Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

p-Coumaric Acid: A Naturally Occurring Chemical with Potential Therapeutic Applications

Author(s): Jasleen Kaur* and Ramandeep Kaur

Volume 26, Issue 14, 2022

Published on: 25 October, 2022

Page: [1333 - 1349] Pages: 17

DOI: 10.2174/1385272826666221012145959

Price: $65

Abstract

Coumaric acid is a hydroxy derivative of cinnamic acid with three different isomers (ortho, meta and para). Its most commonly available form is p-coumaric acid. p-Coumaric acid i.e., 4-hydroxycinnamic acid is a potent phenolic compound found to exist naturally in various plants, cereals, fruits and vegetables. It is one of the major constituent compounds of phenolic polymer lignin in lignocellulosic materials. Various natural and synthetic derivatives of pcoumaric acid have been reported in the literature. Different extraction methods including conventional methods such as solvent extraction, acidification, alkaline extraction etc. and recent approaches such as the clip-off method, sugaring out method, soft microwave extraction etc. for its qualitative and quantitative determination in various plant materials have been investigated by various researchers. This paper has discussed the synthesis of various derivatives of p-coumaric acid such as amides, esters, aldehydes, polymers, and copolymers. p-Coumaric acid and its derivatives have been found to possess different bioactive properties such as antioxidant, antimicrobial, anticancer, antiarthritic, anti-inflammatory, gout prevention, anti-diabetic, anti-melanogenic, skin regeneration, gastroprotective, anti-ulcer, cardioprotective, hepatoprotective, reno-protective, bone formation, anti-angiogenic and anti-platelet etc. Owing to this huge bioactive potential, p-coumaric acid could be incorporated in edible food products, pharmaceutical products, cosmetics, etc. More studies are required to evaluate their compatability in these products. To the best of our knowledge, this is the first review discussing natural occurrence, extraction, natural derivatives, synthesis of various derivatives and therapeutic applications of p-coumaric acid.

Graphical Abstract

[1]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[2]
Vinholes, J.; Silva, B.M.; Silva, L.R. Hydroxy Cinnamic Acids (HCAS): Structure, biological properties and health effects. In: Berhardt, L.V., Ed.; Advances in Experimental Medicine and Biology; Nova Science Publishers, 2015, pp. 1-33.
[3]
Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/251754] [PMID: 23956973]
[4]
4-Hydroxycinnamic acid. Pub chem. Available from: http s://pubchem.ncbi.nlm.nih.gov/compound/4-Hydroxycinnamic-acid (Accessed on: August 30, 2021).
[5]
Metabocard for 4-Hydroxycinnamic acid (HMDB0002035). HMDB. Available from: http s://hmdb.ca/metabolites/HMDB0002035 (Accessed on: November 9, 2020).
[6]
Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin—a review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods, 2020, 9(4), 534.
[http://dx.doi.org/10.3390/foods9040534] [PMID: 32344540]
[7]
Chandrasekara, A.; Daugelaite, J.; Shahidi, F. DNA scission and LDL cholesterol oxidation inhibition and antioxidant activities of Bael (Aegle marmelos) flower extracts. J. Tradit. Complement. Med., 2018, 8(3), 428-435.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.010] [PMID: 29992113]
[8]
Oh, S.; Kim, M.J.; Park, K.W.; Lee, J.H. Antioxidant properties of aqueous extract of roasted hulled barley in bulk oil or oil‐in‐water emulsion matrix. J. Food Sci., 2015, 80(11), C2382-C2388.
[http://dx.doi.org/10.1111/1750-3841.13073] [PMID: 26408834]
[9]
Trisha, S. Role of hesperdin, luteolin and coumaric acid in arthritis management: A Review. Inter. J. Phys. Nutr. Phys. Educ., 2018, 3(2), 1183-1186.
[10]
Abramovič, H. Antioxidant properties of hydroxycinnamic acid derivatives: A focus on biochemistry, physicochemical parameters, reactive species, and biomolecular interactions. In: Preedy, V.R., Ed.; Coffee in Health and Disease Prevention; Academic Press, 2015, pp. 843-852.
[http://dx.doi.org/10.1016/B978-0-12-409517-5.00093-0]
[11]
Torres-Mancera, M.T.; Cordova-López, J.; Rodríguez-Serrano, G.; Roussos, S.; Ramírez-Coronel, M.A.; Favela-Torres, E.; Saucedo-Castañeda, G. Enzymatic extraction of hydroxycinnamic acids from coffee pulp. Food Technol. Biotechnol., 2011, 49(3), 369-373.
[12]
Bento-Silva, A.; Koistinen, V.M.; Mena, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.M. Factors affecting intake, metabolism and health benefits of phenolic acids: Do we understand individual variability? Eur. J. Nutr., 2020, 59(4), 1275-1293.
[http://dx.doi.org/10.1007/s00394-019-01987-6] [PMID: 31115680]
[13]
Boz, H. p -Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol., 2015, 50(11), 2323-2328.
[http://dx.doi.org/10.1111/ijfs.12898]
[14]
Garaguso, I.; Nardini, M. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem., 2015, 179, 336-342.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.144] [PMID: 25722174]
[15]
Bichot, A.; Lerosty, M.; Geirnaert, L.; Méchin, V.; Carrère, H.; Bernet, N.; Delgenès, J.P.; García-Bernet, D. Soft microwave pretreatment to extract P-hydroxycinnamic acids from grass stalks. Molecules, 2019, 24(21), 3885.
[http://dx.doi.org/10.3390/molecules24213885] [PMID: 31661930]
[16]
Murkovic, M. M. Phenolic compounds. In: Caballero, B.; Finglas, P.; Toldra, F., Eds.; Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press, 2003, pp. 4507-4514.
[17]
Zhang, Y.; Legland, D.; El Hage, F.; Devaux, M.F.; Guillon, F.; Reymond, M.; Méchin, V. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development. PLoS One, 2019, 14(7), e0219923.
[http://dx.doi.org/10.1371/journal.pone.0219923] [PMID: 31361770]
[18]
Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 719-724.
[http://dx.doi.org/10.1016/j.saa.2013.06.110] [PMID: 23892112]
[19]
Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p -coumaric acid and rutin, using food systems. J. Sci. Food Agric., 2013, 93(13), 3205-3208.
[http://dx.doi.org/10.1002/jsfa.6156] [PMID: 23553578]
[20]
Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord., 2013, 12(1), 43.
[http://dx.doi.org/10.1186/2251-6581-12-43] [PMID: 23938049]
[21]
Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p -Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr., 2007, 97(3), 458-463.
[http://dx.doi.org/10.1017/S0007114507657882] [PMID: 17313706]
[22]
Kolahi, M.; Tabandeh, M.R.; Saremy, S.; Hosseini, S.A.; Hashemitabar, M. The study of apoptotic effect of p-coumaric acid on breast cancer cells MCF- 7. SSU_Journals, 2016, 24(3), 211.
[23]
Kim, J.; Kim, J.S.; Park, E. Cytotoxic and anti-inflammatory effects of onion peel extract on lipopolysaccharide stimulated human colon carcinoma cells. Food Chem. Toxicol., 2013, 62, 199-204.
[http://dx.doi.org/10.1016/j.fct.2013.08.045] [PMID: 24001438]
[24]
Khallouki, F.; Haubner, R.; Ricarte, I.; Erben, G.; Klika, K.; Ulrich, C.M.; Owen, R.W. Identification of polyphenolic compounds in the flesh of Argan (Morocco) fruits. Food Chem., 2015, 179, 191-198.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.103] [PMID: 25722154]
[25]
Călinoiu, L.; Vodnar, D. Thermal processing for the release of phenolic from wheat and oat bran. Biomolecules, 2019, 10(1), 21.
[http://dx.doi.org/10.3390/biom10010021] [PMID: 31877857]
[26]
Candy, L.; Bassil, S.; Rigal, L.; Simon, V.; Raynaud, C. Thermo-mechano-chemical extraction of hydroxycinnamic acids from industrial hemp by-products using a twin-screw extruder. Ind. Crops Prod., 2017, 109, 335-345.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.044]
[27]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p -Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[28]
Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int., 2011, 44(2), 530-536.
[http://dx.doi.org/10.1016/j.foodres.2010.10.055]
[29]
Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, polysaccharidic, and lipidic fractions of mushrooms from north-eastern Portugal: Chemical compounds with antioxidant properties. J. Agric. Food Chem., 2012, 60(18), 4634-4640.
[http://dx.doi.org/10.1021/jf300739m] [PMID: 22515547]
[30]
Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Mattila, P.H.; González-Paramás, A.M.; Törrönen, A.R. Distribution and contents of phenolic compounds in eighteen Scandina-vian berry species. J. Agric. Food Chem., 2004, 52(14), 4477-4486.
[http://dx.doi.org/10.1021/jf049595y] [PMID: 15237955]
[31]
Hyun, T.K.; Ko, Y-J.; Kim, E.H.; Chung, I.M.; Kim, J.S. Anti-inflammatory activity and phenolic composition of Dendropanax morbifera leaf extracts. Ind. Crops Prod., 2015, 74, 263-270.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.002]
[32]
Gao, H.; Cheng, N.; Zhou, J.; Wang, B.; Deng, J.; Cao, W. Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. J. Food Sci. Technol., 2014, 51(5), 950-956.
[http://dx.doi.org/10.1007/s13197-011-0591-x] [PMID: 24803703]
[33]
Ribeiro, B.; Valentão, P.; Baptista, P.; Seabra, R.M.; Andrade, P.B. Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistuli-na hepatica). Food Chem. Toxicol., 2007, 45(10), 1805-1813.
[http://dx.doi.org/10.1016/j.fct.2007.03.015] [PMID: 17493733]
[34]
Yildiz, O.; Can, Z.; Laghari, A.Q.; Şahin, H.; Malkoç, M. Wild edible mushrooms as a natural source of phenolics and antioxidants. J. Food Biochem., 2015, 39(2), 148-154.
[http://dx.doi.org/10.1111/jfbc.12107]
[35]
Nešović, M.; Gašić, U.; Tosti, T.; Trifković, J.; Baošić, R.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Physicochemical analysis and phenolic profile of polyfloral and honey-dew honey from Montenegro. RSC Advances, 2020, 10(5), 2462-2471.
[http://dx.doi.org/10.1039/C9RA08783D] [PMID: 35496084]
[36]
Kim, M.J.; Hyun, J.N.; Kim, J.A.; Park, J.C.; Kim, M.Y.; Kim, J.G.; Lee, S.J.; Chun, S.C.; Chung, I.M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem., 2007, 55(12), 4802-4809.
[http://dx.doi.org/10.1021/jf0701943] [PMID: 17516656]
[37]
Siriamornpun, S.; Kaewseejan, N. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Sci. Hortic., 2017, 221, 33-42.
[http://dx.doi.org/10.1016/j.scienta.2017.04.020]
[38]
Elzaawely, A.A.; Maswada, H.F.; El-Sayed, M.E.A.; Ahmed, M.E. Phenolic compounds and antioxidant activity of rice straw extract. Int. Lett. Nat. Sci., 2017, 64, 1-9.
[39]
Chung, I.M.; Lim, J.J.; Ahn, M.S.; Jeong, H.N.; An, T.J.; Kim, S.H. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J. Ginseng Res., 2016, 40(1), 68-75.
[http://dx.doi.org/10.1016/j.jgr.2015.05.006] [PMID: 26843824]
[40]
Luthria, D.L.; Pastor-Corrales, M.A. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food Compos. Anal., 2006, 19(2-3), 205-211.
[http://dx.doi.org/10.1016/j.jfca.2005.09.003]
[41]
Kaur, R.; Uppal, S.K.; Sharma, P. Phenolic acids from sugarcane bagasse lignin: Qualitative and quantitative determination, isolation, derivatization and biological activity evaluation. Chem. Nat. Compd., 2018, 54(6), 1211-1215.
[http://dx.doi.org/10.1007/s10600-018-2600-z]
[42]
Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods, 2012, 4(4), 979-987.
[http://dx.doi.org/10.1016/j.jff.2012.07.006]
[43]
Puttaraju, N.G.; Venkateshaiah, S.U.; Dharmesh, S.M.; Urs, S.M.N.; Somasundaram, R. Antioxidant activity of indigenous edible mushrooms. J. Agric. Food Chem., 2006, 54(26), 9764-9772.
[http://dx.doi.org/10.1021/jf0615707] [PMID: 17177499]
[44]
Topakas, E.; Kalogeris, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production of phenolics from corn cobs by coupling enzymic treatment and solid state fermenta-tion. Eng. Life Sci., 2004, 4(3), 283-286.
[http://dx.doi.org/10.1002/elsc.200420025]
[45]
Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chem., 2015, 185, 112-118.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.120] [PMID: 25952848]
[46]
Xu, F.; Sun, R.C.; Sun, J.X.; Liu, C.F.; He, B.H.; Fan, J.S. Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal. Chim. Acta, 2005, 552(1-2), 207-217.
[http://dx.doi.org/10.1016/j.aca.2005.07.037]
[47]
Dhamole, P.B.; Demanna, D.; Desai, S.A. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system. Appl. Biochem. Biotechnol., 2014, 174(2), 564-573.
[http://dx.doi.org/10.1007/s12010-014-1107-8] [PMID: 25082768]
[48]
Zautsen, R.R.M.; Maugeri-Filho, F.; Vaz-Rossell, C.E.; Straathof, A.J.J.; van der Wielen, L.A.M.; de Bont, J.A.M. Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate. Biotechnol. Bioeng., 2009, 102(5), 1354-1360.
[http://dx.doi.org/10.1002/bit.22189] [PMID: 19062184]
[49]
Ou, S.Y.; Luo, Y.L.; Huang, C.H.; Jackson, M. Production of coumaric acid from sugarcane bagasse. Innov. Food Sci. Emerg. Technol., 2009, 10(2), 253-259.
[http://dx.doi.org/10.1016/j.ifset.2008.10.008]
[50]
Sun, R.C.; Sun, X.F.; Zhang, S.H. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem., 2001, 49(11), 5122-5129.
[http://dx.doi.org/10.1021/jf010500r] [PMID: 11714291]
[51]
Dhamole, P.B.; Chavan, S.; Patil, R.G.; Feng, H.; Bule, M.; Kinninge, P. Extraction of p-coumaric acid from agricultural residues and separation using ‘sugaring out’. Korean J. Chem. Eng., 2016, 33(6), 1860-1864.
[http://dx.doi.org/10.1007/s11814-016-0020-y]
[52]
Timokhin, V.I.; Regner, M.; Motagamwala, A.H.; Sener, C.; Karlen, S.D.; Dumesic, J.A.; Ralph, J. Production of p-coumaric acid from corn GVL-lignin. ACS Sustain. Chem.& Eng., 2020, 8(47), 17427-17438.
[http://dx.doi.org/10.1021/acssuschemeng.0c05651]
[53]
Peng, W.; Wu, J.G.; Jiang, Y.B.; Liu, Y.J.; Sun, T.; Wu, N.; Wu, C.J. Antitumor activity of 4-O-(2″-O-acetyl-6″-O-p-coumaroyl-β-d-glucopyranosyl)-p-coumaric acid against lung cancers via mitochondrial-mediated apoptosis. Chem. Biol. Interact., 2015, 233, 8-13.
[http://dx.doi.org/10.1016/j.cbi.2015.03.014] [PMID: 25824411]
[54]
Mahmood, U.; Kaul, V.K.; Acharya, R.; Jirovetz, L. p -Coumaric acid esters from Tanacetum longifolium. Phytochemistry, 2003, 64(4), 851-853.
[http://dx.doi.org/10.1016/j.phytochem.2003.08.023] [PMID: 14559280]
[55]
Struijs, K.; Vincken, J.P.; Verhoef, R.; Voragen, A.G.J.; Gruppen, H. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromole-cule from flaxseed hulls. Phytochemistry, 2008, 69(5), 1250-1260.
[http://dx.doi.org/10.1016/j.phytochem.2007.11.010] [PMID: 18187168]
[56]
Johnsson, P.; Peerlkamp, N.; Kamal-Eldin, A.; Andersson, R.E.; Andersson, R.; Lundgren, L.N.; Åman, P. Polymeric fractions containing phenol glucosides in flaxseed. Food Chem., 2002, 76(2), 207-212.
[http://dx.doi.org/10.1016/S0308-8146(01)00269-2]
[57]
Park, J.B.; Schoene, N. Clovamide-type phenylpropenoic acid amides, N-coumaroyldopamine and N-caffeoyldopamine, inhibit platelet-leukocyte interactions via sup-pressing P-selectin expression. J. Pharmacol. Exp. Ther., 2006, 317(2), 813-819.
[http://dx.doi.org/10.1124/jpet.105.097337] [PMID: 16478826]
[58]
Liu, T.; Yip, Y.M.; Song, L.; Feng, S.; Liu, Y.; Lai, F.; Zhang, D.; Huang, D. Inhibiting enzymatic starch digestion by the phenolic compound diboside A: A mechanistic and in silico study. Food Res. Int., 2013, 54(1), 595-600.
[http://dx.doi.org/10.1016/j.foodres.2013.07.062]
[59]
Hammoda, H.M.; Ghazy, N.M.; Harraz, F.M.; Radwan, M.M.; ElSohly, M.A.; Abdallah, I.I. Chemical constituents from Tribulus terrestris and screening of their antioxi-dant activity. Phytochemistry, 2013, 92, 153-159.
[http://dx.doi.org/10.1016/j.phytochem.2013.04.005] [PMID: 23642392]
[60]
Choi, S.W.; Lee, S.K.; Kim, E.O.; Oh, J.H.; Yoon, K.S.; Parris, N.; Hicks, K.B.; Moreau, R.A. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. J. Agric. Food Chem., 2007, 55(10), 3920-3925.
[http://dx.doi.org/10.1021/jf0635154] [PMID: 17397179]
[61]
Buiarelli, F.; Coccioli, F.; Merolle, M.; Jasionowska, R.; Terracciano, A. Identification of hydroxycinnamic acid–tartaric acid esters in wine by HPLC–tandem mass spectrometry. Food Chem., 2010, 123(3), 827-833.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.017]
[62]
Ma, C.; Xiao, S.; Li, Z.; Wang, W.; Du, L. Characterization of active phenolic components in the ethanolic extract of Ananas comosus L. leaves using high-performance liquid chromatography with diode array detection and tandem mass spectrometry. J. Chromatogr. A, 2007, 1165(1-2), 39-44.
[http://dx.doi.org/10.1016/j.chroma.2007.07.060] [PMID: 17698075]
[63]
Harbaum, B.; Hubbermann, E.M.; Wolff, C.; Herges, R.; Zhu, Z.; Schwarz, K. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD. J. Agric. Food Chem., 2007, 55(20), 8251-8260.
[http://dx.doi.org/10.1021/jf071314+] [PMID: 17848079]
[64]
Ieri, F.; Innocenti, M.; Andrenelli, L.; Vecchio, V.; Mulinacci, N. Rapid HPLC/DAD/MS method to determine phenolic acids, glycoalkaloids and anthocyanins in pig-mented potatoes (Solanum tuberosum L.) and correlations with variety and geographical origin. Food Chem., 2011, 125(2), 750-759.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.009]
[65]
Zhang, L.; Gao, H.; Baba, M.; Okada, Y.; Okuyama, T.; Wu, L.; Zhan, L. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut). BMC Complement. Altern. Med., 2014, 14(1), 422.
[http://dx.doi.org/10.1186/1472-6882-14-422] [PMID: 25351676]
[66]
Stankova, I.; Chuchkov, K.; Shishkov, S.; Kostova, K.; Mukova, L.; Galabov, A.S. Synthesis, antioxidative and antiviral activity of hydroxycinnamic acid amides of thiazole containing amino acid. Amino Acids, 2009, 37(2), 383-388.
[http://dx.doi.org/10.1007/s00726-008-0165-z] [PMID: 18853101]
[67]
Thi, T.H.; Matsusaki, M.; Shi, D.; Kaneko, T.; Akashi, M. Synthesis and properties of coumaric acid derivative homo-polymers. J. Biomater. Sci. Polym. Ed., 2008, 19(1), 75-85.
[http://dx.doi.org/10.1163/156856208783227668] [PMID: 18177555]
[68]
Contardi, M.; Alfaro-Pulido, A.; Picone, P.; Guzman-Puyol, S.; Goldoni, L.; Benítez, J.J.; Heredia, A.; Barthel, M.J.; Ceseracciu, L.; Cusimano, G.; Brancato, O.R.; Di Carlo, M.; Athanassiou, A.; Heredia-Guerrero, J.A. Low molecular weight ε-caprolactone-p-coumaric acid copolymers as potential biomaterials for skin regeneration ap-plications. PLoS One, 2019, 14(4), e0214956.
[http://dx.doi.org/10.1371/journal.pone.0214956] [PMID: 30958838]
[69]
Spasova, M.; Philipov, S.; Nikolaeva-Glomb, L.; Galabov, A.S.; Milkova, T. Cinnamoyl- and hydroxycinnamoyl amides of glaucine and their antioxidative and antiviral activities. Bioorg. Med. Chem., 2008, 16(15), 7457-7461.
[http://dx.doi.org/10.1016/j.bmc.2008.06.010] [PMID: 18590964]
[70]
Lopes, S.P.; Castillo, Y.P.; Monteiro, M.L.; Menezes, R.R.P.P.B.; Almeida, R.N.; Martins, A.M.C.; Sousa, D.P. Trypanocidal mechanism of action and in silico studies of p-coumaric acid derivatives. Int. J. Mol. Sci., 2019, 20(23), 5916.
[http://dx.doi.org/10.3390/ijms20235916] [PMID: 31775321]
[71]
Naik, N.; Kumar, H.V. Synthesis and evaluation of novel p-coumaric acid amides as antioxidants. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 57-62.
[72]
Jitareanu, A.; Tataringa, G.; Zbancioc, A.M.; Tuchilus, C.; Balan, M.; Stanescu, U. Cinnamic acid derivatives and 4-aminoantipyrine amides–Synthesis and evaluation of biological properties. Res. J. Chem. Sci., 2013, 3(3), 9-13.
[73]
Khatkar, A.; Nanda, A.; Kumar, P.; Narasimhan, B. Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arab. J. Chem., 2017, 10, S3804-S3815.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.018]
[74]
Cai, Y.Z.; Mei, Sun Jie Xing; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci., 2006, 78(25), 2872-2888.
[http://dx.doi.org/10.1016/j.lfs.2005.11.004] [PMID: 16325868]
[75]
Kaur, R. Value-Added Chemicals from Lignin and Hemicellulose Fractions of Sugarcane Bagasse., PhD Thesis, Punjab Agricultural University: Ludhiana, India., 2016.
[76]
Ragupathi Raja Kannan, R.; Arumugam, R.; Thangaradjou, T.; Anantharaman, P. Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Res. Int., 2013, 54(1), 1229-1236.
[http://dx.doi.org/10.1016/j.foodres.2013.01.027]
[77]
Guglielmi, F.; Luceri, C.; Giovannelli, L.; Dolara, P.; Lodovici, M. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br. J. Nutr., 2003, 89(5), 581-587.
[http://dx.doi.org/10.1079/BJN2003849] [PMID: 12720578]
[78]
Mansouri, A.; Makris, D.P.; Kefalas, P. Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxa-late chemiluminescence-based assay: Structure–activity relationships. J. Pharm. Biomed. Anal., 2005, 39(1-2), 22-26.
[http://dx.doi.org/10.1016/j.jpba.2005.03.044] [PMID: 15953704]
[79]
Terpinc, P.; Abramovič, H. A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chem., 2010, 121(2), 366-371.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.037]
[80]
Firuzi, O.; Giansanti, L.; Vento, R.; Seibert, C.; Petrucci, R.; Marrosu, G.; Agostino, R.; Saso, L. Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J. Pharm. Pharmacol., 2010, 55(7), 1021-1027.
[http://dx.doi.org/10.1211/0022357021314] [PMID: 12906760]
[81]
Hotta, H.; Nagano, S.; Ueda, M.; Tsujino, Y.; Koyama, J.; Osakai, T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reac-tions following their oxidation. Biochim. Biophys. Acta, Gen. Subj., 2002, 1572(1), 123-132.
[http://dx.doi.org/10.1016/S0304-4165(02)00285-4] [PMID: 12204341]
[82]
Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem., 2002, 50(7), 2161-2168.
[http://dx.doi.org/10.1021/jf011348w] [PMID: 11902973]
[83]
Cheng, J.C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and struc-ture–activity relationship. Food Chem., 2007, 104(1), 132-139.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.012]
[84]
Cos, P.; Rajan, P.; Vedernikova, I.; Calomme, M.; Pieters, L.; Vlietinck, A.J.; Augustyns, K.; Haemers, A.; Berghe, D.V. In vitro antioxidant profile of phenolic acid derivatives. Free Radic. Res., 2002, 36(6), 711-716.
[http://dx.doi.org/10.1080/10715760290029182] [PMID: 12180197]
[85]
Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 2006, 41(5), 1523-1542.
[http://dx.doi.org/10.1016/j.jpba.2006.04.002] [PMID: 16753277]
[86]
Dincer, C.; Topuz, A.; Sahin-Nadeem, H.; Ozdemir, K.S.; Cam, I.B.; Tontul, I.; Gokturk, R.S.; Ay, S.T. A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage. Ind. Crops Prod., 2012, 39, 170-176.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.032]
[87]
Zabka, M.; Pavela, R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 2013, 93(6), 1051-1056.
[http://dx.doi.org/10.1016/j.chemosphere.2013.05.076] [PMID: 23800587]
[88]
Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 2012, 25(2), 550-554.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.022]
[89]
Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol., 2007, 45(11), 2287-2295.
[http://dx.doi.org/10.1016/j.fct.2007.06.004] [PMID: 17637491]
[90]
Chiang, L.C.; Chiang, W.; Chang, M.Y.; Ng, L.T.; Lin, C.C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Res., 2002, 55(1), 53-62.
[http://dx.doi.org/10.1016/S0166-3542(02)00007-4] [PMID: 12076751]
[91]
Kwon, M.J.; Shin, H.M.; Perumalsamy, H.; Wang, X.; Ahn, Y.J. Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. J. Apic. Res., 2019, 1-13.
[92]
Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer, 2009, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[93]
Słoczyńska, K.; Powroźnik, B.; Pękala, E.; Waszkielewicz, A.M. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet., 2014, 55(2), 273-285.
[http://dx.doi.org/10.1007/s13353-014-0198-9] [PMID: 24615570]
[94]
Kou, X.; Kirberger, M.; Yang, Y.; Chen, N. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci. Hum. Wellness, 2013, 2(1), 22-28.
[http://dx.doi.org/10.1016/j.fshw.2013.01.001]
[95]
Mumtaz, M.Z.; Kausar, F.; Hassan, M.; Javaid, S.; Malik, A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: in vitro and in silico mechanis-tic study. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 12.
[http://dx.doi.org/10.1186/s43088-021-00101-2]
[96]
Jung, I.L. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One, 2014, 9(4), e95492.
[http://dx.doi.org/10.1371/journal.pone.0095492] [PMID: 24748376]
[97]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Supplementation of p-coumaric acid exhibits chemopreventive effect via induction of Nrf2 in a short-term preclinical model of colon cancer. Eur. J. Cancer Prev., 2019, 28(6), 472-482.
[http://dx.doi.org/10.1097/CEJ.0000000000000496] [PMID: 30407216]
[98]
Radwan, M.M.; Badawy, A.; Zayed, R.; Hassanin, H.; ElSohly, M.A.; Ahmed, S.A. Cytotoxic flavone glycosides from Solanum elaeagnifolium. Med. Chem. Res., 2015, 24(3), 1326-1330.
[http://dx.doi.org/10.1007/s00044-014-1219-2]
[99]
Janicke, B.; Hegardt, C.; Krogh, M.; Önning, G.; Åkesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer, 2011, 63(4), 611-622.
[http://dx.doi.org/10.1080/01635581.2011.538486] [PMID: 21500097]
[100]
Nasr Bouzaiene, N.; Kilani Jaziri, S.; Kovacic, H.; Chekir-Ghedira, L.; Ghedira, K.; Luis, J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol., 2015, 766, 99-105.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.044] [PMID: 26432689]
[101]
Jaganathan, S.K.; Supriyanto, E.; Mandal, M. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol., 2013, 19(43), 7726-7734.
[http://dx.doi.org/10.3748/wjg.v19.i43.7726] [PMID: 24282361]
[102]
Roy, N.; Narayanankutty, A.; Nazeem, P.A.; Valsalan, R.; Babu, T.D.; Mathew, D. Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell prolifera-tion through EGFR down-regulation. Asian Pac. J. Cancer Prev., 2016, 17(8), 4019-4023.
[PMID: 27644655]
[103]
Hu, X.; Yang, Z.; Liu, W.; Pan, Z.; Zhang, X.; Li, M.; Liu, X.; Zheng, Q.; Li, D. The anti-tumor effects of p-coumaric acid on melanoma A375 and B16 cells. Front. Oncol., 2020, 10, 558414.
[http://dx.doi.org/10.3389/fonc.2020.558414] [PMID: 33178586]
[104]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact., 2018, 291, 16-28.
[http://dx.doi.org/10.1016/j.cbi.2018.06.001] [PMID: 29879413]
[105]
Assumpção, J.H.M.; Takeda, A.A.S.; Sforcin, J.M.; Rainho, C.A. Effects of propolis and phenolic acids on triple-negative breast cancer cell lines: Potential involvement of epigenetic mechanisms. Molecules, 2020, 25(6), 1289.
[http://dx.doi.org/10.3390/molecules25061289] [PMID: 32178333]
[106]
Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflam-mation in rats. Inflammation, 2013, 36(1), 169-176.
[http://dx.doi.org/10.1007/s10753-012-9532-8] [PMID: 22923003]
[107]
Guven, M.; Sehitoglu, M.H.; Yuksel, Y.; Tokmak, M.; Aras, A.B.; Akman, T.; Golge, U.H.; Karavelioglu, E.; Bal, E.; Cosar, M. The neuroprotective effect of coumaric acid on spinal cord ischemia/reperfusion injury in rats. Inflammation, 2015, 38(5), 1986-1995.
[http://dx.doi.org/10.1007/s10753-015-0179-0] [PMID: 25943038]
[108]
Neog, M.K.; Joshua Pragasam, S.; Krishnan, M.; Rasool, M. p -Coumaric acid, a dietary polyphenol ameliorates inflammation and curtails cartilage and bone erosion in the rheumatoid arthritis rat model. Biofactors, 2017, 43(5), 698-717.
[http://dx.doi.org/10.1002/biof.1377] [PMID: 28742266]
[109]
Kim, W.; Lim, D.; Kim, J. p-Coumaric acid, a major active compound of bambusae caulis in taeniam, suppresses cigarette smoke-induced pulmonary inflammation. Am. J. Chin. Med., 2018, 46(2), 407-421.
[http://dx.doi.org/10.1142/S0192415X18500209] [PMID: 29433391]
[110]
Pragasam, S.J.; Rasool, M. Dietary component p-coumaric acid suppresses monosodium urate crystal-induced inflammation in rats. Inflamm. Res., 2013, 62(5), 489-498.
[http://dx.doi.org/10.1007/s00011-013-0602-7] [PMID: 23420453]
[111]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull., 2002, 50(6), 788-795.
[http://dx.doi.org/10.1248/cpb.50.788] [PMID: 12045333]
[112]
Savych, A.; Marchyshyn, S.; Kyryliv, M.; Bekus, I. Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity. Farmacia, 2021, 69(3), 595-601.
[http://dx.doi.org/10.31925/farmacia.2021.3.23]
[113]
An, S.M.; Koh, J.S.; Boo, Y.C. p -coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res., 2010, 24(8), 1175-1180.
[http://dx.doi.org/10.1002/ptr.3095] [PMID: 20077437]
[114]
Boo, Y.C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants, 2019, 8(8), 275-291.
[http://dx.doi.org/10.3390/antiox8080275] [PMID: 31382682]
[115]
Lee, J.Y.; Cho, Y.R.; Park, J.H.; Ahn, E.K.; Jeong, W.; Shin, H.S.; Kim, M.S.; Yang, S.H.; Oh, J.S. Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression. Toxicol. Rep., 2019, 6, 10-17.
[http://dx.doi.org/10.1016/j.toxrep.2018.11.005] [PMID: 30510908]
[116]
Lorz, L.; Yoo, B.; Kim, M.Y.; Cho, J. Anti-wrinkling and anti-melanogenic effect of Pradosia mutisii methanol extract. Int. J. Mol. Sci., 2019, 20(5), 1043.
[http://dx.doi.org/10.3390/ijms20051043] [PMID: 30818884]
[117]
Choi, M.H.; Jo, H.G.; Yang, J.; Ki, S.; Shin, H.J. Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. Int. J. Mol. Sci., 2018, 19(2), 409.
[http://dx.doi.org/10.3390/ijms19020409] [PMID: 29385729]
[118]
Seo, Y.K.; Kim, S.J.; Boo, Y.C.; Baek, J.H.; Lee, S.H.; Koh, J.S. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol., 2011, 36(3), 260-266.
[http://dx.doi.org/10.1111/j.1365-2230.2010.03983.x] [PMID: 21198798]
[119]
Song, K.; Boo, Y.C. UVB shielding effects of para-coumaric acid. J. Soc. Cosmet. Sci. Korea, 2012, 38(3), 263-273.
[120]
Biswas, S.; Mukherjee, P.K.; Kar, A.; Bannerjee, S.; Jana, S.N.; Haldar, P.K.; Sharma, N. Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. J. Photochem. Photobiol. B, 2021, 221, 112246.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112246] [PMID: 34243023]
[121]
Siddaraju, M.N.; Dharmesh, S.M. Inhibition of gastric H(+),K(+)-ATPase and Helicobacter pylori growth by phenolic antioxidants of Curcuma amada. J. Agric. Food Chem., 2007, 55(18), 7377-7386.
[http://dx.doi.org/10.1021/jf070719r] [PMID: 17725316]
[122]
Barros, M.P.; Lemos, M.; Maistro, E.L.; Leite, M.F.; Sousa, J.P.B.; Bastos, J.K.; Andrade, S.F. Evaluation of antiulcer activity of the main phenolic acids found in Brazili-an Green Propolis. J. Ethnopharmacol., 2008, 120(3), 372-377.
[http://dx.doi.org/10.1016/j.jep.2008.09.015] [PMID: 18930797]
[123]
Rahman, M.M.; Ferdous, K.U.; Roy, S.; Nitul, I.A.; Mamun, F.; Hossain, M.H.; Subhan, N.; Alam, M.A.; Haque, M.A. Polyphenolic compounds of amla prevent oxidative stress and fibrosis in the kidney and heart of 2K1C rats. Food Sci. Nutr., 2020, 8(7), 3578-3589.
[http://dx.doi.org/10.1002/fsn3.1640] [PMID: 32724620]
[124]
Gómez-Ruiz, S.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluđerović, G.N. On the discovery, biological effects, and use of Cisplatin and metallocenes in anticancer chem-otherapy. Bioinorg. Chem. Appl., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/140284] [PMID: 22844263]
[125]
Chirino, Y.I.; Pedraza-Chaverri, J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol., 2009, 61(3), 223-242.
[http://dx.doi.org/10.1016/j.etp.2008.09.003] [PMID: 18986801]
[126]
Ekinci Akdemir, F.; Albayrak, M.; Çalik, M.; Bayir, Y.; Gülçin, İ. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines, 2017, 5(4), 18.
[http://dx.doi.org/10.3390/biomedicines5020018] [PMID: 28536361]
[127]
Kong, C.S.; Jeong, C.H.; Choi, J.S.; Kim, K.J.; Jeong, J.W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res., 2013, 27(3), 317-323.
[http://dx.doi.org/10.1002/ptr.4718] [PMID: 22585412]
[128]
Park, H.J.; Kim, S.R.; Bae, S.K.; Choi, Y.K.; Bae, Y.H.; Kim, E.C.; Kim, W.J.; Jang, H.O.; Yun, I.; Kim, Y.M.; Bae, M.K. Neuromedin B induces angiogenesis via activation of ERK and Akt in endothelial cells. Exp. Cell Res., 2009, 315(19), 3359-3369.
[http://dx.doi.org/10.1016/j.yexcr.2009.08.009] [PMID: 19703440]
[129]
Lai, Y.L.; Yamaguchi, M. Phytocomponent p-hydroxycinnamic acid stimulates bone formation and inhibits bone resorption in rat femoral tissues in vitro. Mol. Cell. Biochem., 2006, 292(1-2), 45-52.
[http://dx.doi.org/10.1007/s11010-006-9175-x] [PMID: 17036165]
[130]
Yamaguchi, M.; Weitzmann, M.N. The bone anabolic carotenoid p-hydroxycinnamic acid promotes osteoblast mineralization and suppresses osteoclast differentiation by antagonizing NF-κB activation. Int. J. Mol. Med., 2012, 30(3), 708-712.
[http://dx.doi.org/10.3892/ijmm.2012.1043] [PMID: 22751682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy