Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Artificial Intelligence in De novo Drug Design: Are We Still There?

Author(s): Rajnish Kumar*, Anju Sharma, Athanasios Alexiou and Ghulam Md Ashraf

Volume 22, Issue 30, 2022

Published on: 08 November, 2022

Page: [2483 - 2492] Pages: 10

DOI: 10.2174/1568026623666221017143244

Price: $65

Abstract

Background: The artificial intelligence (AI)-assisted design of drug candidates with novel structures and desired properties has received significant attention in the recent past, so related areas of forward prediction that aim to discover chemical matters worth synthesizing and further experimental investigation.

Objectives: The purpose behind developing AI-driven models is to explore the broader chemical space and suggest new drug candidate scaffolds with promising therapeutic value. Moreover, it is anticipated that such AI-based models may not only significantly reduce the cost and time but also decrease the attrition rate of drug candidates that fail to reach the desirable endpoints at the final stages of drug development. In an attempt to develop AI-based models for de novo drug design, numerous methods have been proposed by various study groups by applying machine learning and deep learning algorithms to chemical datasets. However, there are many challenges in obtaining accurate predictions, and real breakthroughs in de novo drug design are still scarce.

Methods: In this review, we explore the recent trends in developing AI-based models for de novo drug design to assess the current status, challenges, and opportunities in the field.

Conclusion: The consistently improved AI algorithms and the abundance of curated training chemical data indicate that AI-based de novo drug design should perform better than the current models. Improvements in the performance are warranted to obtain better outcomes in the form of potential drug candidates, which can perform well in in vivo conditions, especially in the case of more complex diseases.

Graphical Abstract

[1]
Elbadawi, M.; Gaisford, S.; Basit, A.W. Advanced machine-learning techniques in drug discovery. Drug Discov. Today, 2021, 26(3), 769-777.
[http://dx.doi.org/10.1016/j.drudis.2020.12.003] [PMID: 33290820]
[2]
Bender, A.; Cortés-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov. Today, 2021, 26(2), 511-524.
[http://dx.doi.org/10.1016/j.drudis.2020.12.009] [PMID: 33346134]
[3]
Segall, M. Advances in multiparameter optimization methods for de novo drug design. Expert Opin. Drug Discov., 2014, 9(7), 803-817.
[http://dx.doi.org/10.1517/17460441.2014.913565] [PMID: 24793080]
[4]
Pirard, B. The quest for novel chemical matter and the contribution of computer-aided de novo design. Expert Opin. Drug Discov., 2011, 6(3), 225-231.
[http://dx.doi.org/10.1517/17460441.2011.554394] [PMID: 22647201]
[5]
Fischer, T.; Gazzola, S.; Riedl, R. Approaching target selectivity by de novo drug design. Expert Opin. Drug Discov., 2019, 14(8), 791-803.
[http://dx.doi.org/10.1080/17460441.2019.1615435] [PMID: 31179763]
[6]
Saxena, D.; Sharma, A.; Siddiqui, M.H.; Kumar, R. Blood brain barrier permeability prediction using machine learning techniques: An update. Curr. Pharm. Biotechnol., 2019, 20(14), 1163-1171.
[http://dx.doi.org/10.2174/1389201020666190821145346] [PMID: 31433750]
[7]
Böhm, H.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des., 1992, 6(1), 61-78.
[http://dx.doi.org/10.1007/BF00124387] [PMID: 1583540]
[8]
Gillet, V.J.; Newell, W.; Mata, P.; Myatt, G.; Sike, S.; Zsoldos, Z.; Johnson, A.P. SPROUT: Recent developments in the de novo design of molecules. J. Chem. Inf. Model., 1994, 34(1), 207-217.
[http://dx.doi.org/10.1021/ci00017a027] [PMID: 8144711]
[9]
Ruddigkeit, L.; Blum, L.C.; Reymond, J.L. Visualization and virtual screening of the chemical universe database GDB-17. J. Chem. Inf. Model., 2013, 53(1), 56-65.
[http://dx.doi.org/10.1021/ci300535x] [PMID: 23259841]
[10]
Schneider, G.; Geppert, T.; Hartenfeller, M.; Reisen, F.; Klenner, A.; Reutlinger, M.; Hähnke, V.; Hiss, J.A.; Zettl, H.; Keppner, S.; Spänkuch, B.; Schneider, P. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med. Chem., 2011, 3(4), 415-424.
[http://dx.doi.org/10.4155/fmc.11.8] [PMID: 21452978]
[11]
Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G. DOGS: reaction-driven de novo design of bioactive compounds. PLOS Comput. Biol., 2012, 8(2), e1002380.
[http://dx.doi.org/10.1371/journal.pcbi.1002380] [PMID: 22359493]
[12]
Friedrich, L.; Rodrigues, T.; Neuhaus, C.S.; Schneider, P.; Schneider, G. From complex natural products to simple synthetic mimetics by computational de novo design. Angew. Chem. Int. Ed., 2016, 55(23), 6789-6792.
[http://dx.doi.org/10.1002/anie.201601941] [PMID: 27111835]
[13]
Besnard, J.; Ruda, G.F.; Setola, V.; Abecassis, K.; Rodriguiz, R.M.; Huang, X.P.; Norval, S.; Sassano, M.F.; Shin, A.I.; Webster, L.A.; Simeons, F.R.C.; Stojanovski, L.; Prat, A.; Seidah, N.G.; Constam, D.B.; Bickerton, G.R.; Read, K.D.; Wetsel, W.C.; Gilbert, I.H.; Roth, B.L.; Hopkins, A.L. Automated design of ligands to polypharmacological profiles. Nature, 2012, 492(7428), 215-220.
[http://dx.doi.org/10.1038/nature11691] [PMID: 23235874]
[14]
Ikebata, H.; Hongo, K.; Isomura, T.; Maezono, R.; Yoshida, R. Bayesian molecular design with a chemical language model. J. Comput. Aided Mol. Des., 2017, 31(4), 379-391.
[http://dx.doi.org/10.1007/s10822-016-0008-z] [PMID: 28281211]
[15]
Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J. Chem. Inf. Model., 2016, 56(2), 286-299.
[http://dx.doi.org/10.1021/acs.jcim.5b00628] [PMID: 26818135]
[16]
Churchwell, C.J.; Rintoul, M.D.; Martin, S.; Visco, D.P., Jr; Kotu, A.; Larson, R.S.; Sillerud, L.O.; Brown, D.C.; Faulon, J.L. The signature molecular descriptor. J. Mol. Graph. Model., 2004, 22(4), 263-273.
[http://dx.doi.org/10.1016/j.jmgm.2003.10.002] [PMID: 15177078]
[17]
Wong, W.W.L.; Burkowski, F.J. A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem. J. Cheminform., 2009, 1(1), 4.
[http://dx.doi.org/10.1186/1758-2946-1-4] [PMID: 20142987]
[18]
Miyao, T.; Arakawa, M.; Funatsu, K. Exhaustive structure generation for Inverse-QSPR/QSAR. Mol. Inform., 2010, 29(1-2), 111-125.
[http://dx.doi.org/10.1002/minf.200900038] [PMID: 27463853]
[19]
Takeda, S.; Kaneko, H.; Funatsu, K. Chemical-space-based de novo design method to generate drug-like molecules. J. Chem. Inf. Model., 2016, 56(10), 1885-1893.
[http://dx.doi.org/10.1021/acs.jcim.6b00038] [PMID: 27632418]
[20]
Mishima, K.; Kaneko, H.; Funatsu, K. Development of a new de novo design algorithm for exploring chemical space. Mol. Inform., 2014, 33(11-12), 201400056.
[http://dx.doi.org/10.1002/minf.201400056] [PMID: 27485424]
[21]
Kumar, R.; Sharma, A.; Haris Siddiqui, M.; Kumar Tiwari, R. Prediction of metabolism of drugs using artificial intelligence: How far have we reached? Curr. Drug Metab., 2016, 17(2), 129-141.
[http://dx.doi.org/10.2174/1389200216666151103121352] [PMID: 26526829]
[22]
Kawai, K.; Nagata, N.; Takahashi, Y. De novo design of drug-like molecules by a fragment-based molecular evolutionary approach. J. Chem. Inf. Model., 2014, 54(1), 49-56.
[http://dx.doi.org/10.1021/ci400418c] [PMID: 24372539]
[23]
Dey, F.; Caflisch, A. Fragment-based de novo ligand design by multiobjective evolutionary optimization. J. Chem. Inf. Model., 2008, 48(3), 679-690.
[http://dx.doi.org/10.1021/ci700424b] [PMID: 18307332]
[24]
Fechner, U.; Schneider, G. Flux (1): a virtual synthesis scheme for fragment-based de novo design. J. Chem. Inf. Model., 2006, 46(2), 699-707.
[http://dx.doi.org/10.1021/ci0503560] [PMID: 16563000]
[25]
Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev., 2019, 119(18), 10520-10594.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[26]
Wei, L.; Wen, W.; Rao, L.; Huang, Y.; Lei, M.; Liu, K.; Hu, S.; Song, R.; Ren, Y.; Wan, J. Cov_FB3D: A de novo covalent drug design protocol integrating the BA-SAMP strategy and machine-learning-based synthetic tractability evaluation. J. Chem. Inf. Model., 2020, 60(9), 4388-4402.
[http://dx.doi.org/10.1021/acs.jcim.9b01197] [PMID: 32233478]
[27]
Schneider, G. Generative models for artificially-intelligent molecular design. Mol. Inform., 2018, 37(1-2), 1880131.
[http://dx.doi.org/10.1002/minf.201880131] [PMID: 29442446]
[28]
Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform., 2017, 9(1), 48.
[http://dx.doi.org/10.1186/s13321-017-0235-x] [PMID: 29086083]
[29]
Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131.
[http://dx.doi.org/10.1021/acscentsci.7b00512] [PMID: 29392184]
[30]
Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276.
[http://dx.doi.org/10.1021/acscentsci.7b00572] [PMID: 29532027]
[31]
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 2017, 8(7), 10883-10890.
[http://dx.doi.org/10.18632/oncotarget.14073] [PMID: 28029644]
[32]
Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm., 2017, 14(9), 3098-3104.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00346] [PMID: 28703000]
[33]
Langevin, M.; Minoux, H.; Levesque, M.; Bianciotto, M. Scaffold-constrained molecular generation. J. Chem. Inf. Model., 2020, 60(12), 5637-5646.
[http://dx.doi.org/10.1021/acs.jcim.0c01015] [PMID: 33301333]
[34]
Arús-Pous, J.; Patronov, A.; Bjerrum, E.J.; Tyrchan, C.; Reymond, J.L.; Chen, H.; Engkvist, O. SMILES-based deep generative scaffold decorator for de-novo drug design. J. Cheminform., 2020, 12(1), 38.
[http://dx.doi.org/10.1186/s13321-020-00441-8] [PMID: 33431013]
[35]
Harel, S.; Radinsky, K. Prototype-based compound discovery using deep generative models. Mol. Pharm., 2018, 15(10), 4406-4416.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00474] [PMID: 30063142]
[36]
Yuan, W.; Jiang, D.; Nambiar, D.K.; Liew, L.P.; Hay, M.P.; Bloomstein, J.; Lu, P.; Turner, B.; Le, Q.T.; Tibshirani, R.; Khatri, P.; Moloney, M.G.; Koong, A.C. Chemical space mimicry for drug discovery. J. Chem. Inf. Model., 2017, 57(4), 875-882.
[http://dx.doi.org/10.1021/acs.jcim.6b00754] [PMID: 28257191]
[37]
Merk, D.; Grisoni, F.; Friedrich, L.; Schneider, G. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Commun. Chem., 2018, 1(1), 68.
[http://dx.doi.org/10.1038/s42004-018-0068-1]
[38]
Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural product-likeness score and its application for prioritization of compound libraries. J. Chem. Inf. Model., 2008, 48(1), 68-74.
[http://dx.doi.org/10.1021/ci700286x] [PMID: 18034468]
[39]
Pogány, P.; Arad, N.; Genway, S.; Pickett, S.D. De novo molecule design by translating from reduced graphs to SMILES. J. Chem. Inf. Model., 2019, 59(3), 1136-1146.
[http://dx.doi.org/10.1021/acs.jcim.8b00626] [PMID: 30525594]
[40]
Lim, J.; Ryu, S.; Kim, J.W.; Kim, W.Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform., 2018, 10(1), 31.
[http://dx.doi.org/10.1186/s13321-018-0286-7] [PMID: 29995272]
[41]
Mayr, A.; Klambauer, G.; Unterthiner, T.; Steijaert, M.; Wegner, J.K.; Ceulemans, H.; Clevert, D.A.; Hochreiter, S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. (Camb.), 2018, 9(24), 5441-5451.
[http://dx.doi.org/10.1039/C8SC00148K] [PMID: 30155234]
[42]
Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J.M.; Turner, R.E.; Eck, D. Sequence tutor: conservative fine-tuning of sequence generation models with KL-control. Proc. Int. Conf. Machine Learn., 2017, 2017, 1645-1654.
[43]
Visini, R.; Awale, M.; Reymond, J.L. Fragment database FDB-17. J. Chem. Inf. Model., 2017, 57(4), 700-709.
[http://dx.doi.org/10.1021/acs.jcim.7b00020] [PMID: 28375006]
[44]
Awale, M.; Sirockin, F.; Stiefl, N.; Reymond, J.L. Drug analogs from fragment-based long short-term memory generative neural networks. J. Chem. Inf. Model., 2019, 59(4), 1347-1356.
[http://dx.doi.org/10.1021/acs.jcim.8b00902] [PMID: 30908913]
[45]
Gupta, A.; Müller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative recurrent networks for de novo drug design. Mol. Inform., 2018, 37(1-2), 1700111.
[http://dx.doi.org/10.1002/minf.201700111] [PMID: 29095571]
[46]
Polykovskiy, D.; Zhebrak, A.; Vetrov, D.; Ivanenkov, Y.; Aladinskiy, V.; Mamoshina, P.; Bozdaganyan, M.; Aliper, A.; Zhavoronkov, A.; Kadurin, A. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharm., 2018, 15(10), 4398-4405.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00839] [PMID: 30180591]
[47]
Méndez-Lucio, O.; Baillif, B.; Clevert, D.A.; Rouquié, D.; Wichard, J. De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat. Commun., 2020, 11(1), 10.
[http://dx.doi.org/10.1038/s41467-019-13807-w] [PMID: 31900408]
[48]
Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; Lahr, D.L.; Hirschman, J.E.; Liu, Z.; Donahue, M.; Julian, B.; Khan, M.; Wadden, D.; Smith, I.C.; Lam, D.; Liberzon, A.; Toder, C.; Bagul, M.; Orzechowski, M.; Enache, O.M.; Piccioni, F.; Johnson, S.A.; Lyons, N.J.; Berger, A.H.; Shamji, A.F.; Brooks, A.N.; Vrcic, A.; Flynn, C.; Rosains, J.; Takeda, D.Y.; Hu, R.; Davison, D.; Lamb, J.; Ardlie, K.; Hogstrom, L.; Greenside, P.; Gray, N.S.; Clemons, P.A.; Silver, S.; Wu, X.; Zhao, W.N.; Read-Button, W.; Wu, X.; Haggarty, S.J.; Ronco, L.V.; Boehm, J.S.; Schreiber, S.L.; Doench, J.G.; Bittker, J.A.; Root, D.E.; Wong, B.; Golub, T.R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 2017, 171(6), 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[49]
Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H. Application of generative autoencoder in De Novo molecular design. Mol. Inform., 2018, 37(1-2), 1700123.
[http://dx.doi.org/10.1002/minf.201700123] [PMID: 29235269]
[50]
Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G.L.; Aspuru-Guzik, A. Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC). ChemRxiv, 2017, 2017, 5309668.v3.
[http://dx.doi.org/10.26434/chemrxiv.5309668.v3]
[51]
Putin, E.; Asadulaev, A.; Vanhaelen, Q.; Ivanenkov, Y.; Aladinskaya, A.V.; Aliper, A.; Zhavoronkov, A. Adversarial threshold neural computer for molecular de novo design. Mol. Pharm., 2018, 15(10), 4386-4397.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01137] [PMID: 29569445]
[52]
Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I. Grabska-Barwińska, A.; Colmenarejo, S.G.; Grefenstette, E.; Ramalho, T.; Agapiou, J.; Badia, A.P.; Hermann, K.M.; Zwols, Y.; Ostrovski, G.; Cain, A.; King, H.; Summerfield, C.; Blunsom, P.; Kavukcuoglu, K.; Hassabis, D. Hybrid computing using a neural network with dynamic external memory. Nature, 2016, 538(7626), 471-476.
[http://dx.doi.org/10.1038/nature20101] [PMID: 27732574]
[53]
Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev., 2003, 23(3), 302-321.
[http://dx.doi.org/10.1002/med.10041] [PMID: 12647312]
[54]
Yoshikawa, N.; Terayama, K.; Sumita, M.; Homma, T.; Oono, K.; Tsuda, K. Population-based de novo molecule generation, using grammatical evolution. Chem. Lett., 2018, 47(11), 1431-1434.
[http://dx.doi.org/10.1246/cl.180665]
[55]
Kusner, M.J.; Paige, B.; Hernandez-Lobato, J.M. Grammar variational autoencoder. Proc. Int. Conf. Machine Learn., 2017, 2017, 1945-1954.
[56]
Dalke, A. DeepSMILES: An adaptation of SMILES for use in machine-learning of chemical structures. ChemRxiv, 2018, 2018, 7097960.
[http://dx.doi.org/10.26434/chemrxiv.7097960.v1]
[57]
Maziarka, .; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel, T.; Warchoł M. Mol-CycleGAN: A generative model for molecular optimization. J. Cheminform., 2020, 12(1), 2.
[http://dx.doi.org/10.1186/s13321-019-0404-1] [PMID: 33431006]
[58]
De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv, 2018, 2018, 1805.11973.
[59]
Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. Int. Conf. Machine Learn., 2018, 2018, 2328-2337.
[60]
Simonovsky, M.; Komodakis, N. GraphVAE: Towards generation of small graphs using variational autoencoders. Int. Conf. Artif. Neural Networks, 2018, 2018, 412422.
[http://dx.doi.org/10.1007/978-3-030-01418-6_41]
[61]
Li, Y.; Zhang, L.; Liu, Z. Multi-objective de novo drug design with conditional graph generative model. J. Cheminform., 2018, 10(1), 33.
[http://dx.doi.org/10.1186/s13321-018-0287-6] [PMID: 30043127]
[62]
Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A. Constrained graph variational autoencoders for molecule design. Adv. Neural Inf. Process. Syst., 2018, 2018, 78067815.
[63]
You, J.; Liu, B.; Ying, R.; Pande, V.; Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation; Adv. Neural Inform. Proces. Sys, 2018, pp. 6410-6421.
[64]
You, J.; Ying, R.; Ren, X.; Hamilton, W.; Leskovec, J. Graphrnn: Generating realistic graphs with deep auto-regressive models. Int. Conf. Machine Learn., 2018, 2018, 5694-5703.
[65]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Promises of machine learning approaches in prediction of absorption of compounds. Mini Rev. Med. Chem., 2018, 18(3), 196-207.
[http://dx.doi.org/10.2174/1389557517666170315150116] [PMID: 28302041]
[66]
Kumar, R.; Sharma, A.; Varadwaj, P.; Ahmad, A.; Ashraf, G.M. Classification of oral bioavailability of drugs by machine learning approaches: a comparative study. J. Comput. Interdiscip. Sci., 2012, 2(3), 1-18.
[http://dx.doi.org/10.6062/jcis.2011.02.03.0045]
[67]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of drug-plasma protein binding using artificial intelligence based algorithms. Comb. Chem. High Throughput Screen., 2018, 21(1), 57-64.
[http://dx.doi.org/10.2174/1386207321666171218121557] [PMID: 29256344]
[68]
Yang, X.; Zhang, J.; Yoshizoe, K.; Terayama, K.; Tsuda, K.; Chem, T.S. An efficient python library for de novo molecular generation. Sci. Technol. Adv. Mater., 2017, 18(1), 972-976.
[http://dx.doi.org/10.1080/14686996.2017.1401424] [PMID: 29435094]
[69]
Schneider, G.; Clark, D.E. Automated de novo drug design: Are we nearly there yet? Angew. Chem. Int. Ed., 2019, 58(32), 10792-10803.
[http://dx.doi.org/10.1002/anie.201814681] [PMID: 30730601]
[70]
Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev., 1996, 16(1), 3-50.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:13::AIDMED13.0.CO;2-6] [PMID: 8788213]
[71]
Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D.R. Protein–ligand scoring with convolutional neural networks. J. Chem. Inf. Model., 2017, 57(4), 942-957.
[http://dx.doi.org/10.1021/acs.jcim.6b00740] [PMID: 28368587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy