K, Buffo A, et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 2013; 61(2): 273-86.
[http://dx.doi.org/10.1002/glia.22432] [PMID: 23090919]
[102]
Chao F, Zhang L, Zhang Y, et al. Running exercise protects against myelin breakdown in the absence of neurogenesis in the hippocampus of AD mice. Brain Res 2018; 1684: 50-9.
[http://dx.doi.org/10.1016/j.brainres.2018.01.007] [PMID: 29317290]
[103]
Rahimifard M, Maqbool F, Moeini-Nodeh S, et al. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017; 36: 11-9.
[http://dx.doi.org/10.1016/j.arr.2017.02.004] [PMID: 28235660]
[104]
Bankston AN, Forston MD, Howard RM, et al. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia 2019; 67(9): 23646.
[http://dx.doi.org/10.1002/glia.23646] [PMID: 31162728]
[105]
Zou D, Li R, Huang X, et al. Identification of molecular correlations of RBM8A with autophagy in Alzheimer’s disease. Aging 2019; 11(23): 11673-85.
[http://dx.doi.org/10.18632/aging.102571] [PMID: 31816601]
[106]
Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: A dark horse in Alzheimer’s disease treatment. Ageing Res Rev 2020; 64: 101206.
[http://dx.doi.org/10.1016/j.arr.2020.101206] [PMID: 33144124]
[107]
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med 2020; 159: 87-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.028] [PMID: 32730855]
[108]
Bahn G, Jo DG. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2. Neuromolecular Med 2019; 21(1): 1-11.
[http://dx.doi.org/10.1007/s12017-018-08523-5] [PMID: 30617737]
[109]
Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer’s diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 2021; 65: 101207.
[http://dx.doi.org/10.1016/j.arr.2020.101207] [PMID: 33144123]
[110]
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer’s disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128: 454-66.
[http://dx.doi.org/10.1016/j.neubiorev.2021.06.029] [PMID: 34224789]
[111]
Folke J, Pakkenberg B, Brudek T. Impaired Wnt signaling in the prefrontal cortex of Alzheimer’s disease. Mol Neurobiol 2019; 56(2): 873-91.
[http://dx.doi.org/10.1007/s12035-018-1103-z] [PMID: 29804228]
[112]
Yao Y, Wang Y, Kong L, Chen Y, Yang J. Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease. Life Sci 2019; 217: 16-24.
[http://dx.doi.org/10.1016/j.lfs.2018.11.038] [PMID: 30471283]
[113]
Sun P, Yin JB, Liu LH, et al. Protective role of Dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci Rep 2019; 39(1): BSR20180902.
[http://dx.doi.org/10.1042/BSR20180902] [PMID: 30498091]
[114]
Yang L, Jiang Y, Shi L, et al. AMPK: Potential therapeutic target for Alzheimer’s disease. Curr Protein Pept Sci 2020; 21(1): 66-77.
[http://dx.doi.org/10.2174/1389203720666190819142746] [PMID: 31424367]
[115]
McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 2018; 53: 90-5.
[http://dx.doi.org/10.1016/j.conb.2018.06.003] [PMID: 29975877]
[116]
Rosi MC, Luccarini I, Grossi C, et al. Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem 2010; 112(6): 1539-51.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06566.x] [PMID: 20050968]
[117]
Wang Y, Chen F, Wang P, Mana L, Sheng N, Huang S. Study on myelin injury of AD mice treated with Shenzhiling oral liquid in the PI3K/Akt–mTOR pathway. Int J Immunopathol Pharmacol 2020; 34: 2058738420923907.
[http://dx.doi.org/10.1177/2058738420923907] [PMID: 32462951]
[118]
Sachdev PS, Zhuang L, Braidy N, Wen W. Is Alzheimer’s a disease of the white matter? Curr Opin Psychiatry 2013; 26(3): 244-51.
[http://dx.doi.org/10.1097/YCO.0b013e32835ed6e8] [PMID: 23493128]
[119]
Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc Natl Acad Sci USA 2020; 117(41): 25800-9.
[http://dx.doi.org/10.1073/pnas.2008762117] [PMID: 32989152]
[120]
Poon CH, Tse LSR, Lim LW. DNA methylation in the pathology of Alzheimer’s disease: From gene to cognition. Ann N Y Acad Sci 2020; 1475(1): 15-33.
[http://dx.doi.org/10.1111/nyas.14373] [PMID: 32491215]
[121]
Yu CC, Jiang T, Yang AF, Du YJ, Wu M, Kong LH. Epigenetic modulation on tau phosphorylation in Alzheimer’s disease. Neural Plast 2019; 2019: 6856327.
[http://dx.doi.org/10.1155/2019/6856327] [PMID: 31093272]
[122]
Wu R, Li A, Sun B, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 2019; 29(1): 23-41.
[http://dx.doi.org/10.1038/s41422-018-0113-8] [PMID: 30514900]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy