Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

State-of-the-art Tools to Elucidate the Therapeutic Potential of TAT-peptide (TP) Conjugated Repurposing Drug Against SARS-CoV-2 Spike Glycoproteins

Author(s): Mohammad Azam Ansari*, Mohammad N. Alomary, Qazi Mohammad Sajid Jamal, Yosif Almoshari, Ahmed Salawi, Suliman A. Almahmoud and Johra Khan

Volume 28, Issue 46, 2022

Published on: 27 October, 2022

Page: [3706 - 3719] Pages: 14

DOI: 10.2174/1381612829666221019144259

Price: $65

conference banner
Abstract

Background: In late 2019, a highly infectious and pathogenic coronavirus was recognized as Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2), which causes acute respiratory disease, threatening human health and public safety. A total of 448,327,303 documented cases and 6,028,576 deaths have been reported as of March 8th 2022. The COVID-19 vaccines currently undergoing clinical trials or already in use should provide at least some protection against SARS-CoV-2; however, the emergence of new variations as a result of mutations may lessen the effectiveness of the currently available vaccines. Since the efficacy of available drugs and vaccines against COVID-19 is notably lower, there is an urgent need to develop a potential drug to treat this deadly disease. The SARS-CoV-2 spike (SCoV-SG) is the foremost drug target among coronaviruses.

Objective: The major objectives of the current study are to conduct a molecular docking study investigation of TAT-peptide47-57(GRKKRRQRRRP)-conjugated remodified therapeutics such as ritonavir (RTV), lopinavir (LPV), favipiravir (FPV), remdesivir (RMV), hydroxychloroquine (HCQ), molnupiravir (MNV) and nirmatrelvir (NMV) with (SCoV-SG) structure.

Methods: Molecular docking analysis was performed to study the interaction of repurposed drugs and drugs conjugated with the TAT-peptide with target SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) using Auto- Dock. Further docking investigation was completed with PatchDock and was visualized by the discovery of the studio visualizer 2020.

Results: TAT-peptides are well-characterized immune enhancers that are used in intracellular drug delivery. The results of molecular docking analysis showed higher efficiency and significantly enhanced and improved interactions between TP-conjugated repurposed drugs and the target sites of the SCoV-SG structure.

Conclusion: The study concluded that TP-conjugated repurposed drugs may be effective in preventing COVID- 19, and therefore, in vitro, in vivo, and clinical trial studies are required in detail.

[1]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[2]
Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol 2020; 244: 108693.
[http://dx.doi.org/10.1016/j.vetmic.2020.108693] [PMID: 32402329]
[3]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
Worldometer Coronavirus. Available from: https://www.worldometers.info/coronavirus/
[5]
Gorbalenya AE, Baker SC, Baric RS, De Groot RJ, Drosten C, Gulyaeva AA. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[6]
Meredith LW, Hamilton WL, Warne B, et al. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: A prospective genomic surveillance study. Lancet Infect Dis 2020; 20(11): 1263-71.
[http://dx.doi.org/10.1016/S1473-3099(20)30562-4] [PMID: 32679081]
[7]
Frampton D, Rampling T, Cross A, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: A whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis 2021; 21(9): 1246-56.
[http://dx.doi.org/10.1016/S1473-3099(21)00170-5] [PMID: 33857406]
[8]
Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 2020; 5(11): 1408-17.
[http://dx.doi.org/10.1038/s41564-020-0771-4] [PMID: 32724171]
[9]
Ansari MA, Jamal QMS, Rehman S, et al. TAT-peptide conjugated repurposing drug against SARS-CoV-2 main protease (3CLpro): Potential therapeutic intervention to combat COVID-19. Arab J Chem 2020; 13(11): 8069-79.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.037] [PMID: 34909057]
[10]
Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021; 19(7): 409-24.
[http://dx.doi.org/10.1038/s41579-021-00573-0] [PMID: 34075212]
[11]
Riva L, Yuan S, Yin X, et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 2020; 586(7827): 113-9.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[12]
Paules CI, Marston HD, Fauci AS. Coronavirus infections—More than just the common cold. JAMA 2020; 323(8): 707-8.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[13]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[14]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[15]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[16]
Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18): 1843-4.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[17]
Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020; 588(7839): 682-7.
[http://dx.doi.org/10.1038/s41586-020-2852-1] [PMID: 33045718]
[18]
Gao J, Zheng P, Jia Y, et al. Mental health problems and social media exposure during COVID-19 outbreak. PLoS One 2020; 15(4): e0231924.
[http://dx.doi.org/10.1371/journal.pone.0231924] [PMID: 32298385]
[19]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[20]
COVID-19 treatment and vaccine tracker 2022. Available from: https://milken-institute-covid-19-tracker.webflow.io/,March
[21]
Xie J, Bi Y, Zhang H, et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Front Pharmacol 2020; 11: 697.
[http://dx.doi.org/10.3389/fphar.2020.00697] [PMID: 32508641]
[22]
Ansari MA, Almatroudi A, Alzohairy MA, et al. Lipid-based nano delivery of Tat-peptide conjugated drug or vaccine–promising therapeutic strategy for SARS-CoV-2 treatment. Expert Opin Drug Deliv 2020; 17(12): 1671-4.
[http://dx.doi.org/10.1080/17425247.2020.1813712] [PMID: 32820694]
[23]
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: A means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309: 106-24.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.020] [PMID: 31323244]
[24]
Pärn K, Eriste E, Langel Ü. The antimicrobial and antiviral applications of cell-penetrating peptides. Methods Mol Biol 2015; 1324: 223-45.
[http://dx.doi.org/10.1007/978-1-4939-2806-4_15] [PMID: 26202273]
[25]
Nori A, Jensen KD, Tijerina M, Kopečková P, Kopeček J. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem 2003; 14(1): 44-50.
[http://dx.doi.org/10.1021/bc0255900] [PMID: 12526691]
[26]
Nguyen DD, Gao K, Chen J, Wang R, Wei GW. Potentially highly potent drugs for 2019-nCoV. BioRxiv 2020.
[27]
Quan X, Sun D, Zhou J. Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes. Phys Chem Chem Phys 2019; 21(20): 10300-10.
[http://dx.doi.org/10.1039/C9CP01543D] [PMID: 31070638]
[28]
Ansari MA, Taha M, Uddin N, et al. Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. J Saudi Chem Soc 2022; 26(3): 101474.
[http://dx.doi.org/10.1016/j.jscs.2022.101474]
[29]
Waterhouse A, Bertoni M, Bienert S, et al. Swiss-model: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46(W1): W296-303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[30]
Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010; 31(4): 671-90.
[PMID: 19575467]
[31]
Murali M, Gowtham HG, Ansari MA, et al. Repositioning therapeutics for SARS-CoV-2: Virtual screening of plant-based Anti-HIV compounds as possible inhibitors against COVID-19 viral RdRp. Curr Pharm Des 2022; 28(12): 969-80.
[http://dx.doi.org/10.2174/1381612828666220428120939] [PMID: 35796443]
[32]
Jamal QMS, Ahmad V, Alharbi AH, et al. Therapeutic development by repurposing drugs targeting SARS-CoV-2 spike protein interactions by simulation studies. Saudi J Biol Sci 2021; 28(8): 4560-8.
[http://dx.doi.org/10.1016/j.sjbs.2021.04.057] [PMID: 33935562]
[33]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[34]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[35]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[36]
Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Chakraborty C. Probable molecular mechanism of remdesivir for the treatment of COVID-19: Need to know more. Arch Med Res 2020; 51(6): 585-6.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.001] [PMID: 32439198]
[37]
Skwarczynski M, Toth I. Cell-penetrating peptides in vaccine delivery: Facts, challenges and perspectives. Ther Deliv 2019; 10(8): 465-7.
[http://dx.doi.org/10.4155/tde-2019-0042] [PMID: 31462173]
[38]
Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011; 27(3): 343-50.
[http://dx.doi.org/10.1093/bioinformatics/btq662] [PMID: 21134891]
[39]
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 2020; 36(6): 1765-71.
[http://dx.doi.org/10.1093/bioinformatics/btz828] [PMID: 31697312]
[40]
Ciobanasu C, Siebrasse JP, Kubitscheck U. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophys J 2010; 99(1): 153-62.
[http://dx.doi.org/10.1016/j.bpj.2010.03.065] [PMID: 20655843]
[41]
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[42]
Tripathi PP, Arami H, Banga I, Gupta J, Gandhi S. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 2018; 9(98): 37252-67.
[http://dx.doi.org/10.18632/oncotarget.26442] [PMID: 30647857]
[43]
Lippert T, Rarey M. Fast automated placement of polar hydrogen atoms in protein-ligand complexes. J Cheminform 2009; 1(1): 13.
[http://dx.doi.org/10.1186/1758-2946-1-13] [PMID: 20298519]
[44]
Bolcato G, Bissaro M, Pavan M, Sturlese M, Moro S. Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci Rep 2020; 10(1): 20927.
[http://dx.doi.org/10.1038/s41598-020-77700-z] [PMID: 33262359]
[45]
Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 2020; 14(6): 6383-406.
[http://dx.doi.org/10.1021/acsnano.0c03697] [PMID: 32519842]
[46]
Imran M, Kumar Arora M, Asdaq SMB, et al. Discovery, development, and patent trends on molnupiravir: A prospective oral treatment for COVID-19. Molecules 2021; 26(19): 5795.
[http://dx.doi.org/10.3390/molecules26195795] [PMID: 34641339]
[47]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[48]
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2018; 15(1): 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy