Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Hypercaloric Diet Promotes Metabolic Disorders and Impaired Kidney Function

Author(s): Cecilia Gabriela Meléndez-Salcido, Joel Ramírez-Emiliano and Victoriano Pérez-Vázquez*

Volume 28, Issue 38, 2022

Published on: 27 October, 2022

Page: [3127 - 3139] Pages: 13

DOI: 10.2174/1381612829666221020162955

Price: $65

conference banner
Abstract

Poor dietary habits such as overconsumption of hypercaloric diets characterized by a high content of fructose and fat are related to metabolic abnormalities development such as obesity, diabetes, and dyslipidemia. Accumulating evidence supports the hypothesis that if energy intake gradually exceeds the body's ability to store fat in adipose tissue, the prolonged metabolic imbalance of circulating lipids from endogenous and exogenous sources leads to ectopic fat distribution in the peripheral organs, especially in the heart, liver, and kidney. The kidney is easily affected by dyslipidemia, which induces lipid accumulation and reflects an imbalance between fatty acid supply and fatty acid utilization. This derives from tissue lipotoxicity, oxidative stress, fibrosis, and inflammation, resulting in structural and functional changes that lead to glomerular and tubule-interstitial damage. Some authors indicate that a lipid-lowering pharmacological approach combined with a substantial lifestyle change should be considered to treat chronic kidney disease (CKD). Also, the new therapeutic target identification and the development of new drugs targeting metabolic pathways involved with kidney lipotoxicity could constitute an additional alternative to combat the complex mechanisms involved in impaired kidney function. In this review article, we first provide the pathophysiological evidence regarding the impact of hypercaloric diets, such as high-fat diets and high-fructose diets, on the development of metabolic disorders associated with impaired renal function and the molecular mechanisms underlying tissue lipid deposition. In addition, we present the current progress regarding translational strategies to prevent and/or treat kidney injury related to the consumption of hypercaloric diets.

[1]
Hariharan, R.; Odjidja, E.N.; Scott, D. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev., 2022, 23(1), e13349.
[http://dx.doi.org/10.1111/obr.13349] [PMID: 34708499]
[2]
Shi, Y.N.; Liu, Y.J.; Xie, Z.; Zhang, W.J. Fructose and metabolic diseases: Too much to be good. Chin. Med. J. (Engl.), 2021, 134(11), 1276-1285.
[http://dx.doi.org/10.1097/CM9.0000000000001545] [PMID: 34010200]
[3]
Popkin, B.M. Nutrition transition and the global diabetes epidemic. Curr. Diab. Rep., 2015, 15(9), 64.
[http://dx.doi.org/10.1007/s11892-015-0631-4] [PMID: 26209940]
[4]
Rosas-Villegas, A.; Sánchez-Tapia, M.; Avila-Nava, A.; Ramírez, V.; Tovar, A.; Torres, N. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients, 2017, 9(4), 393.
[http://dx.doi.org/10.3390/nu9040393] [PMID: 28420148]
[5]
Asghari, G.; Momenan, M.; Yuzbashian, E.; Mirmiran, P.; Azizi, F. Dietary pattern and incidence of chronic kidney disease among adults: A population-based study. Nutr. Metab. (Lond.), 2018, 15(1), 88.
[http://dx.doi.org/10.1186/s12986-018-0322-7] [PMID: 30564279]
[6]
Izquierdo-Lahuerta, A.; Martínez-García, C.; Medina-Gómez, G. Lipotoxicity as a trigger factor of renal disease. J. Nephrol., 2016, 29(5), 603-610.
[http://dx.doi.org/10.1007/s40620-016-0278-5] [PMID: 26956132]
[7]
Gai, Z.; Wang, T.; Visentin, M.; Kullak-Ublick, G.; Fu, X.; Wang, Z. Lipid accumulation and chronic kidney disease. Nutrients, 2019, 11(4), 722.
[http://dx.doi.org/10.3390/nu11040722] [PMID: 30925738]
[8]
Thongnak, L.; Pongchaidecha, A.; Lungkaphin, A. Renal lipid metabolism and lipotoxicity in diabetes. Am. J. Med. Sci., 2020, 359(2), 84-99.
[http://dx.doi.org/10.1016/j.amjms.2019.11.004] [PMID: 32039770]
[9]
Zhang, D.M.; Jiao, R.Q.; Kong, L.D. High dietary fructose: Direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients, 2017, 9(4), 335.
[http://dx.doi.org/10.3390/nu9040335] [PMID: 28353649]
[10]
Bureau, UC Statistical abstract of the United States., 2003.
[11]
Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.M.; Lustig, R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(5), 251-264.
[http://dx.doi.org/10.1038/nrgastro.2010.41] [PMID: 20368739]
[12]
Jeong, S.R.; Lee, K.W. Methylglyoxal-derived advanced glycation end product (AGE4)-induced apoptosis leads to mitochondrial dysfunction and endoplasmic reticulum stress through the RAGE/JNK pathway in kidney cells. Int. J. Mol. Sci., 2021, 22(12), 6530.
[http://dx.doi.org/10.3390/ijms22126530] [PMID: 34207084]
[13]
Campos, V.C.; Tappy, L. Physiological handling of dietary fructose-containing sugars: Implications for health. Int. J. Obes., 2016, 40(S1)(Suppl. 1), S6-S11.
[http://dx.doi.org/10.1038/ijo.2016.8] [PMID: 27001645]
[14]
Tappy, L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp Biol, 2018, 221(Pt)(Suppl. 1), jeb164202.
[http://dx.doi.org/10.1242/jeb.164202] [PMID: 29514881]
[15]
Jensen, T.; Abdelmalek, M.F.; Sullivan, S. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol., 2018, 68(5), 1063-1075.
[http://dx.doi.org/10.1016/j.jhep.2018.01.019] [PMID: 29408694]
[16]
Zhang, C.; Li, L.; Zhang, Y.; Zeng, C. Recent advances in fructose intake and risk of hyperuricemia. Biomed. Pharmacother., 2020, 131, 110795.
[http://dx.doi.org/10.1016/j.biopha.2020.110795] [PMID: 33152951]
[17]
Caliceti, C.; Calabria, D.; Roda, A.; Cicero, A. Fructose intake, serum uric acid, and cardiometabolic disorders: A critical review. Nutrients, 2017, 9(4), 395.
[http://dx.doi.org/10.3390/nu9040395] [PMID: 28420204]
[18]
Ejaz, A.A.; Nakagawa, T.; Kanbay, M. Hyperuricemia in kidney disease: A major risk factor for cardiovascular events, vascular calcification, and renal damage. Semin. Nephrol., 2020, 40(6), 574-585.
[http://dx.doi.org/10.1016/j.semnephrol.2020.12.004] [PMID: 33678312]
[19]
Su, HY; Yang, C; Liang, D; Liu, HF Research advances in the mechanisms of hyperuricemia-induced renal injury. Biomed Res Int, 2020, 2020
[http://dx.doi.org/10.1155/2020/5817348]
[20]
Bojková, B.; Winklewski, P.J.; Wszedybyl-Winklewska, M. Dietary fat and cancer—Which is good, which is bad, and the body of evidence. Int. J. Mol. Sci., 2020, 21(11), 4114.
[http://dx.doi.org/10.3390/ijms21114114] [PMID: 32526973]
[21]
Luukkonen, P.K.; Sädevirta, S.; Zhou, Y. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care, 2018, 41(8), 1732-1739.
[http://dx.doi.org/10.2337/dc18-0071] [PMID: 29844096]
[22]
Wang, H.; Storlien, L.H.; Huang, X.F. Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am. J. Physiol. Endocrinol. Metab., 2002, 282(6), E1352-E1359.
[http://dx.doi.org/10.1152/ajpendo.00230.2001] [PMID: 12006366]
[23]
Lasker, S.; Rahman, M.M.; Parvez, F. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci. Rep., 2019, 9(1), 20026.
[http://dx.doi.org/10.1038/s41598-019-56538-0] [PMID: 31882854]
[24]
Riccardi, G.; Giacco, R.; Rivellese, A.A. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr., 2004, 23(4), 447-456.
[http://dx.doi.org/10.1016/j.clnu.2004.02.006] [PMID: 15297079]
[25]
Clifton, P. Metabolic Syndrome-Role of dietary fat type and quantity. Nutrients, 2019, 11(7), 1438.
[http://dx.doi.org/10.3390/nu11071438] [PMID: 31247933]
[26]
Flatt, J.P. Use and storage of carbohydrate and fat. Am. J. Clin. Nutr., 1995, 61(4), 952S-959S.
[http://dx.doi.org/10.1093/ajcn/61.4.952S]
[27]
Duan, Y.; Zeng, L.; Zheng, C. Inflammatory links between high fat diets and diseases. Front. Immunol., 2018, 9, 2649.
[http://dx.doi.org/10.3389/fimmu.2018.02649] [PMID: 30483273]
[28]
Kuipers, E.N.; Held, N.M.; in het Panhuis, W. A single day of high-fat diet feeding induces lipid accumulation and insulin resistance in brown adipose tissue in mice. Am. J. Physiol. Endocrinol. Metab., 2019, 317(5), E820-E830.
[http://dx.doi.org/10.1152/ajpendo.00123.2019] [PMID: 31386566]
[29]
Maharjan, B.R.; McLennan, S.V.; Yee, C.; Twigg, S.M.; Williams, P.F. The effect of a sustained high-fat diet on the metabolism of white and brown adipose tissue and its impact on insulin resistance: A selected time point cross-sectional study. Int. J. Mol. Sci., 2021, 22(24), 13639.
[http://dx.doi.org/10.3390/ijms222413639] [PMID: 34948432]
[30]
Yamamoto, T.; Takabatake, Y.; Takahashi, A. High-fat diet–induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. J. Am. Soc. Nephrol., 2017, 28(5), 1534-1551.
[http://dx.doi.org/10.1681/ASN.2016070731] [PMID: 27932476]
[31]
Hendley, M.A.; Isely, C.; Murphy, K.P.; Hall, H.E.; Annamalai, P.; Gower, R.M. Scaffold implant into the epididymal adipose tissue protects mice from high fat diet induced ectopic lipid accumulation and hyperinsulinemia. Front. Bioeng. Biotechnol., 2020, 8, 562.
[http://dx.doi.org/10.3389/fbioe.2020.00562] [PMID: 32612981]
[32]
Sikder, K.; Shukla, S.K.; Patel, N.; Singh, H.; Rafiq, K. High fat diet upregulates fatty acid oxidation and ketogenesis via intervention of PPAR-γ. Cell. Physiol. Biochem., 2018, 48(3), 1317-1331.
[http://dx.doi.org/10.1159/000492091] [PMID: 30048968]
[33]
Sun, Y.; Ge, X.; Li, X. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death Dis., 2020, 11(10), 914.
[http://dx.doi.org/10.1038/s41419-020-03122-4] [PMID: 33099578]
[34]
Todoric, J.; Di Caro, G.; Reibe, S. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat. Metab., 2020, 2(10), 1034-1045.
[http://dx.doi.org/10.1038/s42255-020-0261-2] [PMID: 32839596]
[35]
Ichigo, Y.; Takeshita, A.; Hibino, M. High-fructose diet-induced hypertriglyceridemia is associated with enhanced hepatic expression of ACAT2 in rats. Physiol. Res., 2019, 68(6), 1021-1026.
[http://dx.doi.org/10.33549/physiolres.934226] [PMID: 31647302]
[36]
Theytaz, F.; Noguchi, Y.; Egli, L. Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans. Am. J. Clin. Nutr., 2012, 96(5), 1008-1016.
[http://dx.doi.org/10.3945/ajcn.112.035139] [PMID: 23034968]
[37]
Hieronimus, B.; Stanhope, K.L. Dietary fructose and dyslipidemia. Curr. Opin. Lipidol., 2020, 31(1), 20-26.
[http://dx.doi.org/10.1097/MOL.0000000000000653] [PMID: 31789670]
[38]
Softic, S.; Gupta, M.K.; Wang, G.X. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J. Clin. Invest., 2017, 127(11), 4059-4074.
[http://dx.doi.org/10.1172/JCI94585] [PMID: 28972537]
[39]
Strable, M.S.; Ntambi, J.M. Genetic control of de novo lipogenesis: Role in diet-induced obesity. Crit. Rev. Biochem. Mol. Biol., 2010, 45(3), 199-214.
[http://dx.doi.org/10.3109/10409231003667500] [PMID: 20218765]
[40]
Saggerson, D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr., 2008, 28(1), 253-272.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155434] [PMID: 18598135]
[41]
Legeza, B.; Marcolongo, P.; Gamberucci, A. Fructose, glucocorticoids and adipose tissue: Implications for the metabolic syndrome. Nutrients, 2017, 9(5), 426.
[http://dx.doi.org/10.3390/nu9050426] [PMID: 28445389]
[42]
Schwarz, J.M.; Noworolski, S.M.; Wen, M.J. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab., 2015, 100(6), 2434-2442.
[http://dx.doi.org/10.1210/jc.2014-3678] [PMID: 25825943]
[43]
Aeberli, I.; Hochuli, M.; Gerber, P.A. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: A randomized controlled trial. Diabetes Care, 2013, 36(1), 150-156.
[http://dx.doi.org/10.2337/dc12-0540] [PMID: 22933433]
[44]
Sigala, D.M.; Hieronimus, B.; Medici, V. Consuming sucrose- or HFCS-sweetened beverages increases hepatic lipid and decreases insulin sensitivity in adults. J. Clin. Endocrinol. Metab., 2021, 106(11), 3248-3264.
[http://dx.doi.org/10.1210/clinem/dgab508] [PMID: 34265055]
[45]
Teff, K.L.; Elliott, S.S.; Tschöp, M.; Kieffer, T.J.; Rader, D.; Heiman, M. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab., 2004, 2963-2972.
[http://dx.doi.org/10.1210/jc.2003-031855]
[46]
Weaver, D.J., Jr Uric acid and progression of chronic kidney disease. Pediatr. Nephrol., 2019, 34(5), 801-809.
[http://dx.doi.org/10.1007/s00467-018-3979-2] [PMID: 29931555]
[47]
Pascual, V.; Serrano, A.; Pedro-Botet, J. Enfermedad renal crónica y dislipidemia. Clin. Investig. Arterioscler., 2017, 29(1), 22-35.
[PMID: 27863896]
[48]
DiNicolantonio, J.J.; O’Keefe, J.H. Effects of dietary fats on blood lipids: A review of direct comparison trials. Open Heart, 2018, 5(2), e000871.
[http://dx.doi.org/10.1136/openhrt-2018-000871] [PMID: 30094038]
[49]
Trautwein, E.A.; McKay, S. The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients, 2020, 12(9), 2671.
[http://dx.doi.org/10.3390/nu12092671] [PMID: 32883047]
[50]
Tuzcu, Z; Orhan, C; Sahin, N; Juturu, V; Sahin, K Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxid Med Cell Longev, 2017, 2017
[http://dx.doi.org/10.1155/2017/1583098]
[51]
Ruuth, M.; Lahelma, M.; Luukkonen, P.K. Overfeeding saturated fat increases ldl (low- density lipoprotein) aggregation susceptibility while overfeeding unsaturated fat decreases proteoglycan-binding of lipoproteins. Arterioscler. Thromb. Vasc. Biol., 2021, 41(11), 2823-2836.
[http://dx.doi.org/10.1161/ATVBAHA.120.315766] [PMID: 34470478]
[52]
Zhu, L.; Luu, T.; Emfinger, C.H. CETP inhibition improves HDL function but leads to fatty liver and insulin resistance in cetp-expressing transgenic mice on a high-fat diet. Diabetes, 2018, 67(12), 2494-2506.
[http://dx.doi.org/10.2337/db18-0474] [PMID: 30213825]
[53]
Subramanian, S.; Chait, A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2012, 1821(5), 819-825.
[http://dx.doi.org/10.1016/j.bbalip.2011.10.003] [PMID: 22005032]
[54]
Deeb, S.S.; Zambon, A.; Carr, M.C.; Ayyobi, A.F.; Brunzell, J.D. Hepatic lipase and dyslipidemia: Interactions among genetic variants, obesity, gender, and diet. J. Lipid Res., 2003, 44(7), 1279-1286.
[http://dx.doi.org/10.1194/jlr.R200017-JLR200] [PMID: 12639974]
[55]
Papotti, B.; Escolà-Gil, J.C.; Julve, J.; Potì, F.; Zanotti, I. Impact of dietary lipids on the reverse cholesterol transport: What we learned from animal studies. Nutrients, 2021, 13(8), 2643.
[http://dx.doi.org/10.3390/nu13082643] [PMID: 34444804]
[56]
Yazıcı D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv. Exp. Med. Biol., 2017, 960, 277-304.
[http://dx.doi.org/10.1007/978-3-319-48382-5_12] [PMID: 28585204]
[57]
Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature, 2006, 444(7121), 881-887.
[http://dx.doi.org/10.1038/nature05488] [PMID: 17167477]
[58]
Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res., 2014, 55(3), 561-572.
[http://dx.doi.org/10.1194/jlr.P040501] [PMID: 24371263]
[59]
Rangel Silvares, R.; Nunes Goulart da Silva Pereira, E.; Eduardo Ilaquita Flores, E. High-fat diet-induced kidney alterations in rats with metabolic syndrome: Endothelial dysfunction and decreased antioxidant defense. Diabetes Metab. Syndr. Obes., 2019, 12, 1773-1781.
[http://dx.doi.org/10.2147/DMSO.S211253]
[60]
Yang, X.; Okamura, D.M.; Lu, X. CD36 in chronic kidney disease: Novel insights and therapeutic opportunities. Nat. Rev. Nephrol., 2017, 13(12), 769-781.
[http://dx.doi.org/10.1038/nrneph.2017.126] [PMID: 28919632]
[61]
Zhao, J.; Rui, H.L.; Yang, M.; Sun, L.J.; Dong, H.R.; Cheng, H. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediat Inflamm, 2019, 2019
[62]
Hua, W.; Huang, H.; Tan, L. CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS One, 2015, 10(5), e0127507.
[http://dx.doi.org/10.1371/journal.pone.0127507] [PMID: 26000608]
[63]
Yang, P.; Xiao, Y.; Luo, X. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice. J. Lipid Res., 2017, 58(7), 1417-1427.
[http://dx.doi.org/10.1194/jlr.M076216] [PMID: 28536108]
[64]
Gewin, L.S. Sugar or fat? Renal tubular metabolism reviewed in health and disease. Nutrients, 2021, 13(5), 1580.
[http://dx.doi.org/10.3390/nu13051580] [PMID: 34065078]
[65]
Adeosun, S.O.; Gordon, D.M.; Weeks, M.F. Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. Am. J. Physiol. Renal Physiol., 2018, 315(2), F323-F331.
[http://dx.doi.org/10.1152/ajprenal.00495.2017] [PMID: 29631357]
[66]
Kang, H.M.; Ahn, S.H.; Choi, P. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med., 2015, 21(1), 37-46.
[http://dx.doi.org/10.1038/nm.3762] [PMID: 25419705]
[67]
Szeto, H.H. Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J. Am. Soc. Nephrol., 2017, 28(10), 2856-2865.
[http://dx.doi.org/10.1681/ASN.2017030247] [PMID: 28778860]
[68]
Szeto, H.H.; Liu, S.; Soong, Y.; Alam, N.; Prusky, G.T.; Seshan, S.V. Protection of mitochondria prevents high-fat diet–induced glomerulopathy and proximal tubular injury. Kidney Int., 2016, 90(5), 997-1011.
[http://dx.doi.org/10.1016/j.kint.2016.06.013] [PMID: 27519664]
[69]
Console, L.; Scalise, M.; Giangregorio, N.; Tonazzi, A.; Barile, M.; Indiveri, C. The link between the mitochondrial fatty acid oxidation derangement and kidney injury. Front. Physiol., 2020, 11, 794.
[http://dx.doi.org/10.3389/fphys.2020.00794] [PMID: 32733282]
[70]
Druilhet, R.E.; Overturf, M.L.; Kirkendall, W.M. Structure of neutral glycerides and phosphoglycerides of human kidney. Int. J. Biochem., 1975, 6(12), 893-901.
[http://dx.doi.org/10.1016/0020-711X(75)90010-5]
[71]
Rouser, G.; Simon, G.; Kritchevsky, G. Species variations in phospholipid class distribution of organs: I. Kidney, liver and spleen. Lipids, 1969, 4(6), 599-606.
[http://dx.doi.org/10.1007/BF02531047] [PMID: 5367944]
[72]
Weidemann, M.J.; Krebs, H.A. The fuel of respiration of rat kidney cortex. Biochem. J., 1969, 112(2), 149-166.
[http://dx.doi.org/10.1042/bj1120149] [PMID: 5805283]
[73]
Bobulescu, I.A. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens., 2010, 19(4), 393-402.
[http://dx.doi.org/10.1097/MNH.0b013e32833aa4ac] [PMID: 20489613]
[74]
Yang, H.; Galea, A.; Sytnyk, V.; Crossley, M. Controlling the size of lipid droplets: Lipid and protein factors. Curr. Opin. Cell Biol., 2012, 24(4), 509-516.
[http://dx.doi.org/10.1016/j.ceb.2012.05.012] [PMID: 22726586]
[75]
Miricescu, D.; Balan, D.; Tulin, A. Impact of adipose tissue in chronic kidney disease development (Review). Exp. Ther. Med., 2021, 21(5), 539.
[http://dx.doi.org/10.3892/etm.2021.9969] [PMID: 33815612]
[76]
Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients, 2019, 11(7), 1664.
[http://dx.doi.org/10.3390/nu11071664] [PMID: 31330812]
[77]
Muller, C.R.; Leite, A.P.O.; Yokota, R. Post-weaning exposure to high-fat diet induces kidney lipid accumulation and function impairment in adult rats. Front. Nutr., 2019, 6, 60.
[http://dx.doi.org/10.3389/fnut.2019.00060] [PMID: 31131281]
[78]
Yamagata, K.; Ishida, K.; Sairenchi, T. Risk factors for chronic kidney disease in a community-based population: A 10-year follow-up study. Kidney Int., 2007, 71(2), 159-166.
[http://dx.doi.org/10.1038/sj.ki.5002017] [PMID: 17136030]
[79]
Afshinnia, F.; Rajendiran, T.M.; Soni, T. Impaired B-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol., 2018, 29(1), 295-306.
[http://dx.doi.org/10.1681/ASN.2017030350] [PMID: 29021384]
[80]
Opazo-Ríos, L.; Mas, S.; Marín-Royo, G. Lipotoxicity and diabetic nephropathy: Novel mechanistic insights and therapeutic opportunities. Int. J. Mol. Sci., 2020, 21(7), 2632.
[http://dx.doi.org/10.3390/ijms21072632] [PMID: 32290082]
[81]
Lin, P.H.; Duann, P. Dyslipidemia in kidney disorders: Perspectives on mitochondria homeostasis and therapeutic opportunities. Front. Physiol., 2020, 11, 1050.
[http://dx.doi.org/10.3389/fphys.2020.01050] [PMID: 33013450]
[82]
Wang, H.; Zhang, S.; Guo, J. Lipotoxic proximal tubular injury: A primary event in diabetic kidney disease. Front. Med. (Lausanne), 2021, 8, 751529.
[http://dx.doi.org/10.3389/fmed.2021.751529] [PMID: 34760900]
[83]
Moorhead, J.F.; El-Nahas, M.; Chan, M.K.; Varghese, Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet, 1982, 320(8311), 1309-1311.
[http://dx.doi.org/10.1016/S0140-6736(82)91513-6] [PMID: 6128601]
[84]
Hosokawa, K.; Takata, T.; Sugihara, T. Ipragliflozin ameliorates endoplasmic reticulum stress and apoptosis through preventing ectopic lipid deposition in renal tubules. Int. J. Mol. Sci., 2019, 21(1), 190.
[http://dx.doi.org/10.3390/ijms21010190] [PMID: 31888083]
[85]
Yamashita, S.; Masuda, D.; Matsuzawa, Y. Pemafibrate, a new selective PPARα modulator: Drug concept and its clinical applications for dyslipidemia and metabolic diseases. Curr. Atheroscler. Rep., 2020, 22(1), 5.
[http://dx.doi.org/10.1007/s11883-020-0823-5] [PMID: 31974794]
[86]
Escasany, E.; Izquierdo-Lahuerta, A.; Medina-Gomez, G. Underlying mechanisms of renal lipotoxicity in obesity. Nephron J., 2019, 143(1), 28-32.
[http://dx.doi.org/10.1159/000494694] [PMID: 30625473]
[87]
Katsoulieris, E.; Mabley, J.G.; Samai, M.; Sharpe, M.A.; Green, I.C.; Chatterjee, P.K. Lipotoxicity in renal proximal tubular cells: Relationship between endoplasmic reticulum stress and oxidative stress pathways. Free Radic. Biol. Med., 2010, 48(12), 1654-1662.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.021] [PMID: 20363316]
[88]
Iwai, T.; Kume, S.; Chin-Kanasaki, M. Stearoyl-coA desaturase-1 protects cells against lipotoxicity-mediated apoptosis in proximal tubular cells. Int. J. Mol. Sci., 2016, 17(11), 1868.
[http://dx.doi.org/10.3390/ijms17111868] [PMID: 27834856]
[89]
Sieber, J.; Weins, A.; Kampe, K. Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2. Am. J. Pathol., 2013, 183(3), 735-744.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.023] [PMID: 23867797]
[90]
Sieber, J.; Jehle, A.W. Free Fatty acids and their metabolism affect function and survival of podocytes. Front. Endocrinol. (Lausanne), 2014, 5, 186.
[http://dx.doi.org/10.3389/fendo.2014.00186] [PMID: 25386168]
[91]
Wang, Q.; Liu, S.; Zhai, A.; Zhang, B.; Tian, G. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biol. Pharm. Bull., 2018, 41(7), 985-993.
[http://dx.doi.org/10.1248/bpb.b17-00724] [PMID: 29709897]
[92]
Park, M.J.; Han, H.J.; Kim, D. Il. Lipotoxicity-induced PRMT1 exacerbates mesangial cell apoptosis via endoplasmic reticulum stress. Int. J. Mol. Sci., 2017, 18.
[93]
Nishikawa, T; Kobori, S; Takeda, H β-Migrating very low density lipoproteins induce foam cell formation in mouse mesangial cells. Atherosclerosis, 1995, 114(1), 123-132.
[http://dx.doi.org/10.1016/0021-9150(94)05476-Y] [PMID: 7605371]
[94]
Martínez-García, C.; Izquierdo-Lahuerta, A.; Vivas, Y. Renal lipotoxicity-associated inflammation and insulin resistance affects actin cytoskeleton organization in podocytes. PLoS One, 2015, 10(11), e0142291.
[http://dx.doi.org/10.1371/journal.pone.0142291] [PMID: 26545114]
[95]
Lu, J.; Chen, P.P.; Zhang, J.X. GPR43 activation-mediated lipotoxicity contributes to podocyte injury in diabetic nephropathy by modulating the ERK/EGR1 pathway. Int. J. Biol. Sci., 2022, 18(1), 96-111.
[http://dx.doi.org/10.7150/ijbs.64665] [PMID: 34975320]
[96]
de Castro, U.G.M.; dos Santos, R.A.S.A.S.; Silva, M.E.; de Lima, W.G.; Campagnole-Santos, M.J.; Alzamora, A.C. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis., 2013, 12(1), 136.
[http://dx.doi.org/10.1186/1476-511X-12-136] [PMID: 24044579]
[97]
Nicholson, R.J.; Pezzolesi, M.G.; Summers, S.A. Rotten to the cortex: Ceramide-mediated lipotoxicity in diabetic kidney disease. Front. Endocrinol. (Lausanne), 2021, 11, 622692.
[http://dx.doi.org/10.3389/fendo.2020.622692] [PMID: 33584550]
[98]
Kimmelstiel, P.; Wilson, C. Intercapillary lesions in the glomeruli of the kidney. Am. J. Pathol., 1936, 12, 83-98.
[99]
Sun, Y.; Cui, S.; Hou, Y.; Yi, F. The updates of podocyte lipid metabolism in proteinuric kidney disease. Kidney Dis., 2021, 7(6), 438-451.
[http://dx.doi.org/10.1159/000518132] [PMID: 34901191]
[100]
Panduru, N.M.; Forsblom, C.; Saraheimo, M. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care, 2013, 36(7), 2077-2083.
[http://dx.doi.org/10.2337/dc12-1868] [PMID: 23378622]
[101]
Altunkaynak, M.E.; Özbek, E.; Altunkaynak, B.Z. Can İ Unal D, Unal B. The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. J. Anat., 2008, 212(6), 845-852.
[http://dx.doi.org/10.1111/j.1469-7580.2008.00902.x] [PMID: 18510511]
[102]
Nascimento, A.R.; Machado, M.; de Jesus, N. Structural and functional microvascular alterations in a rat model of metabolic syndrome induced by a high-fat diet. Obesity (Silver Spring), 2013, 21(10), 2046-2054.
[http://dx.doi.org/10.1002/oby.20358] [PMID: 23512529]
[103]
Glastras, S.J.; Chen, H.; Teh, R. Mouse models of diabetes, obesity and related kidney disease. PLoS One, 2016, 11(8), e0162131.
[http://dx.doi.org/10.1371/journal.pone.0162131] [PMID: 27579698]
[104]
Kaburagi, T.; Kanaki, K.; Otsuka, Y.; Hino, R. Low-carbohydrate diet inhibits different advanced glycation end products in kidney depending on lipid composition but causes adverse morphological changes in a non-obese model mice. Nutrients, 2019, 11(11), 2801.
[http://dx.doi.org/10.3390/nu11112801] [PMID: 31744125]
[105]
Breyer, M.D.; Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov., 2016, 15(8), 568-588.
[http://dx.doi.org/10.1038/nrd.2016.67] [PMID: 27230798]
[106]
Weir, M.R.; Lakkis, J.I.; Jaar, B. Use of renin-angiotensin system blockade in advanced CKD: An NKF-KDOQI controversies report. Am. J. Kidney Dis., 2018, 72(6), 873-884.
[http://dx.doi.org/10.1053/j.ajkd.2018.06.010] [PMID: 30201547]
[107]
Ash, S.; Campbell, K.; Bogard, J.; Millichamp, A. Nutrition prescription to achieve positive outcomes in chronic kidney disease: A systematic review. Nutrients, 2014, 6(1), 416-451.
[http://dx.doi.org/10.3390/nu6010416] [PMID: 24451311]
[108]
Palmer, S.C.; Maggo, J.K.; Campbell, K.L. Dietary interventions for adults with chronic kidney disease. Cochrane Libr., 2017, 2017(4), CD011998.
[http://dx.doi.org/10.1002/14651858.CD011998.pub2] [PMID: 28434208]
[109]
Kume, S.; Uzu, T.; Horiike, K. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[110]
Robertson, L.T.; Treviño-Villarreal, J.H.; Mejia, P. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J. Nutr., 2015, 145(8), 1717-1727.
[http://dx.doi.org/10.3945/jn.114.199380] [PMID: 26041674]
[111]
Wang, W.; Cai, G.; Ning, Y. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats. Sci. Rep., 2016, 6(1), 30292.
[http://dx.doi.org/10.1038/srep30292] [PMID: 27456368]
[112]
Wang, S.Y.; Cai, G.Y.; Chen, X.M. Energy restriction in renal protection. Br. J. Nutr., 2018, 120(10), 1149-1158.
[http://dx.doi.org/10.1017/S0007114518002684] [PMID: 30401006]
[113]
Barter, P.J.; Rye, K.A. New era of lipid-lowering drugs. Pharmacol. Rev., 2016, 68(2), 458-475.
[http://dx.doi.org/10.1124/pr.115.012203] [PMID: 26983688]
[114]
Kim, Y.; Park, C.W. Mechanisms of adiponectin action: Implication of adiponectin receptor agonism in diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(7), 1782.
[http://dx.doi.org/10.3390/ijms20071782] [PMID: 30974901]
[115]
Esmeijer, K.; Dekkers, O.M.; de Fijter, J.W.; Dekker, F.W.; Hoogeveen, E.K. Effect of different types of statins on kidney function decline and proteinuria: A network meta-analysis. Sci. Rep., 2019, 9(1), 16632.
[http://dx.doi.org/10.1038/s41598-019-53064-x] [PMID: 31719617]
[116]
Tonolo, G.; Melis, M.G.; Formato, M. Additive effects of Simvastatin beyond its effects on LDL cholesterol in hypertensive type 2 diabetic patients. Eur. J. Clin. Invest., 2000, 30(11), 980-987.
[http://dx.doi.org/10.1046/j.1365-2362.2000.00735.x] [PMID: 11114960]
[117]
Yu, H.; Jin, F.; Liu, D. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics, 2020, 10(5), 2342-2357.
[http://dx.doi.org/10.7150/thno.40395] [PMID: 32104507]
[118]
Liu, A.; Wu, Q.; Guo, J. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol. Ther., 2019, 195, 54-84.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.004] [PMID: 30321555]
[119]
Luan, Z.L.; Zhang, C.; Ming, W.H.; Huang, Y.Z.; Guan, Y.F.; Zhang, X.Y. Nuclear receptors in renal health and disease. EBioMedicine, 2022, 76, 103855.
[http://dx.doi.org/10.1016/j.ebiom.2022.103855] [PMID: 35123268]
[120]
Tanaka, Y.; Kume, S.; Araki, S. Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int., 2011, 79(8), 871-882.
[http://dx.doi.org/10.1038/ki.2010.530] [PMID: 21270762]
[121]
McQuade, C.R.; Griego, J.; Anderson, J.; Pai, A.B. Elevated serum creatinine levels associated with fenofibrate therapy. Am. J. Health Syst. Pharm., 2008, 65(2), 138-141.
[http://dx.doi.org/10.2146/ajhp070005] [PMID: 18192258]
[122]
Kostapanos, M.S.; Florentin, M.; Elisaf, M.S. Fenofibrate and the kidney: An overview. Eur. J. Clin. Invest., 2013, 43(5), 522-531.
[http://dx.doi.org/10.1111/eci.12068] [PMID: 23480615]
[123]
Yokote, K.; Yamashita, S.; Arai, H. Long-term efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor-α modulator (SPPARMα), in dyslipidemic patients with renal impairment. Int. J. Mol. Sci., 2019, 20(3), 706.
[http://dx.doi.org/10.3390/ijms20030706] [PMID: 30736366]
[124]
Meléndez-Salcido, C.G.; Vargas-Ortiz, K.; Silva-Gaona, O.G.; León-García, M.C.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J. Curcumin modulates the expression of PPARα CPT1, and MCAD to prevent lipid metabolism alterations in the hearts of mice fed with a HFD. Curr Funct Foods, 2022, 01
[http://dx.doi.org/10.2174/2666862901666220426103916]
[125]
Pei, K; Gui, T; Li, C; Zhang, Q; Feng, H; Li, Y Recent progress on lipid intake and chronic kidney disease. Biomed Res Int, 2020, 2020
[http://dx.doi.org/10.1155/2020/3680397]
[126]
Wang, X.X.; Jiang, T.; Shen, Y. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Renal Physiol., 2009, 297(6), F1587-F1596.
[127]
Han, S.Y.; Song, H.K.; Cha, J.J.; Han, J.Y.; Kang, Y.S.; Cha, D.R. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model. Acta Diabetol., 2021, 58(4), 495-503.
[http://dx.doi.org/10.1007/s00592-020-01652-z] [PMID: 33399988]
[128]
Li, S.; Ghoshal, S.; Sojoodi, M. The farnesoid X receptor agonist EDP305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction. FASEB J., 2019, 33(6), 7103-7112.
[http://dx.doi.org/10.1096/fj.201801699R] [PMID: 30884252]
[129]
Gai, Z.; Gui, T.; Hiller, C.; Kullak-Ublick, G.A. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. J. Biol. Chem., 2016, 291(5), 2397-2411.
[http://dx.doi.org/10.1074/jbc.M115.694323] [PMID: 26655953]
[130]
Herman-Edelstein, M.; Weinstein, T.; Levi, M. Bile acid receptors and the kidney. Curr. Opin. Nephrol. Hypertens., 2018, 27(1), 56-62.
[http://dx.doi.org/10.1097/MNH.0000000000000374] [PMID: 29045336]
[131]
Souza, A.C.P.; Bocharov, A.V.; Baranova, I.N. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation. Kidney Int., 2016, 89(4), 809-822.
[http://dx.doi.org/10.1016/j.kint.2015.12.043] [PMID: 26994575]
[132]
Yang, Y.L.; Lin, S.H.; Chuang, L.Y. CD36 is a novel and potential anti-fibrogenic target in albumin-induced renal proximal tubule fibrosis. J. Cell. Biochem., 2007, 101(3), 735-744.
[http://dx.doi.org/10.1002/jcb.21236] [PMID: 17226761]
[133]
Guerreiro, Í.; Ferreira-Pêgo, C.; Carregosa, D. Polyphenols and their metabolites in renal diseases: An overview. Foods, 2022, 11(7), 1060.
[http://dx.doi.org/10.3390/foods11071060] [PMID: 35407148]
[134]
Caro-Ordieres, T.; Marín-Royo, G.; Opazo-Ríos, L. The coming age of flavonoids in the treatment of diabetic complications. J. Clin. Med., 2020, 9(2), 346.
[http://dx.doi.org/10.3390/jcm9020346] [PMID: 32012726]
[135]
Ren, Q.; Guo, F.; Tao, S.; Huang, R.; Ma, L.; Fu, P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed. Pharmacother., 2020, 122, 109772.
[http://dx.doi.org/10.1016/j.biopha.2019.109772]
[136]
Kim, B.H.; Lee, E.S.; Choi, R. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med. J., 2016, 57(3), 664-673.
[http://dx.doi.org/10.3349/ymj.2016.57.3.664] [PMID: 26996567]
[137]
de Almeida Alvarenga, L.; Leal, V.O.; Borges, N.A. Curcumin - A promising nutritional strategy for chronic kidney disease patients. J. Funct. Foods, 2018, 40, 715-721.
[http://dx.doi.org/10.1016/j.jff.2017.12.015]
[138]
Lee, E.S.; Kwon, M.H.; Kim, H.M. Dibenzoylmethane ameliorates lipid-induced inflammation and oxidative injury in diabetic nephropathy. J. Endocrinol., 2019, 240(2), 169-179.
[http://dx.doi.org/10.1530/JOE-18-0206] [PMID: 30475214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy