Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Topical Advances in Mucoadhesive Ocular Drug Delivery System

Author(s): Koushal Billowria*, Navjot Kaur Sandhu and Baljinder Singh

Volume 20, Issue 8, 2023

Published on: 15 December, 2022

Page: [1127 - 1140] Pages: 14

DOI: 10.2174/1567201819666221010122413

Price: $65

Abstract

The current article mainly highlights mucoadhesive drug delivery with merits like the prolonged holding time at the action site and also provides a controlled rate of drug release for improved therapeutic outcomes. Moreover, mucosal delivery can eliminate problems of the conventional oral route, such as first pass metabolism as well as acid degradation. However, the eye has unique anatomy and physiology that can cause hindrance and challenges in comparison to the other organs of the body. Additionally, conventional delivery vehicles like solutions, suspensions, and ointments have many demerits such as rapid precorneal clearance, subject variability, drainage, and uncontrolled release from the dosage form. Therefore, novel pharmaceutical ophthalmic formulations like gels, nanosuspensions, nano-particles, liposomes, microemulsions, iontophoretic dosage forms, and ocuserts were tried and tested in the past few years for ophthalmic delivery. These novel delivery products provide enhanced solubility and bioavailability in a controlled manner to overcome conventional demerits. Here in this review, we have summarized the improvement of drug studies that are currently underway for eye drug carriers, along with stages and important aspects of novel drug delivery to the eye.

Graphical Abstract

[1]
Huang, D.; Chen, Y.S.; Rupenthal, I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev., 2018, 126, 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[2]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[3]
Galloway, N.R.; Amoaku, W.M.; Galloway, P.H.; Browning, A.C. Basic anatomy and physiology of the eye. In: Common Eye Diseases and Their Management; Springer: Cham, 2016; pp. 7-16.
[4]
Sunkara, G.; Kompella, U.B. Membrane transport processes in the eye. In: Ophthalmic Drug Delivery Systems; Mitra, A.K., Ed.; CRC Press: Boca Raton, USA, 2003; pp. 34-79.
[http://dx.doi.org/10.1201/9780203912072.ch2]
[5]
Maurice, D.M.; Mishima, S. Ocular pharmacokinetics.In: Sears, M.; Ed.; Pharmacology of the Eye ; Springer: Berlin, Heidelberg, 1984, pp. 19-116.
[6]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[7]
Kang-Mieler, J.J.; Rudeen, K.M.; Liu, W.; Mieler, W.F. Advances in ocular drug delivery systems. Eye (Lond.), 2020, 34(8), 1371-1379.
[http://dx.doi.org/10.1038/s41433-020-0809-0] [PMID: 32071402]
[8]
Ahmed, I. The noncorneal route in ocular drug delivery In: Mitra, A.K., EdOphthalmic Drug Delivery Systems; CRC Press: Boca Raton, USA, 2003, pp. 356-385.
[http://dx.doi.org/10.1201/9780203912072.ch11]
[9]
Schoenwald, R.D.; Tandon, V.; Wurster, D.E.; Barfknecht, C.F. Significance of melanin binding and metabolism in the activity of 5-acetoxyacetylimino-4-methyl-delta2-1,3,4,-thiadiazolin e-2-sulfonamide. Eur. J. Pharm. Biopharm., 1998, 46(1), 39-50.
[http://dx.doi.org/10.1016/S0939-6411(97)00166-5] [PMID: 9700021]
[10]
Gaudana, R.; Jwala, J.; Boddu, S.H.S.; Mitra, A.K. Recent perspectives in ocular drug delivery. Pharm. Res., 2009, 26(5), 1197-1216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[11]
Mohanambal, E.; Arun, K.; Abdul Hasan Sathali, A. Formulation and evaluation of pH-triggered in-situ gelling system of levofloxacin. Ind. J. Pharm. Edu. Res., 2011, 45(1), 58-64.
[12]
Prajapati, P.A.; Poddar, S.S.; Patel, M.M.; Patel, B.K. Ophthalmic mini-tablet with natural polymer: Sterculia foetida Gum. Pharm. Lett., 2010, 2(1), 467-474.
[13]
Kooner, K.S.; Zimmerman, T.J. Concepts in ocular drug delivery. In: Glaucoma Update IV; Krieglstein, G.K., Ed.; Springer: Berlin, Heidelberg, 1991; pp. 208-216.
[14]
Lee, V.H.L.; Robinson, J.R. Topical ocular drug delivery: Recent developments and future challenges. J. Ocul. Pharmacol. Ther., 1986, 2(1), 67-108.
[http://dx.doi.org/10.1089/jop.1986.2.67] [PMID: 3332284]
[15]
Bayer, I.S. Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Adv. Mater. Interfaces, 2022, 9(18), 2200211.
[http://dx.doi.org/10.1002/admi.202200211]
[16]
Van Haeringen, N.J. Clinical biochemistry of tears. Surv. Ophthalmol., 1981, 26(2), 84-96.
[http://dx.doi.org/10.1016/0039-6257(81)90145-4] [PMID: 7034254]
[17]
Greaves, J.L.; Wilson, C.G. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv. Drug Deliv. Rev., 1993, 11(3), 349-383.
[http://dx.doi.org/10.1016/0169-409X(93)90016-W]
[18]
Jeffery, D.; Christopher, R.J. Ocular pharmacology.In: Brunton, L.; Knollmann, B.; Hilal-Dandan, R., Eds.; Goodman and Gilman`s the pharmacological basis of Therapeutics;; McGarw-Hill: New York, 2006, pp. 1707-1735.
[19]
Kumar, A.; Malviya, R.; Sharma, P.K. Recent trends in ocular drug delivery: A short review. Eur. J. Appl. Sci., 2011, 3(3), 86-92.
[20]
Atram, S.C.; Bobade, N.N.; Wankhade, V.P.; Pande, S.D.; Tapar, K.K.; Atram, M.S. Current trends towards an ocular drug delivery system. Int. J. Pharm. Pharm. Sci. Res., 2013, 3(1), 28-34.
[21]
Jitendra, P.K.; Banik, A.; Dixit, S. A new trend: Ocular drug delivery system. Int. J. Pharma Sci., 2011, 2(3), 720-744.
[22]
Tangri, P.; Khurana, S. Basics of ocular drug delivery systems. Int. J. Res. Pharm. Biomed. Sci., 2011, 2(4), 1541-1552.
[23]
Hornof, M.; Toropainen, E.; Urtti, A. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm., 2005, 60(2), 207-225.
[http://dx.doi.org/10.1016/j.ejpb.2005.01.009] [PMID: 15939234]
[24]
Sieg, J.W.; Robinson, J.R. Mechanistic studies on transcorneal permeation of pilocarpine. J. Pharm. Sci., 1976, 65(12), 1816-1822.
[http://dx.doi.org/10.1002/jps.2600651230] [PMID: 1032669]
[25]
Urtti, A.; Pipkin, J.; Rork, G.; Sendo, T.; Finne, U.; Repta, A. Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int. J. Pharm., 1990, 61(3), 241-249.
[http://dx.doi.org/10.1016/0378-5173(90)90215-P]
[26]
Worakul, N.; Robinson, J.R. Ocular pharmacokinetics/pharmacodynamics. Eur. J. Pharm. Biopharm., 1997, 44(1), 71-83.
[http://dx.doi.org/10.1016/S0939-6411(97)00064-7]
[27]
Bashshur, Z.F.; Bazarbachi, A.; Schakal, A.; Haddad, Z.A.; El Haibi, C.P.; Noureddin, B.N. Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am. J. Ophthalmol., 2006, 142(1), 1-9.
[http://dx.doi.org/10.1016/j.ajo.2006.02.037] [PMID: 16815245]
[28]
Zhou, B.; Wang, B. Pegaptanib for the treatment of age-related macular degeneration. Exp. Eye Res., 2006, 83(3), 615-619.
[http://dx.doi.org/10.1016/j.exer.2006.02.010] [PMID: 16678158]
[29]
Pitka¨nen, L.; Ranta, V.P.; Moilanen, H.; Urtti, A. Permeability of retinal pigment epithelium: Effects of permeant molecular weight and lipophilicity. Invest. Ophthalmol. Vis. Sci., 2005, 46(2), 641-646.
[http://dx.doi.org/10.1167/iovs.04-1051] [PMID: 15671294]
[30]
Ambati, J.; Gragoudas, E.S.; Miller, J.W.; You, T.T.; Miyamoto, K.; Delori, F.C.; Adamis, A.P. Transscleral delivery of bioactive protein to the choroid and retina. Invest. Ophthalmol. Vis. Sci., 2000, 41(5), 1186-1191.
[PMID: 10752959]
[31]
Pitkänen, L.; Ruponen, M.; Nieminen, J.; Urtti, A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm. Res., 2003, 20(4), 576-583.
[http://dx.doi.org/10.1023/A:1023238530504] [PMID: 12739764]
[32]
Jain, N.K. Controlled and Novel Drug Delivery; CBS Publishers & Distributors: New Delhi, 2002, 1, pp. 236-255.
[33]
Shell, J.W. Ophthalmic drug delivery systems. Surv. Ophthalmol., 1984, 29(2), 117-128.
[http://dx.doi.org/10.1016/0039-6257(84)90168-1] [PMID: 6505951]
[34]
Burstein, N.L.; Anderson, J.A. Corneal penetration and ocular bioavailability of drugs. J. Ocul. Pharmacol. Ther., 1985, 1(3), 309-326.
[http://dx.doi.org/10.1089/jop.1985.1.309]
[35]
Järvinen, K.; Järvinen, T.; Urtti, A. Ocular absorption following topical delivery. Adv. Drug Deliv. Rev., 1995, 16(1), 3-19.
[http://dx.doi.org/10.1016/0169-409X(95)00010-5]
[36]
Stjernschantz, J.; Astin, M. Anatomy and physiology of the eye. Physiological aspects of ocular drug therapy. In: Edman, P.; Hollinger, M.A.; Gurny, R.; Lee, V.H.L.; Green, K.; Mezei, M.; Stjernschantz, J.; Astin, M.; Ooteghem, M.V.; Saettone, M.F.; Ibrahim, H.; Buri, P.; Meisner, D.; Bernatchez, S.F.; Camber, O.; Tabatabay, C.; Slovin, E.M.; Robinson, J.R.; Schoenwald, R.D.; Van Ooteghem, M.M.M.; Eds. Biopharmaceutics of Ocular Drug Delivery; CRC Press: Boca Raton, 2019; pp. 1-25.
[37]
Robinson, J.C. Ocular anatomy and physiology relevant to ocular drug delivery. Drug Pharmaceut Sci, 1993, 58, 29-57.
[38]
Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res., 2010, 29(2), 144-168.
[http://dx.doi.org/10.1016/j.preteyeres.2009.12.002] [PMID: 20044062]
[39]
Shell, J.W. Pharmacokinetics of topically applied ophthalmic drugs. Surv. Ophthalmol., 1982, 26(4), 207-218.
[http://dx.doi.org/10.1016/0039-6257(82)90081-9] [PMID: 7041308]
[40]
Miyazaki, S.; Suzuki, S.; Kawasaki, N.; Endo, K.; Takahashi, A.; Attwood, D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm., 2001, 229(1-2), 29-36.
[http://dx.doi.org/10.1016/S0378-5173(01)00825-0] [PMID: 11604255]
[41]
Rabinovich-Guilatt, L.; Couvreur, P.; Lambert, G.; Dubernet, C. Cationic vectors in ocular drug delivery. J. Drug Target., 2004, 12(9-10), 623-633.
[http://dx.doi.org/10.1080/10611860400015910] [PMID: 15621688]
[42]
Tomi, M.; Hosoya, K. The role of blood-ocular barrier transporters in retinal drug disposition: An overview. Expert Opin. Drug Metab. Toxicol., 2010, 6(9), 1111-1124.
[http://dx.doi.org/10.1517/17425255.2010.486401] [PMID: 20438316]
[43]
Occhiutto, M.L.; Freitas, F.R.; Maranhao, R.C.; Costa, V.P. Breakdown of the blood-ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutics, 2012, 4(2), 252-275.
[http://dx.doi.org/10.3390/pharmaceutics4020252] [PMID: 24300231]
[44]
Barot, M.; Bagui, M.; Gokulgandhi, M.R.; Mitra, A.K. Prodrug strategies in ocular drug delivery. Med. Chem., 2012, 8(4), 753-768.
[http://dx.doi.org/10.2174/157340612801216283] [PMID: 22530907]
[45]
Taskar, P.; Tatke, A.; Majumdar, S. Advances in the use of prodrugs for drug delivery to the eye. Expert Opin. Drug Deliv., 2017, 14(1), 49-63.
[http://dx.doi.org/10.1080/17425247.2016.1208649] [PMID: 27441817]
[46]
Janoria, K.; Hariharan, S.; Dasari, C.; Mitra, A. Recent patents and advances in ophthalmic drug delivery. Recent Pat. Drug Deliv. Formul., 2007, 1(2), 161-170.
[http://dx.doi.org/10.2174/187221107780831923] [PMID: 19075883]
[47]
Sirbat, D.; Marchal-Heussler, L.; Hoffman, M.; Maincent, P. Ways to improve ocular bioavailability for topical applications. J. Fr. Ophtalmol., 2000, 23(5), 505-509.
[PMID: 10844314]
[48]
Kompella, U.B.; Kadam, R.S.; Lee, V.H.L. Recent advances in ophthalmic drug delivery. Ther. Deliv., 2010, 1(3), 435-456.
[http://dx.doi.org/10.4155/tde.10.40] [PMID: 21399724]
[49]
Lallemand, F.; Perottet, P.; Felt-Baeyens, O.; Kloeti, W.; Philippoz, F.; Marfurt, J.; Besseghir, K.; Gurny, R. A water-soluble prodrug of cyclosporine A for ocular application: A stability study. Eur. J. Pharm. Sci., 2005, 26(1), 124-129.
[http://dx.doi.org/10.1016/j.ejps.2005.05.003] [PMID: 15978789]
[50]
Gan, L.; Gan, Y.; Zhu, C.; Zhang, X.; Zhu, J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: In vitro and in vivo results. Int. J. Pharm., 2009, 365(1-2), 143-149.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.004] [PMID: 18773948]
[51]
De Campos, A.M.; Sánchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm., 2001, 224(1-2), 159-168.
[http://dx.doi.org/10.1016/S0378-5173(01)00760-8] [PMID: 11472825]
[52]
Yenice, İ.; Mocan, M.C.; Palaska, E.; Bochot, A.; Bilensoy, E.; Vural, İ.; İrkeç, M.; Atilla, H.A. Hyaluronic acid coated poly-ɛ-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp. Eye Res., 2008, 87(3), 162-167.
[http://dx.doi.org/10.1016/j.exer.2008.04.002] [PMID: 18675411]
[53]
Tirucherai, G.S.; Dias, C.; Mitra, A.K. Corneal permeation of ganciclovir: Mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J. Ocul. Pharmacol. Ther., 2002, 18(6), 535-548.
[http://dx.doi.org/10.1089/108076802321021081] [PMID: 12537680]
[54]
Loftssona, T.; Järvinen, T. Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev., 1999, 36(1), 59-79.
[http://dx.doi.org/10.1016/S0169-409X(98)00055-6] [PMID: 10837709]
[55]
Kaur, I.P.; Smitha, R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm., 2002, 28(4), 353-369.
[http://dx.doi.org/10.1081/DDC-120002997] [PMID: 12056529]
[56]
Loftsson, T.; Stefánsson, E. Cyclodextrins in ocular drug delivery: Theoretical basis with dexamethasone as a sample drug. J. Drug Deliv. Sci. Technol., 2007, 17(1), 3-9.
[http://dx.doi.org/10.1016/S1773-2247(07)50001-8]
[57]
Pal Kaur, I.; Kanwar, M. Ocular preparations: The formulation approach. Drug Dev. Ind. Pharm., 2002, 28(5), 473-493.
[http://dx.doi.org/10.1081/DDC-120003445] [PMID: 12098838]
[58]
Kaur, I.; Chhabra, S.; Aggarwal, D. Role of cyclodextrins in ophthalmics. Curr. Drug Deliv., 2004, 1(4), 351-360.
[http://dx.doi.org/10.2174/1567201043334623] [PMID: 16305397]
[59]
Loftsson, T.; Stefánsson, E. Cyclodextrins in eye drop formulations: Enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol. Scand., 2002, 80(2), 144-150.
[http://dx.doi.org/10.1034/j.1600-0420.2002.800205.x] [PMID: 11952479]
[60]
Tiwari, G.; Tiwari, R.; Rai, A. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci., 2010, 2(2), 72-79.
[http://dx.doi.org/10.4103/0975-7406.67003] [PMID: 21814436]
[61]
Saari, K.M.; Nelimarkka, L.; Ahola, V.; Loftsson, T.; Stefánsson, E. Comparison of topical 0.7% dexamethasone-cyclodextrin with 0.1% dexamethasone sodium phosphate for postcataract inflammation. Graefes Arch. Clin. Exp. Ophthalmol., 2006, 244(5), 620-626.
[http://dx.doi.org/10.1007/s00417-005-0124-2] [PMID: 16217662]
[62]
Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2012, 64, 128-137.
[http://dx.doi.org/10.1016/j.addr.2012.09.032] [PMID: 15019749]
[63]
Frömter, E.; Diamond, J. Route of passive ion permeation in epithelia. Nat. New Biol., 1972, 235(53), 9-13.
[http://dx.doi.org/10.1038/newbio235009a0] [PMID: 4502409]
[64]
Rojanasakul, Y.; Robinson, J.R. The cytoskeleton of the cornea and its role in tight junction permeability. Int. J. Pharm., 1991, 68(1-3), 135-149.
[http://dx.doi.org/10.1016/0378-5173(91)90136-C]
[65]
Achouri, D.; Alhanout, K.; Piccerelle, P.; Andrieu, V. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm., 2013, 39(11), 1599-1617.
[http://dx.doi.org/10.3109/03639045.2012.736515] [PMID: 23153114]
[66]
Nanjawade, B.K.; Manvi, F.V.; Manjappa, A.S. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release, 2007, 122(2), 119-134.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.009] [PMID: 17719120]
[67]
Patel, H.A.; Patel, J.K.; Patel, K.N.; Patel, R.R. Ophthalmic drug delivery system -a review. Pharm. Lett., 2010, 2(4), 100-115.
[68]
Khurana, S.H.; Madhav, N.S.; Tangri, P. Mucoadhesive drug delivery: Mechanism and methods of evaluation. Int. J. Pharm. Biosci., 2011, 2(1), 458-467.
[69]
Singh, R.; Sharma, D.; Garg, R. Review on mucoadhesive drug delivery system with special emphasis on buccal route: An important tool in designing of novel controlled drug delivery system for the effective delivery of pharmaceuticals. J. Dev. Drugs, 2017, 6(1), 1-2.
[70]
Shaikh, T.A.; Shinkar, D.M.; Saudagar, R.B. Review: Polymers used in the mucoadhesive drug delivery system. Int. J. Pharma Res. Rev., 2016, 5(5), 45-53.
[71]
Saraswathi, B.; Balaji, A.; Umashankar, M.S. Polymers in mucoadhesive drug delivery system-latest updates. Int. J. Pharm. Pharm. Sci., 2013, 5, 423-430.
[72]
Donnelly, R.F.; Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci., 2011, 3(1), 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
[73]
Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev., 2005, 57(11), 1595-1639.
[http://dx.doi.org/10.1016/j.addr.2005.07.005] [PMID: 16198021]
[74]
Harris, D.; Fell, J.T.; Taylor, D.C.; Lynch, J.; Sharma, H.L. GI transit of potential bioadhesive systems in the rat. J. Control. Release, 1990, 12(1), 55-65.
[http://dx.doi.org/10.1016/0168-3659(90)90183-T]
[75]
Barry, B.W.; Meyer, M.C. The rheological properties of carbopol gels I. Continuous shear and creep properties of carbopol gels. Int. J. Pharm., 1979, 2(1), 1-25.
[http://dx.doi.org/10.1016/0378-5173(79)90025-5]
[76]
Park, H.; Robinson, J.R. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm. Res., 1987, 4(6), 457-464.
[http://dx.doi.org/10.1023/A:1016467219657] [PMID: 3508557]
[77]
Kao, H.J.; Lo, Y-L.; Lin, H-R.; Yu, S.P. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J. Pharm. Pharmacol., 2010, 58(2), 179-186.
[http://dx.doi.org/10.1211/jpp.58.2.0004] [PMID: 16451745]
[78]
Hosmani, A.H.; Thorat, Y.S.; Kasture, P.V. Carbopol and its pharmaceutical significance: A review. Pharma Rev., 2006, 4(1),
[79]
Baek, G.; Kim, C. Rheological properties of Carbopol containing nanoparticles. J. Rheol. (N.Y.N.Y.), 2011, 55(2), 313-330.
[http://dx.doi.org/10.1122/1.3538092]
[80]
Saettone, M.F.; Giannaccini, B.; Guiducci, A.; Savigni, P. Semisolid ophthalmic vehicles. III. An evaluation of four organic hydrogels containing pilocarpine. Int. J. Pharm., 1986, 31(3), 261-270.
[http://dx.doi.org/10.1016/0378-5173(86)90160-2]
[81]
Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA, 2014, 311(18), 1901-1911.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[82]
Rathore, K.S.; Nema, R.K.; Sisodia, S.S. An overview and advancement in ocular drug delivery systems. Int. J. Pharm. Sci. Res., 2010, 1(10), 11.
[83]
Zhu, Z.; Zhai, Y.; Zhang, N.; Leng, D.; Ding, P. The development of polycarbophil as a bioadhesive material in pharmacy. Asian J. Pharm. Sci., 2013, 8(4), 218-227.
[http://dx.doi.org/10.1016/j.ajps.2013.09.003]
[84]
Peppas, N.A.; Buri, P.A. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release, 1985, 2, 257-275.
[http://dx.doi.org/10.1016/0168-3659(85)90050-1]
[85]
Lehr, C.M.; Lee, Y.H.; Lee, V.H. Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. Invest. Ophthalmol. Vis. Sci., 1994, 35(6), 2809-2814.
[PMID: 8188475]
[86]
Middleton, D.L.; Leung, S.H.; Robinson, J.R. Ocular bioadhesive delivery systems. Bioadhesive Drug Delivery Systems, 1990, 179-202.
[87]
Hui, H.; Robinson, J. Ocular delivery of progesterone using a bioadhesive polymer. Int. J. Pharm., 1985, 26(3), 203-213.
[http://dx.doi.org/10.1016/0378-5173(85)90230-3]
[88]
Paugh, J.R.; Chatelier, R.C.; Huff, J.W. Ocular residence time of carboxymethylcellulose solutions In: Sullivan, D.A.; Dartt, D.A.; Meneray, M.A.; Eds. Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2;Springer: Boston, MA, 1998, pp. 761-767.
[http://dx.doi.org/10.1007/978-1-4615-5359-5_107]
[89]
Garrett, Q.; Simmons, P.A.; Xu, S.; Vehige, J.; Zhao, Z.; Ehrmann, K.; Willcox, M. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Invest. Ophthalmol. Vis. Sci., 2007, 48(4), 1559-1567.
[http://dx.doi.org/10.1167/iovs.06-0848] [PMID: 17389485]
[90]
Kyyrönen, K.; Urtti, A. Improved ocular: Systemic absorption ratio of timolol by viscous vehicle and phenylephrine. Invest. Ophthalmol. Vis. Sci., 1990, 31(9), 1827-1833.
[PMID: 2211028]
[91]
Shawky Tous, S.; Abd-El Nasser, K. Acetazolamide topical formulation and ocular effect. STP. Pharm. Sci., 1992, 2(1), 125-131.
[92]
Kaş, H.S. Chitosan: Properties, preparations and application to microparticulate systems. J. Microencapsul., 1997, 14(6), 689-711.
[http://dx.doi.org/10.3109/02652049709006820] [PMID: 9394251]
[93]
Jeevitha, D.; Malathy, B.R.; Pradeep, P.S.; Srividya, S. Antibacterial activity of anthraquinone encapsulated chitosan/poly (lactic acid) nanoparticles. Int. J. Pharma Bio Sci., 2014, 5(4), 20-28.
[94]
Chandy, T.; Sharma, C.P. Chitosanas a biomaterial. Biomater. Artif. Cells Artif. Organs, 1990, 18(1), 1-24.
[http://dx.doi.org/10.3109/10731199009117286] [PMID: 2185854]
[95]
Hirano, S.; Hirochi, K.; Hayashi, K.I.; Mikami, T.; Tachibana, H. Cosmetic and pharmaceutical uses of chitin and chitosan In: Cosmetic and Pharmaceutical Applications of Polymers; Gebelein, C.G.; Cheng, T.C., Eds.; Springer: Boston, MA, 1991; pp. 95-104.
[http://dx.doi.org/10.1007/978-1-4615-3858-5_10]
[96]
El-Hefian, E.A.; Yahaya, A.H. Rheological study of chitosan and its blends: An overview. Maejo Int. J. Sci., 2010, 4(02), 210-220.
[97]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[98]
Lehr, C.M.; Bouwstra, J.A.; Schacht, E.H.; Junginger, H.E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm., 1992, 78(1-3), 43-48.
[http://dx.doi.org/10.1016/0378-5173(92)90353-4]
[99]
Norn, M.S. Tear fluid pH in normals, contact lens wearers, and pathological cases. Acta Ophthalmol., 1988, 66(5), 485-489.
[http://dx.doi.org/10.1111/j.1755-3768.1988.tb04368.x] [PMID: 3218470]
[100]
Genta, I.; Conti, B.; Perugini, P.; Pavanetto, F.; Spadaro, A.; Puglisi, G. Bioadhesive microspheres for ophthalmic administration of acyclovir. J. Pharm. Pharmacol., 2011, 49(8), 737-742.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06103.x] [PMID: 9379347]
[101]
Felt, O.; Furrer, P.; Mayer, J.M.; Plazonnet, B.; Buri, P.; Gurny, R. Topical use of chitosan in ophthalmology: Tolerance assessment and evaluation of precorneal retention. Int. J. Pharm., 1999, 180(2), 185-193.
[http://dx.doi.org/10.1016/S0378-5173(99)00003-4] [PMID: 10370189]
[102]
Liesegang, T.J. Viscoelastics. Int. Ophthalmol. Clin., 1993, 33(4), 127-147.
[http://dx.doi.org/10.1097/00004397-199303340-00012] [PMID: 8258492]
[103]
Saettone, M.F.; Chetoni, P.; Tilde Torracca, M.; Burgalassi, S.; Giannaccini, B. Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid. Int. J. Pharm., 1989, 51(3), 203-212.
[http://dx.doi.org/10.1016/0378-5173(89)90193-2]
[104]
Balazs, E.A.; Band, P. Hyaluronic acid: Its structure and use. Cosmet. Toilet, 1984, 99(6), 65-72.
[105]
Comper, W.D.; Laurent, T.C. Physiological function of connective tissue polysaccharides. Physiol. Rev., 1978, 58(1), 255-315.
[http://dx.doi.org/10.1152/physrev.1978.58.1.255] [PMID: 414242]
[106]
Durrani, A.M.; Farr, S.J.; Kellaway, I.W. Influence of molecular weight and formulation pH on the precorneal clearance rate of hyaluronic acid in the rabbit eye. Int. J. Pharm., 1995, 118(2), 243-250.
[http://dx.doi.org/10.1016/0378-5173(94)00389-M]
[107]
Kyyrönen, K.; Hume, L.; Benedetti, L.; Urtti, A.; Topp, E.; Stella, V. Methylprednisolone esters of hyaluronic acid in ophthalmic drug delivery: In vitro and in vivo release studies. Int. J. Pharm., 1992, 80(1-3), 161-169.
[http://dx.doi.org/10.1016/0378-5173(92)90274-6]
[108]
Benedetti, L.M.; Topp, E.M.; Stella, V.J. Microspheres of hyaluronic acid esters-Fabrication methods and in vitro hydrocortisone release. J. Control. Release, 1990, 13(1), 33-41.
[http://dx.doi.org/10.1016/0168-3659(90)90072-2]
[109]
Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid-Based wound dressings: A review. Carbohydr. Polym., 2020, 241, 116364.
[http://dx.doi.org/10.1016/j.carbpol.2020.116364] [PMID: 32507198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy