Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation of Loratadine Orally Disintegrating Tablets by Semi-solid Extrusion 3D Printing

Author(s): Shaoling Yi, Jingwen Xie*, Lingli Chen and Feng Xu

Volume 20, Issue 6, 2023

Published on: 03 November, 2022

Page: [818 - 829] Pages: 12

DOI: 10.2174/1567201819666221011094913

Price: $65

conference banner
Abstract

Background: The orally disintegrating tablets (ODTs) are especially suitable for elders and children with dysphagia, who need to be given customized dosages.

Objectives: This study aimed to prepare orally disintegrating tablets (ODTs) which can be customized as drug content by using semi-solid 3D printing pressure extrusion technology, with water insoluble and thermally unstable drug loratadine.

Methods: The influence of binder concentration, disintegrating agent dosage and ratio mannitol: cellulose on formability and disintegration time was investigated. The properties of orally disintegrating tablets were investigated by ATR-FTIR, XRPD, DSC and SEM. The correlation formula between tablet bottom area and drug content was established.

Results: The formulation was optimized, and contained loratadine 3 g, cellulose 4 g, mannitol 2 g, carboxy methyl starch sodium 1g, 6% PVP K30 16 ml. The disintegration time was less than 60 s with infilling percentage of 60%, and the disintegration time was less than 30 s with infilling percentage of 40%. There was no detectable interaction between loratadine and the selected excipients by the analysis of ATR-FTIR, DSC and XRPD. The structure of the tablets was porous, and the drug was dissolved completely within 10 min. The drug content (x) of the tablet and the bottom area (y) of the tablet showed a linear fitting relationship, y = 3.8603x - 0.7176, r2 = 0.9993.

Conclusion: Semi-solid extrusion of 3D printing technology was applied to prepare loratadine orally disintegrating tablets with customized drug content, which provides an alternative method for the research of customized preparation.

Graphical Abstract

[1]
Abdella, S.; Youssef, S.H.; Afinjuomo, F.; Song, Y.; Fouladian, P.; Upton, R.; Garg, S. 3D printing of thermo-sensitive drugs. Pharmaceutics, 2021, 13(9), 1524.
[http://dx.doi.org/10.3390/pharmaceutics13091524] [PMID: 34575600]
[2]
Hsiao, W.K.; Lorber, B.; Reitsamer, H.; Khinast, J. 3D printing of oral drugs: A new reality or hype? Expert Opin. Drug Deliv., 2018, 15(1), 1-4.
[http://dx.doi.org/10.1080/17425247.2017.1371698] [PMID: 28836459]
[3]
Xiao, Y.; Wang, B.; Lin, R. Progress in personalized drugs manufactured by 3D printing. Chung Kuo Yao Hsueh Tsa Chih, 2017, 52(2), 89-95.
[4]
Palo, M.; Holländer, J.; Suominen, J.; Yliruusi, J.; Sandler, N. 3D printed drug delivery devices: Perspectives and technical challenges. Expert Rev. Med. Devices, 2017, 14(9), 685-696.
[http://dx.doi.org/10.1080/17434440.2017.1363647] [PMID: 28774216]
[5]
Wang, X.; Zhang, C.; Ping, Q. Advances of 3D printing technology in advanced pharmaceutical preparations. Zhongguo Yaoke Daxue Xuebao, 2016, 47(2), 140-147.
[http://dx.doi.org/10.11665/j.issn.1000-5048.20160203]
[6]
Zhang, Q. From the approving of 3D printing tablet to the innovation of drug delivery systems. Yao Xue Xue Bao, 2016, 51(11), 1655-1658.
[http://dx.doi.org/10.16438/j.0513-4870.2016-0849] [PMID: 29908106]
[7]
Jacob, J.; Coyle, N.; West, T.G.; Monkhouse, D.C.; Surprenant, H.L.; Jain, N.B. Rapid disperse dosage form containing levetiracetam. US9669009B2, 2016.
[8]
Yoo, J.; Kumar, S.; Monkhouse, D.C. Dosage form exhibiting rapid disperse properties, methods of use and process for the manufacture of same. US6471992B1, 2016.
[9]
Yoo, J.; Kumar, S.; Monkhouse, D.C. Dosage form exhibiting rapid disperse properties, methods of use and process for the manufacture of same. US20120207929A1, 2002.
[10]
Chen, D.; Xu, X.Y.; Li, R.; Zang, G.A.; Zhang, Y.; Wang, M.R.; Xiong, M.F.; Xu, J.R.; Wang, T.; Fu, H.; Hu, Q.; Wu, B.; Yan, G.R.; Fan, T.Y. Preparation and in vitro evaluation of FDM 3D-printed ellipsoid-shaped gastric floating tablets with low in fill percentages. AAPS PharmSciTech, 2020, 21(1), 6.
[http://dx.doi.org/10.1208/s12249-019-1521-x] [PMID: 31754916]
[11]
Lin, M.; Chen, P.; Tian, P.; Yan, T.; Huang, S.; Lu, Z.; Chen, Y. Optimization and evaluation of the structural design of clozapine orally disintegrating tablets by three dimensional printing. Zhongguo Xin Yao Zazhi, 2019, 28(6), 739-744.
[12]
Tian, P.; Huang, S.; Yang, F.; Xu, Y.; Lin, M.; Lin, Q.; Lu, Z.; Chen, Y. Formulation optimization of 3D printed tablets by central composite design and response surface method. Zhongguo Xin Yao Zazhi, 2018, 27(10), 1188-1193.
[13]
Charoenying, T.; Patrojanasophon, P.; Ngawhirunpat, T.; Rojanarata, T.; Akkaramongkolporn, P.; Opanasopit, P. Design and optimization of 3D-printed gastroretentive floating devices by central composite design. AAPS PharmSciTech, 2021, 22(5), 197.
[http://dx.doi.org/10.1208/s12249-021-02053-3] [PMID: 34191172]
[14]
Persaud, S.; Eid, S.; Swiderski, N.; Serris, I.; Cho, H. Preparations of rectal suppositories containing artesunate. Pharmaceutics, 2020, 12(3), 222.
[http://dx.doi.org/10.3390/pharmaceutics12030222] [PMID: 32131543]
[15]
Wei, C.; Solanki, N.G.; Vasoya, J.M.; Shah, A.V.; Serajuddin, A.T.M. Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release. J. Pharm. Sci.-US, 2020, 109(4), 1558-1572.
[http://dx.doi.org/10.1016/j.xphs.2020.01.015]
[16]
Shin, S.; Kim, T.H.; Jeong, S.W.; Chung, S.E.; Lee, D.Y.; Kim, D.H.; Shin, B.S. Development of a gastroretentive delivery system for acyclovir by 3D printing technology and its in vivo pharmacokinetic evaluation in Beagle dogs. PLoS One, 2019, 14(5)e0216875
[http://dx.doi.org/10.1371/journal.pone.0216875] [PMID: 31091273]
[17]
Nober, C.; Manini, G.; Carlier, E.; Raquez, J.M.; Benali, S.; Dubois, P.; Amighi, K.; Goole, J. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Int. J. Pharm., 2019, 569118581
[http://dx.doi.org/10.1016/j.ijpharm.2019.118581] [PMID: 31369828]
[18]
Goyanes, A.; Fina, F.; Martorana, A.; Sedough, D.; Gaisford, S.; Basit, A.W. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int. J. Pharm., 2017, 527(1-2), 21-30.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.021] [PMID: 28502898]
[19]
Fang, D.; Yang, Y.; Cui, M.; Pan, H.; Wang, L.; Li, P.; Wu, W.; Qiao, S.; Pan, W. Three-dimensional (3D)–printed zero-order released platform: A novel method of personalized dosage form design and manufacturing. AAPS PharmSciTech, 2021, 22(1), 37.
[http://dx.doi.org/10.1208/s12249-020-01886-8] [PMID: 33409925]
[20]
Karavasili, C.; Gkaragkounis, A.; Moschakis, T.; Ritzoulis, C.; Fatouros, D.G. Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. Eur. J. Pharm. Sci., 2020, 147105291
[http://dx.doi.org/10.1016/j.ejps.2020.105291] [PMID: 32135271]
[21]
Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm., 2020, 575118883
[http://dx.doi.org/10.1016/j.ijpharm.2019.118883] [PMID: 31811925]
[22]
Zheng, Z.; Lv, J.; Yang, W.; Pi, X.; Lin, W.; Lin, Z.; Zhang, W.; Pang, J.; Zeng, Y.; Lv, Z.; Lao, H.; Chen, Y.; Yang, F. Preparation and application of subdivided tablets using 3D printing for precise hospital dispensing. Eur. J. Pharm. Sci., 2020, 149105293
[http://dx.doi.org/10.1016/j.ejps.2020.105293] [PMID: 32142932]
[23]
Li, P.; Jia, H.; Zhang, S.; Yang, Y.; Sun, H.; Wang, H.; Pan, W.; Yin, F.; Yang, X. Thermal extrusion 3D printing for the fabrication of puerarin immediate-release tablets. AAPS PharmSciTech, 2020, 21(1), 20.
[http://dx.doi.org/10.1208/s12249-019-1538-1] [PMID: 31820224]
[24]
Vithani, K.; Goyanes, A.; Jannin, V.; Basit, A.W.; Gaisford, S.; Boyd, B.J. A proof of concept for 3D printing of solid lipid-based formulations of poorly water-soluble drugs to control formulation dispersion kinetics. Pharm. Res., 2019, 36(7), 102.
[http://dx.doi.org/10.1007/s11095-019-2639-y] [PMID: 31098846]
[25]
Zhang, H.; You, J. Aspirin bilayer tablets prepared with 3D printer for drug controlled release. Chung Kuo Yao Hsueh Tsa Chih, 2017, 52(4), 298-302.
[http://dx.doi.org/10.11669/cpj.2017.04.012]
[26]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Yang, J.; Roberts, C.J. 3D printing of tablets containing multiple drugs with defined release profiles. Int. J. Pharm., 2015, 494(2), 643-650.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.067] [PMID: 26235921]
[27]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Yang, J.; Roberts, C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J. Control. Release, 2015, 217, 308-314.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.028] [PMID: 26390808]
[28]
Clark, E.A.; Alexander, M.R.; Irvine, D.J.; Roberts, C.J.; Wallace, M.J.; Yoo, J.; Wildman, R.D. Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. Int. J. Pharm., 2020, 578118805
[http://dx.doi.org/10.1016/j.ijpharm.2019.118805] [PMID: 31715351]
[29]
Robles-Martinez, P.; Xu, X.; Trenfield, S.J.; Awad, A.; Goyanes, A.; Telford, R.; Basit, A.W.; Gaisford, S. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics, 2019, 11(6), 274.
[http://dx.doi.org/10.3390/pharmaceutics11060274] [PMID: 31212649]
[30]
Goyanes, A.; Madla, C.M.; Umerji, A.; Duran Piñeiro, G.; Giraldez Montero, J.M.; Lamas Diaz, M.J.; Gonzalez Barcia, M.; Taherali, F.; Sánchez-Pintos, P.; Couce, M.L.; Gaisford, S.; Basit, A.W. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int. J. Pharm., 2019, 567118497
[http://dx.doi.org/10.1016/j.ijpharm.2019.118497] [PMID: 31279771]
[31]
Fina, F.; Goyanes, A.; Madla, C.M.; Awad, A.; Trenfield, S.J.; Kuek, J.M.; Patel, P.; Gaisford, S.; Basit, A.W. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int. J. Pharm., 2018, 547(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.044] [PMID: 29787894]
[32]
Lin, Q.; Chen, Y.; Ye, X.; Lv, Z.; Huang, S. Optimization of formulation and quality evaluation of 3D printing Suxiao Jiuxin orally disintegrating tablets by central composite design-response surface method. Zhong Yao Cai, 2020, 43(02), 415-418.
[http://dx.doi.org/10.13863/j.issn1001-4454.2020.02.031]
[33]
Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A.W.; Goyanes, A. Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics, 2020, 12(2), 110.
[http://dx.doi.org/10.3390/pharmaceutics12020110] [PMID: 32019101]
[34]
Awad, A.; Yao, A.; Trenfield, S.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printed tablets (printlets) with Braille and moon patterns for visually impaired patients. Pharmaceutics, 2020, 12(2), 172.
[http://dx.doi.org/10.3390/pharmaceutics12020172] [PMID: 32092945]
[35]
Fina, F.; Madla, C.M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A.W. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int. J. Pharm., 2018, 541(1-2), 101-107.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.015] [PMID: 29454028]
[36]
Vaz, V.M.; Kumar, L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech, 2021, 22(1), 49.
[http://dx.doi.org/10.1208/s12249-020-01905-8] [PMID: 33458797]
[37]
Gueche, Y.A.; Sanchez-Ballester, N.M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective Laser Sintering (SLS), a new chapter in the production of Solid Oral Forms (SOFs) by 3D printing. Pharmaceutics, 2021, 13(8), 1212.
[http://dx.doi.org/10.3390/pharmaceutics13081212] [PMID: 34452173]
[38]
Chinese Pharmacopoeia Commission. The Pharmacopoeia of the People's Republic of China; China Medical Science Press: Beijing, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy