Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Vaccination Against SARS-CoV-2 Protects from COVID-19-induced Endothelial Dysfunction

Author(s): Evangelos Oikonomou*, Stamatios Lampsas*, Nektarios Souvaliotis, Savvas Sarantos, Gerasimos Siasos, Garyphallia Poulakou, Thekla Lytra, Georgios Angelos Papamikroulis, Nikolaos Fountoulakis, Panagiotis Theofilis, Dionysios Tsoukalas, Maria Ioanna Gounaridi, Aikaterini Tsatsaragkou, Georgios Marinos, Dimitris Tousoulis and Manolis Vavuranakis

Volume 28, Issue 39, 2022

Published on: 03 November, 2022

Page: [3225 - 3230] Pages: 6

DOI: 10.2174/1381612829666221020154246

Price: $65

Abstract

Background: Coronavirus Disease-19 (COVID-19) is implicated in endotheliitis, which adversely affects cardiovascular events. The impact of vaccination with COVID-19 on the clinical outcome of patients is documented.

Objective: To evaluate the impact of vaccination with COVID-19 on the severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection-related endothelial impairment.

Methods: We enrolled 45 patients hospitalized for COVID-19 (either vaccinated or not against SARS-CoV-2). Clinical and laboratory data were collected, and brachial artery flow-mediated dilation (FMD) was evaluated. Subjects without COVID-19 were used as the control group.

Results: There was no difference in age (64.7 ± 7.5 years vs. 61.2 ± 11.1 years vs. 62.4 ± 9.5, p = 0.28), male sex (49% vs. 60% vs. 52%, p = 0.71), control subjects, vaccinated, and unvaccinated subjects with COVID-19, respectively. Of the patients with COVID-19, 44% were vaccinated against SARS-CoV-2. Unvaccinated COVID-19 patients had significantly impaired FMD compared to vaccinated COVID-19 patients and Control subjects (2.05 ± 2.41 % vs. 7.24 ± 2.52% vs. 7.36 ± 2.94 %, p <0.001). Importantly, post hoc tests revealed that unvaccinated COVID-19 patients had significantly impaired FMD from both Vaccinated COVID-19 subjects (p <0.001) and from Control subjects (p <0.001). There was no difference in FMD between the control group and the vaccinated COVID-19 group (p = 0.99).

Conclusion: Hospitalized patients with COVID-19 present endothelial dysfunction in the acute phase of the disease. Endothelial function in unvaccinated patients with COVID-19 is impaired compared to control subjects as well compared to vaccinated patients with COVID-19. Vaccinated hospitalized subjects with COVID-19 do not show endothelial dysfunction, strengthening the protective role of vaccination against SARS-CoV-2.

[1]
Duong TN, Mai LTQ, Hien NT, et al. The first community outbreak of COVID-19 in Viet Nam: Description and lessons learned. Western Pac Surveill Response J 2019; 12(2): 42-50.
[PMID: 34540312]
[2]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the func-tional receptor for SARS coronavirus. A first step in under-standing SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[3]
Petersen EL, Goßling A, Adam G, et al. Multi-organ assess-ment in mainly non-hospitalized individuals after SARS-CoV-2 infection: The hamburg city health study COVID pro-gramme. Eur Heart J 2022; 43(11): 1124-37.
[http://dx.doi.org/10.1093/eurheartj/ehab914] [PMID: 34999762]
[4]
Pessoa-Amorim G, Mafham MM. The RECOVERY trial: Cardiovascular implications of a large, simple randomized trial in COVID-19. Cardiovasc Res 2021; 117(9): e110-3.
[http://dx.doi.org/10.1093/cvr/cvab239] [PMID: 34320164]
[5]
Theofilis P, Sagris M, Oikonomou E, et al. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 2021; 9(7): 781.
[http://dx.doi.org/10.3390/biomedicines9070781] [PMID: 34356845]
[6]
Thijssen DHJ, Bruno RM, van Mil ACCM, et al. Expert con-sensus and evidence-based recommendations for the as-sessment of flow-mediated dilation in humans. Eur Heart J 2019; 40(30): 2534-47.
[http://dx.doi.org/10.1093/eurheartj/ehz350] [PMID: 31211361]
[7]
Thijssen DHJ, Black MA, Pyke KE, et al. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am J Physiol Heart Circ Physiol 2011; 300(1): H2-H12.
[http://dx.doi.org/10.1152/ajpheart.00471.2010] [PMID: 20952670]
[8]
Lampsas S, Tsaplaris P, Pantelidis P, et al. The role of endo-thelial related circulating biomarkers in COVID-19. A sys-tematic review and meta-analysis. Curr Med Chem 2021; 26.
[http://dx.doi.org/10.2174/0929867328666211026124033] [PMID: 34702152]
[9]
Theofilis P, Sagris M, Antonopoulos AS, Oikonomou E, Tsioufis C, Tousoulis D. Inflammatory mediators of platelet activation: Focus on atherosclerosis and COVID-19. Int J Mol Sci 2021; 22(20): 11170.
[http://dx.doi.org/10.3390/ijms222011170] [PMID: 34681830]
[10]
Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: A consensus paper from the ESC working group on coronary pathophysiology & Microcircu-lation, ESC Working Group on Thrombosis and the Associa-tion for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res 2021; 117(14): 2705-29.
[http://dx.doi.org/10.1093/cvr/cvab298] [PMID: 34528075]
[11]
Siasos G, Zografos T, Oikonomou E, Papavassiliou AG, Stefanadis C, Tousoulis D. Flow-mediated dilation: Is it just a research tool or a useful biomarker for cardiovascular prognosis. Int J Cardiol 2015; 180: 154-7.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.209] [PMID: 25438239]
[12]
Oikonomou E, Souvaliotis N, Lampsas S, et al. Endothelial dysfunction in acute and long standing COVID−19: A pro-spective cohort study. Vascul Pharmacol 2022; 144: 106975.
[http://dx.doi.org/10.1016/j.vph.2022.106975] [PMID: 35248780]
[13]
Lampsas S, Oikonomou E, Siasos G, et al. Mid-term endothelial dysfunction post COVID-19. Eur Heart J 2021; 42: ehab724.3401.
[http://dx.doi.org/10.1093/eurheartj/ehab724.3401]
[14]
Vieceli Dalla Sega F, Fortini F, Spadaro S, et al. Time course of endothelial dysfunction markers and mortality in COVID‐19 patients: A pilot study. Clin Transl Med 2021; 11(3): e283.
[http://dx.doi.org/10.1002/ctm2.283] [PMID: 33784001]
[15]
Tehrani S, Gille-Johnson P. Microvascular dysfunction in patients with critical covid-19, a pilot study. Shock 2021; 56(6): 964-8.
[http://dx.doi.org/10.1097/SHK.0000000000001803] [PMID: 33958544]
[16]
Coronavirus pandemic (COVID-19). Our World Data 2020. Available from: https://ourworldindata.org/coronavirus (Accessed on: 29 August 2022).
[17]
Archive of COVID-19 country overview and surveillance reports. Available from: https://covid19-surveillance-report.ecdc.europa.eu/ archive-COVID19-reports/index.html (Accessed on: 13 February 2022).
[18]
R&D Blueprint and COVID-19. Available from: https://www.who.int/teams/blueprint/covid-19 (Accessed on: 17 February 2022).
[19]
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Ob-servational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007; 370(9596): 1453-7.
[http://dx.doi.org/10.1016/S0140-6736(07)61602-X] [PMID: 18064739]
[20]
Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111-88.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[21]
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guide-lines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[22]
Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstruc-tive lung disease: The gold science committee report 2019. Eur Respir J 2019; 53(5): 1900164.
[http://dx.doi.org/10.1183/13993003.00164-2019] [PMID: 30846476]
[23]
Mauer Y, Taliercio RM. Managing adult asthma: The 2019 GINA guidelines. Cleve Clin J Med 2020; 87(9): 569-75.
[http://dx.doi.org/10.3949/ccjm.87a.19136] [PMID: 32868307]
[24]
Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145(4): 247-54.
[http://dx.doi.org/10.7326/0003-4819-145-4-200608150-00004] [PMID: 16908915]
[25]
Oliveira MR, Back GD, da Luz Goulart C, Domingos BC, Arena R, Borghi-Silva A. Endothelial function provides early prognostic information in patients with COVID-19: A cohort study. Respir Med 2021; 185: 106469.
[http://dx.doi.org/10.1016/j.rmed.2021.106469] [PMID: 34175806]
[26]
Bianconi V, Mannarino MR, Figorilli F, et al. Low brachial artery flow-mediated dilation predicts worse prognosis in hospitalized patients with COVID-19. J Clin Med 2021; 10(22): 5456.
[http://dx.doi.org/10.3390/jcm10225456] [PMID: 34830738]
[27]
Heubel AD, Viana AA, Linares SN, et al. Determinants of endothelial dysfunction in noncritically ill hospitalized COVID-19 patients: A cross-sectional study. Obesity (Silver Spring) 2022; 30(1): 165-71.
[http://dx.doi.org/10.1002/oby.23311] [PMID: 34554646]
[28]
Jud P, Gressenberger P, Muster V, et al. Evaluation of endo-thelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection-a cross-sectional study. Front Cardiovasc Med 2021; 8: 750887.
[http://dx.doi.org/10.3389/fcvm.2021.750887] [PMID: 34722682]
[29]
Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of COVID-19 vaccines in ambulatory and inpatient care set-tings. N Engl J Med 2021; 385(15): 1355-71.
[http://dx.doi.org/10.1056/NEJMoa2110362] [PMID: 34496194]
[30]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[31]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[32]
Kaur R, Dutta S, Charan J, et al. Cardiovascular adverse events reported from covid-19 vaccines: A study based on WHO database. Int J Gen Med 2021; 14: 3909-27.
[http://dx.doi.org/10.2147/IJGM.S324349] [PMID: 34349544]
[33]
Kantarcioglu B, Iqbal O, Walenga JM, et al. An update on the pathogenesis of COVID-19 and the reportedly rare thrombot-ic events following vaccination. Clin Appl Thromb Hemost 2021; 27.
[http://dx.doi.org/10.1177/10760296211021498] [PMID: 34060379]
[34]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infec-tion and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[35]
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 2020; 383(2): 120-8.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[36]
Dirican A, Ildir S, Uzar T, Karaman I, Ozkaya S. The role of endotheliitis in COVID‐19: Real‐world experience of 11 190 patients and literature review for a pathophysiological map to clinical categorisation. Int J Clin Pract 2021; 75(11): e14843.
[http://dx.doi.org/10.1111/ijcp.14843] [PMID: 34519155]
[37]
Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of COVID-19. N Engl J Med 2020; 382(25): 2441-8.
[http://dx.doi.org/10.1056/NEJMoa2008975] [PMID: 32356628]
[38]
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vac-cine strategies. Nat Rev Immunol 2020; 20(10): 615-32.
[http://dx.doi.org/10.1038/s41577-020-00434-6] [PMID: 32887954]
[39]
Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021; 11(1): 316-29.
[http://dx.doi.org/10.7150/thno.49713] [PMID: 33391477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy