Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Assessing the Therapeutic and Toxicological Profile of Novel Acetylcholinesterase Reactivators: Value of In Silico And In Vitro Data

Author(s): Teodorico C. Ramalho*, Alexandre A. de Castro, Daniel H.S. Leal, Jessika P. Teixeira, Elaine F.F. da Cunha and Kamil Kuca*

Volume 30, Issue 36, 2023

Published on: 20 January, 2023

Page: [4149 - 4166] Pages: 18

DOI: 10.2174/0929867330999221014104610

Price: $65

Abstract

Organophosphorus compounds (OP) make up an important class of inhibitors, mostly employed as pesticides, even as chemical weapons. These toxic substances act through the inhibition of the acetylcholinesterase (AChE) enzyme, which results in elevated synaptic acetylcholine (ACh) levels, leading to serious adverse effects under the cholinergic syndrome. Many reactivators have been developed to combat the toxic effects of these AChE inhibitors. In this line, the oximes highlight because of their good reactivating power of cholinesterase enzymes. To date, no universal antidotes can reactivate AChE inhibited by any OP agent.

This review summarizes the intoxication process by neurotoxic OP agents, along with the development of reactivators capable of reversing their effects, approaching aspects like the therapeutic and toxicological profile of these antidotes.

Computational methods and conscious in vitro studies, capable of significantly predicting the toxicological profile of these drug candidates, might support the process of development of these reactivators before entering in vivo studies in animals, and then clinical trials. These approaches can assist in the design of safer and more effective molecules, reducing related cost and time for the process.

[1]
Jett, DA; Spriggs, SM Translational research on chemical nerve agents. Neurobiol Dis., 2020, 133, 104335.
[http://dx.doi.org/10.1016/j.nbd.2018.11.020]
[2]
Thiermann, H; Kehe, K; Riehm, J; Zöller, L Chemical and biological weapons and their regulation. Regul Toxicol., 2014, 855-868.
[http://dx.doi.org/10.1007/978-3-642-35374-1_121]
[3]
Aroniadou-Anderjaska, V; Figueiredo, TH; Apland, JP; Braga, MF Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis., 2020, 133, 104406.
[http://dx.doi.org/10.1016/j.nbd.2019.02.017]
[4]
Chambers, J.E.; Meek, E.C. Novel centrally active oxime reactivators of acetylcholinesterase inhibited by surrogates of sarin and VX. Neurobiol. Dis., 2020, 133, 104487.
[http://dx.doi.org/10.1016/j.nbd.2019.104487] [PMID: 31158460]
[5]
Todd, S.W.; Lumsden, E.W.; Aracava, Y.; Mamczarz, J.; Albuquerque, E.X.; Pereira, E.F.R. Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology, 2020, 180, 108271.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108271] [PMID: 32814088]
[6]
Ayobami, A.L.; Kade, E.A.; Oladimeji, K.A.; Kehinde, S.; Gurpreet, K. Toxic effects of organophosphates pesticides. A review. Preprints, 2020, 2020, 10-13.
[7]
Getie, A.; Belayneh, Y.M. A retrospective study of acute poisoning cases and their management at emergency department of Dessie Referral Hospital, Northeast Ethiopia. Drug Healthc. Patient Saf., 2020, 12, 41-48.
[http://dx.doi.org/10.2147/DHPS.S241413] [PMID: 32184673]
[8]
Zhuang, Q.; Franjesevic, A.J.; Corrigan, T.S.; Coldren, W.H.; Dicken, R.; Sillart, S.; DeYong, A.; Yoshino, N.; Smith, J.; Fabry, S.; Fitzpatrick, K.; Blanton, T.G.; Joseph, J.; Yoder, R.J.; McElroy, C.A.; Ekici, Ö.D.; Callam, C.S.; Hadad, C.M. Demonstration of in vitro resurrection of aged acetylcholinesterase after exposure to organophosphorus chemical nerve agents. J. Med. Chem., 2018, 61(16), 7034-7042.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01620] [PMID: 29870665]
[9]
de Castro, A.A.; Assis, L.C.; Soares, F.V.; Kuca, K.; Polisel, D.A.; da Cunha, E.F.F.; Ramalho, T.C. Trends in the recent patent literature on cholinesterase reactivators (2016-2019). Biomolecules, 2020, 10(3), 436.
[http://dx.doi.org/10.3390/biom10030436] [PMID: 32178264]
[10]
Legay, C. Why so many forms of acetylcholinesterase? Microsc. Res. Tech., 2000, 49(1), 56-72.
[http://dx.doi.org/10.1002/(SICI)1097-0029(20000401)49:1<56::AID-JEMT7>3.0.CO;2-R] [PMID: 10757879]
[11]
Seong, K.M.; Kim, Y.H.; Kwon, D.H.; Lee, S.H. Identification and characterization of three cholinesterases from the common bed bug, Cimex lectularius. Insect Mol. Biol., 2012, 21(2), 149-159.
[http://dx.doi.org/10.1111/j.1365-2583.2011.01118.x] [PMID: 22136067]
[12]
Katzung, B.K. Introduction to autonomous pharmacology. In: Pharmacology: Basic and Clinical. Rio de Janeiro; Katzung, B.K., Ed.; Guanabara, 2003; pp. 65-79.
[13]
Sales, T.A.; Prandi, I.G.; Castro, A.A.; Leal, D.H.S.; Cunha, E.F.F.D.; Kuca, K.; Ramalho, T.C. Recent developments in metal-based drugs and chelating agents for neurodegenerative diseases treatments. Int. J. Mol. Sci., 2019, 20(8), 1829.
[http://dx.doi.org/10.3390/ijms20081829] [PMID: 31013856]
[14]
Ochoa, R.; Rodriguez, C.A.; Zuluaga, A.F. Perspectives for the structure-based design of acetylcholinesterase reactivators. J. Mol. Graph. Model., 2016, 68, 176-183.
[http://dx.doi.org/10.1016/j.jmgm.2016.07.002] [PMID: 27450771]
[15]
Xu, Y.; Cheng, S.; Sussman, J.; Silman, I.; Jiang, H. Computational studies on acetylcholinesterases. Molecules, 2017, 22(8), 1324.
[http://dx.doi.org/10.3390/molecules22081324] [PMID: 28796192]
[16]
de Castro, A.A.; da Cunha, E.F.F.; Pereira, A.F.; Soares, F.V.; Leal, D.H.S.; Kuca, K.; Ramalho, T.C. Insights into the drug repositioning applied to the Alzheimer’s disease treatment and future perspectives. Curr. Alzheimer Res., 2018, 15(12), 1161-1178.
[http://dx.doi.org/10.2174/1567205015666180813150703] [PMID: 30101709]
[17]
Fifer, E.K. Drugs affecting cholinergic neurotransmission. In: ZITO SW). Foye’s Principles of Medicinal Chemistry; Lemke, T.L.; Williams, D.A.; Roche, V.F., Eds.; Lippincott: Philadelphia, 2013; pp. 309-339.
[18]
Soares, F.; de Castro, A.; Pereira, A.; Leal, D.; Mancini, D.; Krejcar, O.; Ramalho, T.; da Cunha, E.; Kuca, K. Theoretical studies applied to the evaluation of the DFPase bioremediation potential against chemical warfare agents intoxication. Int. J. Mol. Sci., 2018, 19(4), 1257.
[http://dx.doi.org/10.3390/ijms19041257] [PMID: 29690585]
[19]
Pereira, A.F.; de Castro, A.A.; Soares, F.V.; Soares Leal, D.H.; da Cunha, E.F.F.; Mancini, D.T.; Ramalho, T.C. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact., 2019, 308, 323-331.
[http://dx.doi.org/10.1016/j.cbi.2019.06.007] [PMID: 31173750]
[20]
Colletier, J.P.; Fournier, D.; Greenblatt, H.M.; Stojan, J.; Sussman, J.L.; Zaccai, G.; Silman, I.; Weik, M. Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO J., 2006, 25(12), 2746-2756.
[http://dx.doi.org/10.1038/sj.emboj.7601175] [PMID: 16763558]
[21]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[22]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[23]
Valasani, K.R.; Chaney, M.O.; Day, V.W.; ShiDu Yan, S. Acetylcholinesterase inhibitors: Structure based design, synthesis, pharmacophore modeling, and virtual screening. J. Chem. Inf. Model., 2013, 53(8), 2033-2046.
[http://dx.doi.org/10.1021/ci400196z] [PMID: 23777291]
[24]
Giacoppo, J.O.S.; Lima, W.E.A.; Kuca, K.; Cunha, E.F.F.; França, T.C.C.; Ramalho, T.C. Chemical warfare: Perspectives on reactivating the enzyme acetylcholinesterase inhibited by organophosphates. Revista Virtual de Química, 2014, 6(3), 653-670.
[http://dx.doi.org/10.5935/1984-6835.20140041]
[25]
Driant, T.; Nachon, F.; Ollivier, C.; Renard, P.Y.; Derat, E. On the influence of the protonation states of active site residues on AChE reactivation: A QM/MM approach. ChemBioChem, 2017, 18(7), 666-675.
[http://dx.doi.org/10.1002/cbic.201600646] [PMID: 28106328]
[26]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Estratégias de catálise. In: Bioquímica; Guanabara: Rio de Janeiro, 2008; pp. 245-278.
[27]
Lushchekina, S.V.; Kaliman, I.A.; Grigorenko, B.L.; Nemukhin, A.V.; Varfolomeev, S.D. Quantum mechanical/molecular mechanical analysis of mechanisms of enzyme action. Human acetylcholinesterase. Russ. Chem. Bull., 2011, 60(11), 2196-2204.
[http://dx.doi.org/10.1007/s11172-011-0338-x]
[28]
Quinn, M.D.; Topczewski, J.; Yasapala, N.; Lodge, A. Why is aged acetylcholinesterase so difficult to reactivate? Molecules, 2017, 22(9), 1464.
[http://dx.doi.org/10.3390/molecules22091464]
[29]
Nepovimova, E.; Kuca, K. Chemical warfare agent NOVICHOK - mini-review of available data. Food Chem. Toxicol., 2018, 121, 343-350.
[http://dx.doi.org/10.1016/j.fct.2018.09.015] [PMID: 30213549]
[30]
Kloske, M.; Witkiewicz, Z. Novichoks – The A group of organophosphorus chemical warfare agents. Chemosphere, 2019, 221, 672-682.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.054] [PMID: 30677728]
[31]
Kassa, J.; Misik, J.; Hatlapatkova, J.; Zdarova Karasova, J.; Sepsova, V.; Caisberger, F.; Pejchal, J. The evaluation of the reactivating and neuroprotective efficacy of two newly prepared bispyridinium oximes (K305, K307) in tabun-poisoned rats-a comparison with trimedoxime and the oxime K203. Molecules, 2017, 22(7), 1152.
[http://dx.doi.org/10.3390/molecules22071152] [PMID: 28696367]
[32]
Horn, G.; de Koning, M.C.; van Grol, M.; Thiermann, H.; Worek, F. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro. Toxicol. Lett., 2018, 299, 218-225.
[http://dx.doi.org/10.1016/j.toxlet.2018.10.004] [PMID: 30312685]
[33]
Rosenberg, Y.J.; Wang, J.; Ooms, T.; Rajendran, N.; Mao, L.; Jiang, X.; Lees, J.; Urban, L.; Momper, J.D.; Sepulveda, Y.; Shyong, Y.J.; Taylor, P. Post-exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques. Toxicol. Lett., 2018, 293, 229-234.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.025] [PMID: 29129799]
[34]
Gorecki, L.; Soukup, O.; Kucera, T.; Malinak, D.; Jun, D.; Kuca, K.; Musilek, K.; Korabecny, J. Oxime K203: A drug candidate for the treatment of tabun intoxication. Arch. Toxicol., 2019, 93(3), 673-691.
[http://dx.doi.org/10.1007/s00204-018-2377-7] [PMID: 30564897]
[35]
Kobrlova, T.; Korabecny, J.; Soukup, O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology, 2019, 423, 75-83.
[http://dx.doi.org/10.1016/j.tox.2019.05.006] [PMID: 31112674]
[36]
Worek, F.; Thiermann, H.; Wille, T. Organophosphorus compounds and oximes: A critical review. Arch. Toxicol., 2020, 94(7), 2275-2292.
[http://dx.doi.org/10.1007/s00204-020-02797-0] [PMID: 32506210]
[37]
Ramalho, T.C.; França, T.C.C.; Rennó, M.N.; Guimarães, A.P.; da Cunha, E.F.F.; Kuča, K. Development of new acetylcholinesterase reactivators: Molecular modeling versus in vitro data. Chem. Biol. Interact., 2010, 185(1), 73-77.
[http://dx.doi.org/10.1016/j.cbi.2010.02.026] [PMID: 20188081]
[38]
de Koning, M.C.; Horn, G.; Worek, F.; van Grol, M. Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem., 2018, 157, 151-160.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.016] [PMID: 30096649]
[39]
Horn, G.; Wille, T.; Musilek, K.; Kuca, K.; Thiermann, H.; Worek, F. Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Arch. Toxicol., 2015, 89(3), 405-414.
[http://dx.doi.org/10.1007/s00204-014-1288-5] [PMID: 24912784]
[40]
Kliachyna, M.; Santoni, G.; Nussbaum, V.; Renou, J.; Sanson, B.; Colletier, J.P.; Arboléas, M.; Loiodice, M.; Weik, M.; Jean, L.; Renard, P.Y.; Nachon, F.; Baati, R. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine- aldoxime and amidoxime hybrids as efficient uncharged reactivators of nerve agent-inhibited human acetylcholinesterase. Eur. J. Med. Chem., 2014, 78, 455-467.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.044] [PMID: 24704618]
[41]
Malinak, D.; Nepovimova, E.; Jun, D.; Musilek, K.; Kuca, K. Novel group of AChE reactivators-synthesis, in vitro reactivation and molecular docking study. Molecules, 2018, 23(9), 2291.
[http://dx.doi.org/10.3390/molecules23092291] [PMID: 30205495]
[42]
Garcia, G.E.; Campbell, A.J.; Olson, J.; Moorad-Doctor, D.; Morthole, V.I. Novel oximes as blood-brain barrier penetrating cholinesterase reactivators. Chem. Biol. Interact., 2010, 187(1-3), 199-206.
[http://dx.doi.org/10.1016/j.cbi.2010.02.033] [PMID: 20227398]
[43]
Franklin, M.C.; Rudolph, M.J.; Ginter, C.; Cassidy, M.S.; Cheung, J. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins, 2016, 84(9), 1246-1256.
[http://dx.doi.org/10.1002/prot.25073] [PMID: 27191504]
[44]
Zorbaz, T.; Malinak, D.; Kuca, K.; Musilek, K.; Kovarik, Z. Butyrylcholinesterase inhibited by nerve agents is efficiently reactivated with chlorinated pyridinium oximes. Chem. Biol. Interact., 2019, 307, 16-20.
[http://dx.doi.org/10.1016/j.cbi.2019.04.020] [PMID: 31004594]
[45]
de Paula, R.; de Almeida, J.; Cavalcante, S.; Gonçalves, A.; Simas, A.; Franca, T.; Valis, M.; Kuca, K.; Nepovimova, E.; Granjeiro, J. Molecular modeling and in vitro studies of a neutral oxime as a potential reactivator for acetylcholinesterase inhibited by paraoxon. Molecules, 2018, 23(11), 2954.
[http://dx.doi.org/10.3390/molecules23112954] [PMID: 30424582]
[46]
Antonijevic, E.; Musilek, K.; Kuca, K.; Djukic-Cosic, D.; Vucinic, S.; Antonijevic, B. Therapeutic and reactivating efficacy of oximes K027 and K203 against a direct acetylcholinesterase inhibitor. Neurotoxicology, 2016, 55, 33-39.
[http://dx.doi.org/10.1016/j.neuro.2016.05.006] [PMID: 27177985]
[47]
Musilek, K.; Dolezal, M.; Gunn-Moore, F.; Kuca, K. Design, evaluation and structure-Activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev., 2011, 31(4), 548-575.
[http://dx.doi.org/10.1002/med.20192] [PMID: 20027669]
[48]
Chadha, N.; Tiwari, A.K.; Kumar, V.; Lal, S.; Milton, M.D.; Mishra, A.K. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: Probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis. J. Biomol. Struct. Dyn., 2015, 33(5), 978-990.
[http://dx.doi.org/10.1080/07391102.2014.921793] [PMID: 24805972]
[49]
Gorecki, L.; Korabecny, J.; Musilek, K.; Malinak, D.; Nepovimova, E.; Dolezal, R.; Jun, D.; Soukup, O.; Kuca, K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol., 2016, 90(12), 2831-2859.
[http://dx.doi.org/10.1007/s00204-016-1827-3] [PMID: 27582056]
[50]
Muckova, L.; Pejchal, J.; Jost, P.; Vanova, N.; Herman, D.; Jun, D. Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem. Toxicol., 2019, 42(3), 252-256.
[http://dx.doi.org/10.1080/01480545.2018.1432641] [PMID: 29421945]
[51]
Wei, Z.; Bi, H.; Liu, Y.; Nie, H.; Yao, L.; Wang, S.; Yang, J.; Wang, Y.; Liu, X.; Zheng, Z. Design, synthesis and evaluation of new classes of nonquaternary reactivators for acetylcholinesterase inhibited by organophosphates. Bioorg. Chem., 2018, 81, 681-688.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.025] [PMID: 30265992]
[52]
Bell, R.P.; Higginson, W.C.E. The catalyzed dehydration of acetaldehyde hydrate, and the effect of structure on the velocity of protolytic reactions. Proc. R Soc. London Ser. A Math. Phys. Sci., 1949, 197(1049), 141-159.
[53]
Jencks, W.P.; Carriuolo, J. Reactivity of nucleophilic reagents toward esters. J. Am. Chem. Soc., 1960, 82(7), 1778-1786.
[http://dx.doi.org/10.1021/ja01492a058]
[54]
Wei, Z.; Liu, Y.; Wang, Y.; Li, W.; Zhou, X.; Zhao, J.; Huang, C.; Li, X.; Liu, J.; Zheng, Z.; Li, S. Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase. Toxicol. Lett., 2016, 246, 1-6.
[http://dx.doi.org/10.1016/j.toxlet.2016.01.015] [PMID: 26809136]
[55]
de Jong, L.P.A.; Verhagen, M.A.A.; Langenberg, J.P.; Hagedorn, I.; Löffler, M. The bispyridinium-dioxime HLö-7. Biochem. Pharmacol., 1989, 38(4), 633-640.
[http://dx.doi.org/10.1016/0006-2952(89)90209-8] [PMID: 2917018]
[56]
Worek, F.; Thiermann, H.; Szinicz, L.; Eyer, P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol., 2004, 68(11), 2237-2248.
[http://dx.doi.org/10.1016/j.bcp.2004.07.038] [PMID: 15498514]
[57]
Luo, C.; Saxena, A.; Smith, M.; Garcia, G.; Radić, Z.; Taylor, P.; Doctor, B.P. Phosphoryl oxime inhibition of acetylcholinesterase during oxime reactivation is prevented by edrophonium. Biochemistry, 1999, 38(31), 9937-9947.
[http://dx.doi.org/10.1021/bi9905720] [PMID: 10433700]
[58]
Worek, F.; Eyer, P.; Kiderlen, D.; Thiermann, H.; Szinicz, L. Effect of human plasma on the reactivation of sarin-inhibited human erythrocyte acetylcholinesterase. Arch. Toxicol., 2000, 74(1), 21-26.
[http://dx.doi.org/10.1007/s002040050647] [PMID: 10817663]
[59]
Ashani, Y.; Bhattacharjee, A.K.; Leader, H.; Saxena, A.; Doctor, B.P. Inhibition of cholinesterases with cationic phosphonyl oximes highlights distinctive properties of the charged pyridine groups of quaternary oxime reactivators. Biochem. Pharmacol., 2003, 66(2), 191-202.
[http://dx.doi.org/10.1016/S0006-2952(03)00204-1] [PMID: 12826262]
[60]
Kiderlen, D.; Eyer, P.; Worek, F. Formation and disposition of diethylphosphoryl-obidoxime, a potent anticholinesterase that is hydrolyzed by human paraoxonase (PON1). Biochem. Pharmacol., 2005, 69(12), 1853-1867.
[http://dx.doi.org/10.1016/j.bcp.2005.04.003] [PMID: 15876422]
[61]
Stenzel, J.; Worek, F.; Eyer, P. Preparation and characterization of dialkylphosphoryl-obidoxime conjugates, potent anticholinesterase derivatives that are quickly hydrolyzed by human paraoxonase (PON1192Q). Biochem. Pharmacol., 2007, 74(9), 1390-1400.
[http://dx.doi.org/10.1016/j.bcp.2007.07.013] [PMID: 17714697]
[62]
Bhattacharjee, A.K.; Marek, E.; Le, H.T.; Gordon, R.K. Discovery of non-oxime reactivators using an in silico pharmacophore model of oxime reactivators of OP-inhibited acetylcholinesterase. Eur. J. Med. Chem., 2012, 49, 229-238.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.016] [PMID: 22309910]
[63]
Bhattacharjee, A.K.; Marek, E.; Le, H.T.; Ratcliffe, R.; DeMar, J.C.; Pervitsky, D.; Gordon, R.K. Discovery of non-oxime reactivators using an in silico pharmacophore model of reactivators for DFP-inhibited acetylcholinesterase. Eur. J. Med. Chem., 2015, 90, 209-220.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.013] [PMID: 25461321]
[64]
Katz, F.S.; Pecic, S.; Tran, T.H.; Trakht, I.; Schneider, L.; Zhu, Z.; Ton-That, L.; Luzac, M.; Zlatanic, V.; Damera, S.; Macdonald, J.; Landry, D.W.; Tong, L.; Stojanovic, M.N. Discovery of new classes of compounds that reactivate acetylcholinesterase inhibited by organophosphates. ChemBioChem, 2015, 16(15), 2205-2215.
[http://dx.doi.org/10.1002/cbic.201500348] [PMID: 26350723]
[65]
Ghosh, S.; Jana, K.; Ganguly, B. Influence of gauche effect on uncharged oxime reactivators for the reactivation of tabun-inhibited AChE: Quantum chemical and steered molecular dynamics studies. J. Comput. Aided Mol. Des., 2018, 32(7), 793-807.
[http://dx.doi.org/10.1007/s10822-018-0130-1] [PMID: 29980922]
[66]
Cavalcante, S.F.A.; Kitagawa, D.A.S.; Rodrigues, R.B.; Bernardo, L.B.; da Silva, T.N.; dos Santos, W.V.; Correa, A.B.A.; de Almeida, J.S.F.D.; França, T.C.C.; Kuča, K.; Simas, A.B.C. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem. Biol. Interact., 2019, 309, 108682.
[http://dx.doi.org/10.1016/j.cbi.2019.05.048] [PMID: 31163137]
[67]
Katalinić, M.; Zandona, A.; Ramić, A.; Zorbaz, T.; Primožič, I.; Kovarik, Z. New cinchona oximes evaluated as reactivators of acetylcholinesterase and butyrylcholinesterase inhibited by organophosphorus compounds. Molecules, 2017, 22(7), 1234.
[http://dx.doi.org/10.3390/molecules22071234]
[68]
Matos, K.S.; Mancini, D.T.; Cunha, E.F.F.; Kuča, K.; França, T.C.C.; Ramalho, T.C. Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin. J. Braz. Chem. Soc., 2011, 6(4), 286-289.
[http://dx.doi.org/10.1590/S0103-50532011001000023]
[69]
Matos, K.S.; da Cunha, E.F.F.; da Silva Gonçalves, A.; Wilter, A.; Kuča, K.; França, T.C.C.; Ramalho, T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: Can mouse data provide new insights into humans? J. Biomol. Struct. Dyn., 2012, 30(5), 546-558.
[http://dx.doi.org/10.1080/07391102.2012.687521] [PMID: 22731788]
[70]
da Silva Gonçalves, A.; França, T.C.C.; Caetano, M.S.; Ramalho, T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn., 2014, 32(2), 301-307.
[http://dx.doi.org/10.1080/07391102.2013.765361] [PMID: 23527625]
[71]
van der Kamp, M.W.; Mulholland, A.J. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry, 2013, 52(16), 2708-2728.
[http://dx.doi.org/10.1021/bi400215w] [PMID: 23557014]
[72]
Taylor, R.D.; Jewsbury, P.J.; Essex, J.W. A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des., 2002, 16(3), 151-166.
[http://dx.doi.org/10.1023/A:1020155510718] [PMID: 12363215]
[73]
Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptor conformations: A practical alternative. Curr. Opin. Struct. Biol., 2008, 18(2), 178-184.
[http://dx.doi.org/10.1016/j.sbi.2008.01.004] [PMID: 18302984]
[74]
Hartmann, C.; Antes, I.; Lengauer, T. Docking and scoring with alternative side-chain conformations. Proteins, 2009, 74(3), 712-726.
[http://dx.doi.org/10.1002/prot.22189] [PMID: 18704939]
[75]
Meller, J. Molecular dynamics. eLS, 2001, 1-8.
[76]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9(1), 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[77]
Guimarães, A.P.; Ramalho, T.C.; França, T.C.C. Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase from Variola virus. J. Biomol. Struct. Dyn., 2014, 32(10), 1601-1612.
[http://dx.doi.org/10.1080/07391102.2013.830578] [PMID: 23998201]
[78]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[79]
Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., 2006, 26(5), 531-568.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]
[80]
Jorgensen, W.L. Foundations of biomolecular modeling. Cell, 2013, 155(6), 1199-1202.
[http://dx.doi.org/10.1016/j.cell.2013.11.023] [PMID: 24315087]
[81]
Lonsdale, R.; Ranaghan, K.E.; Mulholland, A.J. Computational enzymology. Chem. Commun. (Camb.), 2010, 46(14), 2354-2372.
[http://dx.doi.org/10.1039/b925647d] [PMID: 20309456]
[82]
Yoder, R.J.; Zhuang, Q.; Beck, J.M.; Franjesevic, A.; Blanton, T.G.; Sillart, S.; Secor, T.; Guerra, L.; Brown, J.D.; Reid, C.; McElroy, C.A.; Doğan Ekici, Ö.; Callam, C.S.; Hadad, C.M. Study of para-quinone methide precursors toward the realkylation of aged acetylcholinesterase. ACS Med. Chem. Lett., 2017, 8(6), 622-627.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00037] [PMID: 28626522]
[83]
Franjesevic, A.J.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry, 2019, 25(21), 5337-5371.
[http://dx.doi.org/10.1002/chem.201805075] [PMID: 30444932]
[84]
Quinn, D.M. Resurrection biology: Aged acetylcholinesterase brought back to life. J. Med. Chem., 2018, 61(16), 7032-7033.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01122] [PMID: 30110162]
[85]
Prado, A.; Petroianu, G.A.; Lorke, D.E.; Chambers, J.W. A trivalent approach for determining in vitro toxicology: Examination of oxime K027. J. Appl. Toxicol., 2015, 35(2), 219-227.
[http://dx.doi.org/10.1002/jat.3013] [PMID: 24853289]
[86]
Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J., 2011, 435(2), 297-312.
[http://dx.doi.org/10.1042/BJ20110162] [PMID: 21726199]
[87]
Fernandez-Cabezudo, M.J.; Azimullah, S.; Nurulain, S.M.; Mechkarska, M.; Lorke, D.E.; Hasan, M.Y.; Petroianu, G.A.; Al-Ramadi, B.K. The organophosphate paraoxon has no demonstrable effect on the murine immune system following subchronic low dose exposure. Int. J. Immunopathol. Pharmacol., 2008, 21(4), 891-901.
[http://dx.doi.org/10.1177/039463200802100413] [PMID: 19144274]
[88]
Lorke, D.E.; Petroianu, G.A. Minireview: Does in vitro testing of oximes help predict their in vivo action after paraoxon exposure? J. Appl. Toxicol., 2009, 29(6), 459-469.
[http://dx.doi.org/10.1002/jat.1457] [PMID: 19603416]
[89]
Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Shafiullah, M.; Kuča, K.; Petroianu, G.A. Pretreatment for acute exposure to diisopropylfluorophosphate: In vivo efficacy of various acetylcholinesterase inhibitors. J. Appl. Toxicol., 2011, 31(6), 515-523.
[http://dx.doi.org/10.1002/jat.1589] [PMID: 20981864]
[90]
Čalić, M.; Vrdoljak, A.L.; Radić, B.; Jelić, D.; Jun, D.; Kuča, K.; Kovarik, Z. In vitro and in vivo evaluation of pyridinium oximes: Mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicology, 2006, 219(1-3), 85-96.
[http://dx.doi.org/10.1016/j.tox.2005.11.003] [PMID: 16332406]
[91]
Pearson, J.N.; Patel, M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann. N. Y. Acad. Sci., 2016, 1378(1), 17-24.
[http://dx.doi.org/10.1111/nyas.13115] [PMID: 27371936]
[92]
Ross, S.M.; McManus, I.C.; Harrison, V.; Mason, O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: A systematic and meta-analytic review. Crit. Rev. Toxicol., 2013, 43(1), 21-44.
[http://dx.doi.org/10.3109/10408444.2012.738645] [PMID: 23163581]
[93]
Cao, X.; Rao, C.; Cui, H.; Sun, D.; Li, L.; Guo, S.; Zhou, J.; Yuan, R.; Yang, S.; Chen, J. Toxic effects of glyphosate on the intestine, liver, brain of carp and on epithelioma papulosum cyprinid cells: Evidence from in vivo and in vitro research. Chemosphere, 2022, 302, 134691.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134691] [PMID: 35489457]
[94]
Wilson, I.B.; Acetylcholinesterase, X.I. Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate. J. Biol. Chem., 1951, 190(1), 111-117.
[http://dx.doi.org/10.1016/S0021-9258(18)56051-8] [PMID: 14841157]
[95]
Wilson, I.B.; Ginsburg, S. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. Biophys. Acta, 1955, 18(1), 168-170.
[http://dx.doi.org/10.1016/0006-3002(55)90040-8] [PMID: 13260275]
[96]
Petroianu, G.A. The history of pyridinium oximes as nerve gas antidotes: The British contribution. Pharmazie, 2013, 68(11), 916-918.
[PMID: 24380243]
[97]
Worek, F.; Thiermann, H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther., 2013, 139(2), 249-259.
[http://dx.doi.org/10.1016/j.pharmthera.2013.04.009] [PMID: 23603539]
[98]
Lundy, P.M.; Raveh, L.; Amitai, G. Development of the bisquaternary oxime HI-6 toward clinical use in the treatment of organophosphate nerve agent poisoning. Toxicol. Rev., 2006, 25(4), 231-243.
[http://dx.doi.org/10.2165/00139709-200625040-00004] [PMID: 17288495]
[99]
Kitagawa, D.A.S.; Cavalcante, S.F.A.; de Paula, R.L.; Rodrigues, R.B.; Bernardo, L.B.; da Silva, M.C.J.; da Silva, T.N.; Dos Santos, W.V.; Granjeiro, J.M.; de Almeida, J.S.F.D.; Barcellos, M.C.; de A Correa, A.B.; França, T.C.C.; Kuča, K.; Simas, A.B.C. In vitro evaluation of neutral aryloximes as reactivators for Electrophorus eel acetylcholinesterase inhibited by paraoxon. Biomolecules, 2019, 9(10), 583.
[http://dx.doi.org/10.3390/biom9100583] [PMID: 31597234]
[100]
Polisel, D.A.; de Castro, A.A.; Mancini, D.T.; da Cunha, E.F.F.; França, T.C.C.; Ramalho, T.C.; Kuca, K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem. Biol. Interact., 2019, 309, 108671.
[http://dx.doi.org/10.1016/j.cbi.2019.05.037] [PMID: 31207225]
[101]
Musilek, K.; Holas, O.; Kuca, K.; Jun, D.; Dohnal, V.; Opletalova, V.; Dolezal, M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 70-76.
[http://dx.doi.org/10.1080/14756360701383981] [PMID: 18341256]
[102]
Kuca, K.; Nepovimova, E.; Wu, Q.; de Souza, F.R.; Ramalho, T.C.; Franca, T.C.C.; Musilek, K. Experimental hydrophilic reactivator: Bisoxime with three positive charges. Chem. Pap., 2019, 73(3), 777-782.
[http://dx.doi.org/10.1007/s11696-018-0612-6]
[103]
Lorke, D.E.; Nurulain, S.M.; Hasan, M.Y.; Kuča, K.; Petroianu, G.A. Oximes as pretreatment before acute exposure to paraoxon. J Appl Toxicol, 2019, 2019, jat.3835.
[104]
Kuca, K.; Musilek, K.; Jun, D.; Zdarova-Karasova, J.; Nepovimova, E.; Soukup, O.; Hrabinova, M.; Mikler, J.; Franca, T.C.C.; Da Cunha, E.F.F.; De Castro, A.A.; Valis, M.; Ramalho, T.C. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol., 2018, 19(1), 8.
[http://dx.doi.org/10.1186/s40360-018-0196-3] [PMID: 29467029]
[105]
Kuca, K.; Musilek, K.; Jun, D.; Nepovimova, E.; Soukup, O.; Korabecny, J.; França, T.C.C.; de Castro, A.A.; Krejcar, O.; da Cunha, E.F.F.; Ramalho, T.C. Oxime K074 - in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev., 2020, 39(2), 157-166.
[http://dx.doi.org/10.1080/15569543.2018.1485702]
[106]
de Castro, A.A.; Polisel, D.A.; Pereira, B.T.L.; da Cunha, E.F.F.; Kuca, K.; Nepovimova, E. Understanding the interaction modes and reactivity of trimedoxime toward mmache inhibited by nerve agents: Theoretical and experimental aspects. Int. J. Mol. Sci., 2020, 21(18), 6510.
[107]
Worek, F.; Mast, U.; Kiderlen, D.; Diepold, C.; Eyer, P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta, 1999, 288(1-2), 73-90.
[http://dx.doi.org/10.1016/S0009-8981(99)00144-8] [PMID: 10529460]
[108]
Wille, T.; Ekström, F.; Lee, J.C.; Pang, Y.P.; Thiermann, H.; Worek, F. Kinetic analysis of interactions between alkylene-linked bis-pyridiniumaldoximes and human acetylcholinesterases inhibited by various organophosphorus compounds. Biochem. Pharmacol., 2010, 80(6), 941-946.
[http://dx.doi.org/10.1016/j.bcp.2010.05.022] [PMID: 20510679]
[109]
Elsinghorst, P.W.; Worek, F.; Thiermann, H.; Wille, T. Drug development for the management of organophosphorus poisoning. Expert Opin. Drug Discov., 2013, 8(12), 1467-1477.
[http://dx.doi.org/10.1517/17460441.2013.847920] [PMID: 24125474]
[110]
Ohta, H.; Ohmori, T.; Suzuki, S.; Ikegaya, H.; Sakurada, K.; Takatori, T. New safe method for preparation of sarin-exposed human erythrocytes acetylcholinesterase using non-toxic and stable sarin analogue isopropyl p-nitrophenyl methylphosphonate and its application to evaluation of nerve agent antidotes. Pharm. Res., 2006, 23(12), 2827-2833.
[http://dx.doi.org/10.1007/s11095-006-9123-1] [PMID: 17096183]
[111]
Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res., 2012, 45(5), 756-766.
[http://dx.doi.org/10.1021/ar2002864] [PMID: 22360473]
[112]
Cabal, J.; Kuca, K.; Kassa, J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Pharmacol. Toxicol., 2004, 95(2), 81-86.
[http://dx.doi.org/10.1111/j.1742-7843.2004.950207.x] [PMID: 15379785]
[113]
Lorke, D.; Kalasz, H.; Petroianu, G.; Tekes, K. Entry of oximes into the brain: A review. Curr. Med. Chem., 2008, 15(8), 743-753.
[http://dx.doi.org/10.2174/092986708783955563] [PMID: 18393843]
[114]
Wagner, S.; Kufleitner, J.; Zensi, A.; Dadparvar, M.; Wien, S.; Bungert, J.; Vogel, T.; Worek, F.; Kreuter, J.; von Briesen, H. Nanoparticulate transport of oximes over an in vitro blood-brain barrier model. PLoS One, 2010, 5(12), e14213.
[http://dx.doi.org/10.1371/journal.pone.0014213] [PMID: 21151975]
[115]
Cadieux, C.L.; Wang, H.; Zhang, Y.; Koenig, J.A.; Shih, T.M.; McDonough, J.; Koh, J.; Cerasoli, D. Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents. Chem. Biol. Interact., 2016, 259(Pt B), 133-141.
[http://dx.doi.org/10.1016/j.cbi.2016.04.002] [PMID: 27062893]
[116]
Jaćević, V.; Nepovimova, E.; Kuča, K. Toxic injury to muscle tissue of rats following acute oximes exposure. Sci. Rep., 2019, 9(1), 1457.
[http://dx.doi.org/10.1038/s41598-018-37837-4] [PMID: 30728420]
[117]
Jaćević, V.; Nepovimova, E.; Kuča, K. Acute toxic injuries of rat’s visceral tissues induced by different oximes. Sci. Rep., 2019, 9(1), 16425.
[http://dx.doi.org/10.1038/s41598-019-52768-4] [PMID: 31712702]
[118]
Musilek, K.; Kuca, K.; Jun, D.; Dolezal, M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990-2004. Curr. Org. Chem., 2007, 11(2), 229-238.
[http://dx.doi.org/10.2174/138527207779316417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy