Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

DPP-Cu2+ Complexes Gated Mesoporous Silica Nanoparticles For pH and Redox Dual Stimuli-Responsive Drug Delivery

Author(s): Wei Chen, Mingyang Ma, Qingteng Lai, Yanke Zhang and Zhengchun Liu*

Volume 30, Issue 28, 2023

Published on: 28 November, 2022

Page: [3249 - 3260] Pages: 12

DOI: 10.2174/0929867329666221011110504

Price: $65

Abstract

Objective: A simple pH and redox dual stimuli-responsive diketopyrrolopyrrole (DPP)-Cu2+ complexes gated mesoporous silica nanoparticles (MSN) were prepared for precise drug delivery and controlled drug release.

Method: MSN was prepared by sol-gel method and then laminated. Carboxylic acid (CA)-Pyrrolo[3,4-c] pyrrole-1,4-dione, 2,5-dihydro-3,6-di-2-pyridinyl (PyDPP) was grafted onto the surface of amino-functionalized MSN (MSN-NH2) through a simple amide reaction and then complexed with Cu2+ to form gated molecules after doxorubicin (DOX) loading.

Results: Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Low-angle X-ray diffraction (XRD) showed that MSN with uniform particle size (100 nm) and porous structure was successfully prepared. The prepared MSN, MSN- NH2, and MSN-DPP were fully characterized by Zeta potential, Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption- desorption. High DOX-loading capacity (18.22%) and encapsulation efficiency (89.16%) were achieved by optimizing the mass ratio of MSN to DOX. Release studies showed that the gated molecules of our designed DPP-Cu2+ complexes had a good blocking effect under physiological conditions (the cumulative release rate of drugs within 24 hours was only 4.18%) and responded well to the pH and redox glutathione (GSH) dual stimuli. In vitro cytotoxicity assay showed that MSN-DPP-Cu2+ had good biocompatibility in both Hep G2 cells and L02 cells (the relative cell viability of both cells within 48 hours was above 97%), and the MSN-DPP-Cu2+@DOX could be triggered for efficient drug release in Hep G2 cells.

Conclusion: The MSN-DPP-Cu2+ described in this research may be a good delivery system for the controlled release of antitumor drugs and can provide a potential possibility for clinical application in the future.

[1]
Bakken, E.; Heruth, K. Temporal control of drugs: An engineering perspective. Ann. N. Y. Acad. Sci., 1991, 618(1 Temporal Cont), 422-427.
[http://dx.doi.org/10.1111/j.1749-6632.1991.tb27261.x]
[2]
Corti, A.; Pastorino, F.; Curnis, F.; Arap, W.; Ponzoni, M.; Pasqualini, R. Targeted drug delivery and penetration into solid tumors. Med. Res. Rev., 2012, 32(5), 1078-1091.
[http://dx.doi.org/10.1002/med.20238] [PMID: 21287572]
[3]
Zhang, J.; Wu, D.; Li, M.F.; Feng, J. Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(48), 26666-26673.
[http://dx.doi.org/10.1021/acsami.5b08460] [PMID: 26553405]
[4]
van der Koog, L.; Gandek, T.B.; Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater., 2022, 11(5), 2100639.
[http://dx.doi.org/10.1002/adhm.202100639] [PMID: 34165909]
[5]
Antoniou, A.I.; Giofrè, S.; Seneci, P.; Passarella, D.; Pellegrino, S. Stimulus-responsive liposomes for biomedical applications. Drug Discov. Today, 2021, 26(8), 1794-1824.
[http://dx.doi.org/10.1016/j.drudis.2021.05.010] [PMID: 34058372]
[6]
Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res., 2022, 55(1), 2-12.
[http://dx.doi.org/10.1021/acs.accounts.1c00544] [PMID: 34850635]
[7]
Mignani, S.; Shi, X.; Ceña, V.; Majoral, J.P. Dendrimer– and polymeric nanoparticle–aptamer bioconjugates as nonviral delivery systems: A new approach in medicine. Drug Discov. Today, 2020, 25(6), 1065-1073.
[http://dx.doi.org/10.1016/j.drudis.2020.03.009] [PMID: 32283193]
[8]
Lin, M.; Dai, Y.; Xia, F.; Zhang, X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater. Sci. Eng. C, 2021, 119, 111626.
[http://dx.doi.org/10.1016/j.msec.2020.111626] [PMID: 33321667]
[9]
Birk, S.E.; Boisen, A.; Nielsen, L.H. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv. Drug Deliv. Rev., 2021, 174, 30-52.
[http://dx.doi.org/10.1016/j.addr.2021.04.005] [PMID: 33845040]
[10]
Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release, 2021, 332, 127-147.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[11]
Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev., 2016, 107, 163-175.
[http://dx.doi.org/10.1016/j.addr.2016.06.018] [PMID: 27426411]
[12]
Sharifi, M.; Attar, F.; Saboury, A.A.; Akhtari, K.; Hooshmand, N.; Hasan, A.; El-Sayed, M.A.; Falahati, M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J. Control. Release, 2019, 311-312, 170-189.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.032] [PMID: 31472191]
[13]
Liu, X.Y.; Wang, J.Q.; Ashby, C.R., Jr; Zeng, L.; Fan, Y.F.; Chen, Z.S. Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov. Today, 2021, 26(5), 1284-1292.
[http://dx.doi.org/10.1016/j.drudis.2021.01.030] [PMID: 33549529]
[14]
Vangijzegem, T.; Stanicki, D.; Laurent, S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv., 2019, 16(1), 69-78.
[http://dx.doi.org/10.1080/17425247.2019.1554647] [PMID: 30496697]
[15]
Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci., 2020, 286, 102317.
[http://dx.doi.org/10.1016/j.cis.2020.102317] [PMID: 33212389]
[16]
Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon nanotubes: Smart drug/gene delivery carriers. Int. J. Nanomedicine, 2021, 16, 1681-1706.
[http://dx.doi.org/10.2147/IJN.S299448] [PMID: 33688185]
[17]
Chen, L.; Zhao, T.; Zhao, M.; Wang, W.; Sun, C.; Liu, L.; Li, Q.; Zhang, F.; Zhao, D.; Li, X. Size and charge dual- transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. Chem. Sci. (Camb.), 2020, 11(10), 2819-2827.
[http://dx.doi.org/10.1039/C9SC06260B] [PMID: 34084342]
[18]
Zhao, F.; Zhang, C.; Zhao, C.; Gao, W.; Fan, X.; Wu, G. A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly. Colloids Surf. B Biointerfaces, 2019, 179, 352-362.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.019] [PMID: 30991215]
[19]
Zhang, J.; Shen, B.; Chen, L.; Chen, L.; Meng, Y.; Feng, J. A dual-sensitive mesoporous silica nanoparticle based drug carrier for cancer synergetic therapy. Colloids Surf. B Biointerfaces, 2019, 175, 65-72.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.071] [PMID: 30522009]
[20]
Yan, Q.; Guo, X.; Huang, X.; Meng, X.; Liu, F.; Dai, P.; Wang, Z.; Zhao, Y. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Appl. Mater. Interfaces, 2019, 11(27), 24377-24385.
[http://dx.doi.org/10.1021/acsami.9b04142] [PMID: 31195793]
[21]
Castillo, R.R.; Lozano, D.; González, B.; Manzano, M.; Izquierdo-Barba, I.; Vallet-Regí, M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: An update. Expert Opin. Drug Deliv., 2019, 16(4), 415-439.
[http://dx.doi.org/10.1080/17425247.2019.1598375] [PMID: 30897978]
[22]
Rahikkala, A.; Pereira, S.A.P.; Figueiredo, P.; Passos, M.L.C.; Araújo, A.R.T.S.; Saraiva, M.L.M.F.S.; Santos, H.A. Mesoporous silica nanoparticles for targeted and stimuli-responsive delivery of chemotherapeutics: A review. Adv. Biosyst., 2018, 2(7), 1800020.
[http://dx.doi.org/10.1002/adbi.201800020]
[23]
Liong, M.; Lu, J.; Tamanoi, F.; Zink, J.I. Google patents US20100255103A1. June 12, 2018.
[24]
Zhou, S.; Ding, C.; Wang, C.; Fu, J. UV-light cross-linked and pH de-cross-linked coumarin-decorated cationic copolymer grafted mesoporous silica nanoparticles for drug and gene co-delivery in vitro. In: Materials Science & Engineering C-Materials for Biological Applications; , 2020; p. 108.
[25]
Yang, C.; Shi, Z.; Feng, C.; Li, R.; Luo, S.; Li, X.; Ruan, L. An adjustable pH-responsive drug delivery system based on self-assembly polypeptide-modified mesoporous silica. Macromol. Biosci., 2020, 20(6), 2000034.
[http://dx.doi.org/10.1002/mabi.202000034] [PMID: 32329202]
[26]
Yang, B.; Zhou, S.; Zeng, J.; Zhang, L.; Zhang, R.; Liang, K.; Xie, L.; Shao, B.; Song, S.; Huang, G.; Zhao, D.; Chen, P.; Kong, B. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res., 2020, 13(4), 1013-1019.
[http://dx.doi.org/10.1007/s12274-020-2736-6]
[27]
Lu, J.; Luo, B.; Chen, Z.; Yuan, Y.; Kuang, Y.; Wan, L.; Yao, L.; Chen, X.; Jiang, B.; Liu, J.; Li, C. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy. Int. J. Biol. Macromol., 2020, 146, 363-373.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.265] [PMID: 31911174]
[28]
Chen, C.; Yao, W.; Sun, W.; Guo, T.; Lv, H.; Wang, X.; Ying, H.; Wang, Y.; Wang, P. A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer. Int. J. Biol. Macromol., 2019, 122, 1090-1099.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.058] [PMID: 30219514]
[29]
Lin, J.T.; Ye, Q.B.; Yang, Q.J.; Wang, G.H. Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin. Colloids Surf. B Biointerfaces, 2019, 180, 93-101.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.023] [PMID: 31035057]
[30]
Wang, S.; Liu, H.; Wu, D.; Wang, X. Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery. J. Colloid Interface Sci., 2021, 583, 470-486.
[http://dx.doi.org/10.1016/j.jcis.2020.09.073] [PMID: 33011414]
[31]
Luo, Q.; Lin, L.; Huang, Q.; Duan, Z.; Gu, L.; Zhang, H.; Gu, Z.; Gong, Q.; Luo, K. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti- cancer therapeutic effect. Acta Biomater., 2022, 143, 320-332.
[http://dx.doi.org/10.1016/j.actbio.2022.02.033] [PMID: 35235863]
[32]
Wei, D.; Tong, Q.; An, Q.; Ma, X.; Jiang, X.; Li, X.; Yi, Z. Dual stimuli-responsive nanocarriers based on polyethylene glycol-mediated schiff base interactions for overcoming tumour chemoresistance. Colloids Surf. B Biointerfaces, 2022, 213, 112408.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112408] [PMID: 35168105]
[33]
Zegota, M.M.; Müller, M.A.; Lantzberg, B.; Kizilsavas, G.; Coelho, J.A.S.; Moscariello, P.; Martínez-Negro, M.; Morsbach, S.; Gois, P.M.P.; Wagner, M.; Ng, D.Y.W.; Kuan, S.L.; Weil, T. Dual stimuli-responsive dynamic covalent peptide tags: Toward sequence-controlled release in tumor-like microenvironments. J. Am. Chem. Soc., 2021, 143(41), 17047-17058.
[http://dx.doi.org/10.1021/jacs.1c06559] [PMID: 34632780]
[34]
Gao, M.; Han, Z.; Zhang, X.; Zou, X.; Peng, L.; Zhao, Y.; Sun, L. Construction of double-shelled hollow Ag2s@polydopamine nanocomposites for fluorescence-guided, dual stimuli-responsive drug delivery and photothermal therapy. Nanomaterials (Basel), 2022, 12(12), 2068.
[http://dx.doi.org/10.3390/nano12122068]
[35]
Wang, Z.; Peng, Y.; Zhou, Y.; Zhang, S.; Tan, J.; Li, H.; He, D.; Deng, L. Pd-Cu nanoalloy for dual stimuli-responsive chemo-photothermal therapy against pathogenic biofilm bacteria. Acta Biomater., 2022, 137, 276-289.
[http://dx.doi.org/10.1016/j.actbio.2021.10.028] [PMID: 34715367]
[36]
He, T.; He, J.; Younis, M.R.; Blum, N.T.; Lei, S.; Zhang, Y.; Huang, P.; Lin, J. Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor. ACS Appl. Mater. Interfaces, 2021, 13(19), 22204-22212.
[http://dx.doi.org/10.1021/acsami.1c03211] [PMID: 33956444]
[37]
Xiao, Y.; Xu, M.; Lv, N.; Cheng, C.; Huang, P.; Li, J.; Hu, Y.; Sun, M. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy. Acta Biomater., 2021, 122, 291-305.
[http://dx.doi.org/10.1016/j.actbio.2020.12.045] [PMID: 33359766]
[38]
Wei, Y.; Yu, F.; Diao, Z.; Xu, R.; Li, H.; Qin, G.; Guo, X. Self-cleaning electrochemical protein-imprinting biosensor with a dual-driven switchable affinity for sensing bovine serum albumin. Talanta, 2022, 237, 122893.
[http://dx.doi.org/10.1016/j.talanta.2021.122893] [PMID: 34736709]
[39]
Shen, J.; Qiao, J.; Zhang, X.; Qi, L. Dual-stimuli-responsive porous polymer enzyme reactor for tuning enzymolysis efficiency. Mikrochim. Acta, 2021, 188(12), 435.
[http://dx.doi.org/10.1007/s00604-021-05095-3] [PMID: 34837525]
[40]
Ma, E.; Wang, K.; Hu, Z.; Wang, H. Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics. J. Colloid Interface Sci., 2021, 603, 685-694.
[http://dx.doi.org/10.1016/j.jcis.2021.06.142] [PMID: 34225072]
[41]
He, L.; Qin, X.; Fan, D.; Feng, C.; Wang, Q.; Fang, J. Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis. ACS Appl. Mater. Interfaces, 2021, 13(18), 21076-21086.
[http://dx.doi.org/10.1021/acsami.1c04953] [PMID: 33913684]
[42]
Nie, K.; Xu, S.; Duan, X.; Shi, H.; Dong, B.; Long, M.; Xu, H.; Jiang, X.F.; Liu, Z. Diketopyrrolopyrrole-doped hybrid FONs as two-photon absorbing and dual-emission fluorescent nanosensors for Hg2+. Sens. Actuators B Chem., 2018, 265, 1-9.
[http://dx.doi.org/10.1016/j.snb.2018.03.026]
[43]
Nie, K.; Dong, B.; Shi, H.; Liu, Z.; Liang, B. Thienyl diketopyrrolopyrrole as a robust sensing platform for multiple ions and its application in molecular logic system. Sens. Actuators B Chem., 2017, 244, 849-853.
[http://dx.doi.org/10.1016/j.snb.2017.01.037]
[44]
Nie, K.; Dong, B.; Shi, H.; Liu, Z.; Liang, B. Diketopyrrolopyrrole amphiphile-based micelle-like fluorescent nanoparticles for selective and sensitive detection of mercury (II) ions in water. Anal. Chem., 2017, 89(5), 2928-2936.
[http://dx.doi.org/10.1021/acs.analchem.6b04258] [PMID: 28192984]
[45]
Nie, K.; Dong, B.; Shi, H.; Chao, L.; Huang, Z.; Long, M.; Xu, H.; Liu, Z.; Liang, B. Pyridyl DPP based soluble nanoaggregates for ratiometric/fluorescent detection of Cu2+/Hg2+ in water. J. Lumin., 2019, 208, 408-414.
[http://dx.doi.org/10.1016/j.jlumin.2018.12.046]
[46]
Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J.F.; Flamigni, L.; Ventura, B. Diketopyrrolopyrrole- porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy. Angew. Chem. Int. Ed., 2015, 54(1), 169-173.
[http://dx.doi.org/10.1002/anie.201407537] [PMID: 25370127]
[47]
Liang, P.; Wang, Y.; Wang, P.; Zou, J.; Xu, H.; Zhang, Y.; Si, W.; Dong, X. Triphenylamine flanked furan-diketopyrrolopyrrole for multi-imaging guided photothermal/photodynamic cancer therapy. Nanoscale, 2017, 9(47), 18890-18896.
[http://dx.doi.org/10.1039/C7NR07204J] [PMID: 29177329]
[48]
Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B, 2019, 9(6), 1145-1162.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[49]
Qiu, Z.; Shu, J.; Tang, D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal. Chem., 2017, 89(9), 5152-5160.
[http://dx.doi.org/10.1021/acs.analchem.7b00989] [PMID: 28376620]
[50]
Roggers, R.A.; Lin, V.S.Y.; Trewyn, B.G. Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization. Mol. Pharm., 2012, 9(9), 2770-2777.
[http://dx.doi.org/10.1021/mp200613y] [PMID: 22738645]
[51]
Chen, X.; Sun, H.; Hu, J.; Han, X.; Liu, H.; Hu, Y. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf. B Biointerfaces, 2017, 152, 77-84.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.010] [PMID: 28088015]
[52]
Chen, H.; Kuang, Y.; Liu, R.; Chen, Z.; Jiang, B.; Sun, Z.; Chen, X.; Li, C. Dual-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for tumor-triggered intracellular drug release. J. Mater. Sci., 2018, 53(15), 10653-10665.
[http://dx.doi.org/10.1007/s10853-018-2363-8]
[53]
Zeng, X.; Liu, G.; Tao, W.; Ma, Y.; Zhang, X.; He, F.; Pan, J.; Mei, L.; Pan, G. A drug-self-gated mesoporous antitumor nanoplatform based on ph-sensitive dynamic covalent bond. Adv. Funct. Mater., 2017, 27(11), 1605985.
[http://dx.doi.org/10.1002/adfm.201605985]
[54]
Cheng, Y.J.; Luo, G.F.; Zhu, J.Y.; Xu, X.D.; Zeng, X.; Cheng, D.B.; Li, Y.M.; Wu, Y.; Zhang, X.Z.; Zhuo, R.X.; He, F. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(17), 9078-9087.
[http://dx.doi.org/10.1021/acsami.5b00752] [PMID: 25893819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy