Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Would the Development of a Multitarget Inhibitor of 3CLpro and TMPRSS2 be Promising in the Fight Against SARS-CoV-2?

Author(s): Igor José dos Santos Nascimento* and Ricardo Olimpio de Moura

Volume 19, Issue 5, 2023

Published on: 03 November, 2022

Page: [405 - 412] Pages: 8

DOI: 10.2174/1573406418666221011093439

Price: $65

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for generating COVID-19, has spread worldwide and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020, being responsible for various damages to public health, social life, and the economy of countries. Its high infectivity and mutation rates have stimulated researchers and pharmaceutical companies to search for new therapies against this disease. These efforts resulted in several vaccines and the identification of Molnupiravir as an oral treatment for this disease. However, identifying new alternatives and critical information is necessary to fight against this devastating agent. The findings in recent years regarding the structure and biochemistry of SARS-CoV2 are remarkable. In anti-CoV drug discovery, various targets, such as structural, non-structural, and hostrelated proteins are explored. In fact, 3CLpro is the most used among non-structural proteins since this protease cleaves peptide sequences after the glutamine residue, and no human protease has this function. This makes this macromolecule an excellent drug target for discovering new compounds. Another promising target is the transmembrane protease serine 2 (TMPRSS2). Recent studies point to TMPRSS2 as one of the main targets responsible for viral entry related to the cleavage of the S protein. Similar to cathepsins, TMPRSS2 is also responsible for cleaving the spike protein SARS-CoV2, which binds to the ACE2 receptor. Thus, TMPRSS2 is one of the targets that may represent new alternatives in treating SARS-CoV2. In this context, would discovering a multitarget inhibitor be the new strategy in searching for drugs against SARS-CoV2? For many years, new drug discovery was based on the "one drug, one target" premise, where the biological action is related to interactions with only one biological target. However, this paradigm has been overcome as new evidence of multiple mechanisms of action for a single drug. Finally, this review will present a perspective on drug design based on a multitarget strategy against 3CLpro and TMPRSS2. We hope to provide new horizons for researchers worldwide searching for more effective drugs against this devastating agent.

Next »
[1]
Schultz, D.C.; Johnson, R.M.; Ayyanathan, K.; Miller, J.; Whig, K.; Kamalia, B.; Dittmar, M.; Weston, S.; Hammond, H.L.; Dillen, C.; Ardanuy, J.; Taylor, L.; Lee, J.S.; Li, M.; Lee, E.; Shoffler, C.; Petucci, C.; Constant, S.; Ferrer, M.; Thaiss, C.A.; Frieman, M.B.; Cherry, S. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature, 2022, 604(7904), 134-140.
[http://dx.doi.org/10.1038/s41586-022-04482-x] [PMID: 35130559]
[2]
Malone, B.; Urakova, N.; Snijder, E.J.; Campbell, E.A. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 21-39.
[http://dx.doi.org/10.1038/s41580-021-00432-z] [PMID: 34824452]
[3]
Edwards, A.M.; Baric, R.S.; Saphire, E.O.; Ulmer, J.B. Stopping pandemics before they start: Lessons learned from SARS-CoV-2. Science, 2022, 375, 1133-1139.
[4]
Vitiello, A.; Ferrara, F. Brief review of the mRNA vaccines COVID-19. Inflammopharmacology, 2021, 29(3), 645-649.
[http://dx.doi.org/10.1007/s10787-021-00811-0] [PMID: 33932192]
[5]
Fan, H.; Lou, F.; Fan, J.; Li, M.; Tong, Y. The emergence of powerful oral anti-COVID-19 drugs in the post-vaccine era. Lancet Microbe, 2022, 3(2), e91.
[http://dx.doi.org/10.1016/S2666-5247(21)00278-0] [PMID: 34849495]
[6]
Fenton, C.; Keam, S.J. Emerging small molecule antivirals may fit neatly into COVID-19 treatment. Drugs Ther. Perspect., 2022, 38(3), 112-126.
[http://dx.doi.org/10.1007/s40267-022-00897-8] [PMID: 35250258]
[7]
Dos Santos, N.I.J.; De Aquino, T.M.; Da Silva, J.E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/0929867327666200812215852] [PMID: 32787752]
[8]
Lamb, Y.N. Nirmatrelvir plus ritonavir: First approval. Drugs, 2022, 82(5), 585-591.
[http://dx.doi.org/10.1007/s40265-022-01692-5] [PMID: 35305258]
[9]
Halford, B. The path to Paxlovid. ACS Cent. Sci., 2022, 8(4), 405-407.
[http://dx.doi.org/10.1021/acscentsci.2c00369] [PMID: 35505871]
[10]
Fang, F.F.; Shi, P.Y. Omicron: A drug developer’s perspective. Emerg. Microbes Infect., 2022, 11(1), 208-211.
[http://dx.doi.org/10.1080/22221751.2021.2023330] [PMID: 34951568]
[11]
Medina, F.J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[12]
Da, K.; Li, T.; Zhu, Y.; Fan, H.; Fu, Q. Recent advances in multisensor multitarget tracking using random finite set. Front. Inf. Technol. Electron. Eng., 2021, 22(1), 5-24.
[http://dx.doi.org/10.1631/FITEE.2000266]
[13]
Pirone, L.; Del Gatto, A.; Di Gaetano, S.; Saviano, M.; Capasso, D.; Zaccaro, L.; Pedone, E. A multi-targeting approach to fight SARS-CoV-2 attachment. Front. Mol. Biosci., 2020, 7, 186.
[http://dx.doi.org/10.3389/fmolb.2020.00186] [PMID: 32850973]
[14]
Zhang, W.; Pei, J.; Lai, L. Computational multitarget drug design. J. Chem. Inf. Model., 2017, 57(3), 403-412.
[http://dx.doi.org/10.1021/acs.jcim.6b00491] [PMID: 28166637]
[15]
Ramsay, R.R.; Popovic, N.M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi‐target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[16]
Espinoza, F.L.M. The benefits of the multi-target approach in drug design and discovery. Bioorg. Med. Chem., 2006, 14(4), 896-897.
[http://dx.doi.org/10.1016/j.bmc.2005.09.011] [PMID: 16203151]
[17]
Jenwitheesuk, E.; Horst, J.; Rivas, K.; Vanvoorhis, W.; Samudrala, R. Novel paradigms for drug discovery: Computational multitarget screening. Trends Pharmacol. Sci., 2008, 29(2), 62-71.
[http://dx.doi.org/10.1016/j.tips.2007.11.007]
[18]
Zhang, Y.; Tang, L.V. Overview of targets and potential drugs of SARS-CoV-2 according to the viral replication. J. Proteome Res., 2021, 20(1), 49-59.
[http://dx.doi.org/10.1021/acs.jproteome.0c00526] [PMID: 33347311]
[19]
Faheem; Kumar, B.K.; Sekhar, K.V.G.C.; Kunjiappan, S.; Jamalis, J.; Balaña, F.R.; Tekwani, B.L.; Sankaranarayanan, M. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg. Chem., 2020, 104, 104269.
[20]
Sasidharan, S.; Sarkar, N.; Saudagar, P. Discovery of compounds inhibiting SARS-COV-2 multi-targets. J. Biomol. Struct. Dyn., 2022, 1-16. [Epub Ahead of Print
[http://dx.doi.org/10.1080/07391102.2021.2025149] [PMID: 34994297]
[21]
García, I.; Fall, Y.; Gómez, G.; González, D.H. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol. Divers., 2011, 15(2), 561-567.
[http://dx.doi.org/10.1007/s11030-010-9280-3] [PMID: 20931280]
[22]
Prati, F.; Uliassi, E.; Bolognesi, M.L. Two diseases, one approach: Multitarget drug discovery in Alzheimer’s and neglected tropical diseases. MedChemComm, 2014, 5(7), 853-861.
[http://dx.doi.org/10.1039/C4MD00069B]
[23]
León, R.; Garcia, A.G.; Marco, C.J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[24]
Kondej, M. Stępnicki, P.; Kaczor, A.A. Multi-target approach for drug discovery against schizophrenia. Int. J. Mol. Sci., 2018, 19(10), 3105.
[http://dx.doi.org/10.3390/ijms19103105] [PMID: 30309037]
[25]
Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery and polypharmacology. ChemMedChem, 2016, 11(12), 1190-1192.
[http://dx.doi.org/10.1002/cmdc.201600161] [PMID: 27061625]
[26]
Petrelli, A.; Valabrega, G. Multitarget drugs: The present and the future of cancer therapy. Expert Opin. Pharmacother., 2009, 10(4), 589-600.
[http://dx.doi.org/10.1517/14656560902781907] [PMID: 19284362]
[27]
Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational design of multitarget-directed ligands: Strategies and emerging paradigms. J. Med. Chem., 2019, 62(20), 8881-8914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017] [PMID: 31082225]
[28]
Benek, O.; Korabecny, J.; Soukup, O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci., 2020, 41(7), 434-445.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[29]
Ling, Y.; Liu, J.; Qian, J.; Meng, C.; Guo, J.; Gao, W.; Xiong, B.; Ling, C.; Zhang, Y. Recent advances in multi-target drugs targeting protein kinases and histone deacetylases in cancer therapy. Curr. Med. Chem., 2020, 27(42), 7264-7288.
[http://dx.doi.org/10.2174/0929867327666200102115720] [PMID: 31894740]
[30]
Gabr, M.T.; Ibrahim, M.M. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2019, 14(3), 437-440.
[http://dx.doi.org/10.4103/1673-5374.245463] [PMID: 30539809]
[31]
Rosini, M.; Simoni, E.; Caporaso, R.; Minarini, A. Multitarget strategies in Alzheimer’s disease: Benefits and challenges on the road to therapeutics. Future Med. Chem., 2016, 8(6), 697-711.
[http://dx.doi.org/10.4155/fmc-2016-0003] [PMID: 27079260]
[32]
Zhang, P.; Xu, S.; Zhu, Z.; Xu, J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2019, 176, 228-247.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.020] [PMID: 31103902]
[33]
Jiang, Q.; Li, M.; Li, H.; Chen, L. Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed. Pharmacother., 2022, 150, 112974.
[http://dx.doi.org/10.1016/j.biopha.2022.112974] [PMID: 35447552]
[34]
Vuylsteke, V.; Chastain, L.M.; Maggu, G.A.; Brown, C. Imeglimin: A potential new multi-target drug for type 2 diabetes. Drugs R D., 2015, 15(3), 227-232.
[http://dx.doi.org/10.1007/s40268-015-0099-3] [PMID: 26254210]
[35]
Hallakou, B.S.; Vial, G.; Kergoat, M.; Fouqueray, P.; Bolze, S.; Borel, A.L.; Fontaine, E.; Moller, D.E. Mechanism of action of Imeglimin: A novel therapeutic agent for type 2 diabetes. Diabetes Obes. Metab., 2021, 23(3), 664-673.
[http://dx.doi.org/10.1111/dom.14277] [PMID: 33269554]
[36]
Lamb, Y.N. Imeglimin hydrochloride: First approval. Drugs, 2021, 81(14), 1683-1690.
[http://dx.doi.org/10.1007/s40265-021-01589-9] [PMID: 34472031]
[37]
Da Silva Santos, F.J.P.; Dos Santos, J.N.I.; De Aquino, M.T.; De Araujo, Jr X.J.; Da Silva, Jr F.E. Discovery strategies against emerging coronaviruses: A global threat. Front. Anti-Infect. Drug Discov., 2020, 8, 35-90.
[http://dx.doi.org/10.2174/9789811412387120080004]
[38]
Dos Santos, N.I.J.; De Aquino, T.M.; Da Silva, E.F., Jr Structure-based drug discovery approaches applied to SARS-CoV-2 (COVID-19). In:Pharmaceuticals for Targeting Coronaviruses; Scotti, L.; Scotti, M.T., Eds.; BENTHAM SCIENCE PUBLISHERS: Sharjah, United Arab Emirates, 2022, pp. 1-61.
[http://dx.doi.org/10.2174/9789815051308122010003]
[39]
Silva, L.R.; Da Silva Santos, Jr P.F.; De Andrade, B.J.; Anderson, L.; Bassi, Ê.J.; De Araújo, Jr X.J.; Cardoso, S.H.; Da Silva, Jr E.F. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorganic Med. Chem., 2020, 28(22), 115745.
[40]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado, G.L.; Cuesta, G.M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[41]
Santos Nascimento, I.J.; Silva, E.F., Jr; Aquino, T.M. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro: A study by applying virtual screening, molecular dynamics, MM-PBSA calculations and covalent docking. Lett. Drug Des. Discov., 2022, 19(7), 637-653.
[http://dx.doi.org/10.2174/1570180819666220106110133]
[42]
Amin, S.A.; Banerjee, S.; Ghosh, K.; Gayen, S.; Jha, T. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral Main Protease (Mpro) and Papain-Like Protease (PLpro) inhibitors. Bioorg. Med. Chem., 2021, 29, 115860.
[http://dx.doi.org/10.1016/j.bmc.2020.115860] [PMID: 33191083]
[43]
Ferreira, J.C.; Rabeh, W.M. Biochemical and biophysical characterization of the main protease, 3-Chymotrypsin-Like Protease (3CLpro) from the novel coronavirus SARS-CoV 2. Sci. Rep., 2020, 10(1), 22200.
[http://dx.doi.org/10.1038/s41598-020-79357-0] [PMID: 33335206]
[44]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[45]
Tiwari, V.; Beer, J.C.; Sankaranarayanan, N.V.; Swanson, M.M.; Desai, U.R. Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov. Today, 2020, 25(8), 1535-1544.
[http://dx.doi.org/10.1016/j.drudis.2020.06.017] [PMID: 32574699]
[46]
Kumar, D.; Chauhan, G.; Kalra, S.; Kumar, B.; Gill, M.S. A perspective on potential target proteins of COVID-19: Comparison with SARS-CoV for designing new small molecules. Bioorg. Chem., 2020, 104, 104326.
[http://dx.doi.org/10.1016/j.bioorg.2020.104326] [PMID: 33142431]
[47]
Muralidar, S.; Ambi, S.V.; Sekaran, S.; Krishnan, U.M. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie, 2020, 179, 85-100.
[http://dx.doi.org/10.1016/j.biochi.2020.09.018] [PMID: 32971147]
[48]
Dos Santos, N.I.J.; Da Silva, Jr E.F.; De Aquino, T.M. Molecular modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an alternative drug target against coronaviruses. Curr. Drug Targets, 2021, 22(3), 240-259.
[PMID: 34370633]
[49]
Powers, J.C.; Asgian, J.L.; Ekici, Ö.D.; James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev., 2002, 102(12), 4639-4750.
[http://dx.doi.org/10.1021/cr010182v] [PMID: 12475205]
[50]
Dos Santos, J.N.I.; De Aquino, M.T.; Da Silva Santos, F.P., Jr; De Araújo, Jr X.J.; Da Silva, Jr F.E. Molecular modeling applied to design of cysteine protease inhibitors – A powerful tool for the identification of hit compounds against neglected tropical diseases. Front. Comput. Chem., 2020, 5, 63-110.
[51]
Kawase, M.; Shirato, K.; Van Der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[52]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[53]
Huang, S.T.; Chen, Y.; Chang, W.C.; Chen, H.F.; Lai, H.C.; Lin, Y.C.; Wang, W.J.; Wang, Y.C.; Yang, C.S.; Wang, S.C.; Hung, M.C. Scutellaria barbata D. Don inhibits the main proteases (Mpro and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Viruses, 2021, 13(5), 826.
[http://dx.doi.org/10.3390/v13050826] [PMID: 34063247]
[54]
Abdallah, H.M.; El-Halawany, A.M.; Sirwi, A.; El-Araby, A.M.; Mohamed, G.A.; Ibrahim, S.R.M.; Koshak, A.E.; Asfour, H.Z.; Awan, Z.A.;A; Elfaky, M. Repurposing of some natural product isolates as SARS-COV-2 main protease inhibitors via in vitro cell free and cell-based antiviral assessments and molecular modeling approaches. Pharmaceuticals, 2021, 14(3), 213.
[http://dx.doi.org/10.3390/ph14030213] [PMID: 33806331]
[55]
Agrawal, P.K.; Agrawal, C.; Blunden, G. Naringenin as a possible candidate against SARS-CoV-2 infection and in the pathogenesis of COVID-19. Nat. Prod. Commun., 2021, 16, 1934578X2110667.
[http://dx.doi.org/10.1177/1934578X211066723]
[56]
Kumar, S.; Paul, P.; Yadav, P.; Kaul, R.; Maitra, S.S.; Jha, S.K.; Chaari, A. A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Comput. Biol. Med., 2022, 142,, 105231.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105231] [PMID: 35032740]
[57]
Steuten, K.; Kim, H.; Widen, J.C.; Babin, B.M.; Onguka, O.; Lovell, S.; Bolgi, O.; Cerikan, B.; Neufeldt, C.J.; Cortese, M.; Muir, R.K.; Bennett, J.M.; Geiss, F.R.; Peters, C.; Bartenschlager, R.; Bogyo, M. Challenges for targeting SARS-CoV-2 proteases as a therapeutic strategy for COVID-19. ACS Infect. Dis., 2021, 7(6), 1457-1468.
[http://dx.doi.org/10.1021/acsinfecdis.0c00815] [PMID: 33570381]
[58]
Vandyck, K.; Abdelnabi, R.; Gupta, K.; Jochmans, D.; Jekle, A.; Deval, J.; Misner, D.; Bardiot, D.; Foo, C.S.; Liu, C.; Ren, S.; Beigelman, L.; Blatt, L.M.; Boland, S.; Vangeel, L.; Dejonghe, S.; Chaltin, P.; Marchand, A.; Serebryany, V.; Stoycheva, A.; Chanda, S.; Symons, J.A.; Raboisson, P.; Neyts, J. ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model. Biochem. Biophys. Res. Commun., 2021, 555, 134-139.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.096] [PMID: 33813272]
[59]
Elseginy, S.A.; Fayed, B.; Hamdy, R.; Mahrous, N.; Mostafa, A.; Almehdi, A.M.; SM, Soliman S.; Promising, S. Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Bioorg. Med. Chem. Lett., 2021, 43, 128099.
[http://dx.doi.org/10.1016/j.bmcl.2021.128099] [PMID: 33984473]
[60]
Narayanan, A.; Narwal, M.; Majowicz, S.A.; Varricchio, C.; Toner, S.A.; Ballatore, C.; Brancale, A.; Murakami, K.S.; Jose, J. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun. Biol., 2022, 5(1), 169.
[http://dx.doi.org/10.1038/s42003-022-03090-9] [PMID: 35217718]
[61]
Viegas, C., Jr; Barreiro, E.J.; Manssour Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805]
[62]
Kneller, D.W.; Li, H.; Phillips, G.; Weiss, K.L.; Zhang, Q.; Arnould, M.A.; Jonsson, C.B.; Surendranathan, S.; Parvathareddy, J.; Blakeley, M.P.; Coates, L.; Louis, J.M.; Bonnesen, P.V.; Kovalevsky, A. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nat. Commun., 2022, 13(1), 2268.
[http://dx.doi.org/10.1038/s41467-022-29915-z] [PMID: 35477935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy