Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Computational and Molecular Docking Studies of New Benzene Sulfonamide Drugs with Anticancer and Antioxidant Effects

Author(s): Hussein S. Mohamed*, Mohamed A. Abdelgawad, Momtaz Hegab, Zeinab S. Hamza, Amany M. Nagdy, Sayed A. Ahmed, Osama M. Ahmed and Mohammed M. Ghoneim

Volume 20, Issue 3, 2023

Published on: 08 November, 2022

Page: [339 - 350] Pages: 12

DOI: 10.2174/1570179420666221007141937

Price: $65

Abstract

Background: The studies on the potential usage of benzene sulfonamide derivatives as anticancer agents are limited. benzene sulfonamide derivatives are currently used as anticancer agents against different breast cancer cell lines, such as MCF-7, lung cancer cells (A549), prostate cancer cells (Du-145), and cervical cells (HeLa).

Objective: A series of new sulfonamide drugs are synthesized by reacting aldehydes thio-semi-carbazones derivatives with benzene sulphonyl chloride to form benzylidene-N-(phenylsulfonyl) hydrazine-1-carbothioamide derivatives. Studying the anticancer effects against MCF-7 breast carcinoma cell lines and the antioxidant activities of these newly synthesized compounds.

Methods: Studying the anticancer effects against MCF-7 breast carcinoma cell lines and the antioxidant activities of these newly synthesized compounds. To study the anti-breast cancer activity of the newly synthesized compounds, a molecular docking study is used to analyze the binding energy for the nonbonding interactions between the ligands (studied compounds) and receptor (4PYP (pdb code: 4FA2)) against human breast cancer (MCF-7) cells. The bioavailability of all studied compounds is confirmed by pharmacological investigations using Mol inspiration and absorption, distribution, metabolism, excretion, and toxicity online servers.

Results: The two derivatives, 2-(4- methoxy benzylidene)-N-(phenylsulfonyl) hydrazine-1-carbothioamide (4c) and 2-(4-dimethylamino) benzylidene)-N-(phenylsulfonyl) hydrazine-1-carbothioamide (4e) show the most potent anticancer effects against MCF-7 breast carcinoma cell lines. Meanwhile, these two derivatives show the lowest antioxidant activities.

Conclusion: The different spectral techniques were used to confirm the structure of the novel synthesized compounds. Further, 2-(4-(dimethyl amino) benzylidene)-N- (phenylsulfonyl)hydrazine-1-carbothioamide (4e) and 2-(4- methoxy benzylidene)-N-(phenylsulfonyl) hydrazine-1 carbothioamide (4c) were the most potent anticancer derivatives against MCF-7 breast carcinoma cell lines. Furthermore, they exhibited the most potent antioxidant activities. Meanwhile, the 2-benzylidene-N-(phenylsulfonyl) hydrazine-1-carbothioamide (4a) and 2-(4-chloro benzylidene)-N-(phenylsulfonyl) hydrazine-1-carbothioamide (4d) had the lowest antioxidant potentials. The estimated binding energies, inhibition constant, intermolecular energies, and reference RMSD produced from docking for all studied compounds were reported. These values showed that all studied compounds formed stable complexes with the receptor with high binding affinity. It was further noted from the ADMET analysis that compounds 4c, 4d, and 4e have good absorption, low toxicity in the human liver, and medium BBB penetration. Hence, these studied compounds (4c-4e) may be suggested as potential compounds against human breast cancer MCF-7 cells.

Graphical Abstract

[1]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18(3), 1364-1370.
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[2]
Porter, P. “Westernizing” women’s risks? Breast cancer in lower-income countries. N. Engl. J. Med., 2008, 358(3), 213-216.
[http://dx.doi.org/10.1056/NEJMp0708307] [PMID: 18199859]
[3]
Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: Insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2020, 55(11), 1373-1386.
[http://dx.doi.org/10.1080/10934529.2020.1826192] [PMID: 32998618]
[4]
Ahmed, S.A.; Abdelrheem, D.A.; El-Mageed, H.R.A.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. Destabilizing the structural integrity of COVID-19 by caulerpin and its derivatives along with some antiviral drugs: An in silico approaches for a combination therapy. Struct. Chem., 2020, 31(6), 2391-2412.
[http://dx.doi.org/10.1007/s11224-020-01586-w] [PMID: 32837118]
[5]
Lee, T.K.; Lau, T.C.; Ng, I.O. Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother. Pharmacol., 2002, 49(1), 78-86.
[http://dx.doi.org/10.1007/s00280-001-0376-4] [PMID: 11855756]
[6]
Hajrezaie, M. Apoptotic effect of novel schiff based CdCl2 (C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells. Sci. Rep., 2015, 5(1), 9097.
[http://dx.doi.org/10.1038/srep09097] [PMID: 28582385]
[7]
Ahmed, S.A.; Ahmed, O.M.; Elgendy, H.S. Novel synthesis of puriensanalougues and thieno [2, 3-b] pyridine derivatives with anticancer and antioxidant activity. J. Pharm. Res., 2014, 8(9), 1303-1313.
[8]
Ahmed, S.A.; Rahman, A.A.; Elsayed, K.N.M.; Abd El-Mageed, H.R.; Mohamed, H.S.; Ahmed, S.A. Cytotoxic activity, molecular docking, pharmacokinetic properties and quantum mechanics calculations of the brown macroalga Cystoseira trinodis compounds. J. Biomol. Struct. Dyn., 2021, 39(11), 3855-3873.
[http://dx.doi.org/10.1080/07391102.2020.1774418] [PMID: 32462976]
[9]
Eshghi, H. Synthesis and antimicrobial activity of some new macrocyclic bis-sulfonamide and disulfides. Eur. J. Chem., 2011, 2(1), 47-50.
[http://dx.doi.org/10.5155/eurjchem.2.1.47-50.260]
[10]
Mohamed, H.S. Synthesis, characterization and antibacterial activities of novel thieno, pyrazol pyridines and pyrazolopyrimidine derivatives. Der Pharma Chem, 2018, 10(5), 121-127.
[11]
Baskin, J.M.; Wang, Z. A mild, convenient synthesis of sulfinic acid salts and sulfonamides from alkyl and aryl halides. Tetrahedron Lett., 2002, 43(47), 8479-8483.
[http://dx.doi.org/10.1016/S0040-4039(02)02073-7]
[12]
Liu, J.; Liu, C.; Zhang, X.; Yu, L.; Gong, X.; Wang, P. Anticancer sulfonamide hybrids that inhibit bladder cancer cells growth and migration as tubulin polymerisation inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1380-1387.
[http://dx.doi.org/10.1080/14756366.2019.1639696] [PMID: 31401884]
[13]
Shi, F.; Tse, M.K.; Zhou, S.; Pohl, M.M.; Radnik, J.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. Green and efficient synthesis of sulfonamides catalyzed by nano-Ru/Fe3O4. J. Am. Chem. Soc., 2009, 131(5), 1775-1779.
[http://dx.doi.org/10.1021/ja807681v] [PMID: 19191701]
[14]
Inaba, T.; Tanaka, K.; Takeno, R.; Nagaki, H.; Yoshida, C.; Takano, S. Synthesis and antiinflammatory activity of 7-methanesulfonylamino-6-phenoxychromones. Antiarthritic effect of the 3-formylamino compound (T-614) in chronic inflammatory disease models. Chem. Pharm. Bull., 2000, 48(1), 131-139.
[http://dx.doi.org/10.1248/cpb.48.131] [PMID: 10705489]
[15]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[16]
Banerjee, M.; Poddar, A.; Mitra, G.; Surolia, A.; Owa, T.; Bhattacharyya, B. Sulfonamide drugs binding to the colchicine site of tubulin: Thermodynamic analysis of the drug-tubulin interactions by isothermal titration calorimetry. J. Med. Chem., 2005, 48(2), 547-555.
[http://dx.doi.org/10.1021/jm0494974] [PMID: 15658868]
[17]
Padmanilayam, M.; Scorneaux, B.; Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Creek, D.J.; Charman, W.N.; Tomas, J.S.; Scheurer, C.; Wittlin, S.; Brun, R.; Vennerstrom, J.L. Antimalarial activity of Nalkyl amine, carboxamide, sulfonamide, and urea derivatives of a dispiro-1,2,4-trioxolane piperidine. Bioorg. Med. Chem. Lett., 2006, 16(21), 5542-5545.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.046] [PMID: 16931006]
[18]
Bouchain, G.; Leit, S.; Frechette, S.; Khalil, E.A.; Lavoie, R.; Moradei, O.; Woo, S.H.; Fournel, M.; Yan, P.T.; Kalita, A.; Trachy, B.M.C.; Beaulieu, C.; Li, Z.; Robert, M.F.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J. Med. Chem., 2003, 46(5), 820-830.
[http://dx.doi.org/10.1021/jm020377a] [PMID: 12593661]
[19]
Zaki, Y.H. Synthesis of 1, 3, 4-thiadiazole derivatives using hydrazonoyl bromide: Molecular docking and computational studies. Polycycl. Aromat. Compd., 2022, 1-14.
[http://dx.doi.org/10.1080/10406638.2022.2027791]
[20]
Chibale, K.; Haupt, H.; Kendrick, H.; Yardley, V.; Saravanamuthu, A.; Fairlamb, A.H.; Croft, S.L. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg. Med. Chem. Lett., 2001, 11(19), 2655-2657.
[http://dx.doi.org/10.1016/S0960-894X(01)00528-5] [PMID: 11551771]
[21]
Yaccoubi, F. A simple and efficient approach to the synthesis of 4-aryl-2-dialkylphosphonomethyl-4-oxobutanenitrile. Molbank, 2022, 2022(1), M1342.
[http://dx.doi.org/10.3390/M1342]
[22]
Scozzafava, A.; Briganti, F.; Ilies, M.A.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis of membrane-impermeant low molecular weight sulfonamides possessing in vivo selectivity for the membrane-bound versus cytosolic isozymes. J. Med. Chem., 2000, 43(2), 292-300.
[http://dx.doi.org/10.1021/jm990479+] [PMID: 10649985]
[23]
Ahmed, S.A.; Elghandour, A.H.; Elgendy, H.S. Synthesis of pteridines derivatives from different heterocyclic compounds. Der Pharma Chem, 2014, 6(3), 194-219.
[24]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors-Part 94. 1,3,4-thiadiazole-2-sulfonamidederivatives as antitumor agents? Eur. J. Med. Chem., 2000, 35(9), 867-874.
[http://dx.doi.org/10.1016/S0223-5234(00)00169-0] [PMID: 11203012]
[25]
Rorer, M.P. Herbicidal sulfonamides. E.P. Patent 0301784A1 1985.
[26]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[27]
Hussein, A.M. Synthesis of some new purine-related compounds: Regioselective one-pot synthesis of new tetrazolo [1, 5-a] pyrimidine, pyrazolo [1, 5-a] pyrimidine and pyrimido [1, 6-a] pyrimidine derivatives. J. Saudi Chem. Soc., 2010, 14(1), 61-68.
[http://dx.doi.org/10.1016/j.jscs.2009.12.010]
[28]
Raouf, O.H. Synthesis, characterization and biological activity of Schiff bases based on chitosan and acetophenone derivatives. Adv. J. Chem. Section A, 2020, 3(3), 274-282.
[http://dx.doi.org/10.33945/SAMI/AJCA.2020.3.5]
[29]
Salama, H.E.; Saad, G.R.; Sabaa, M.W. Synthesis, characterization and biological activity of schiff bases based on chitosan and arylpyrazole moiety. Int. J. Biol. Macromol., 2015, 79, 996-1003.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.009] [PMID: 26067768]
[30]
Abdelrheem, D.A. Isolation, characterization, in vitro anticancer activity, dft calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga Sargassum platycarpum. J. Mol. Struct., 2021, 1225, 129245.
[http://dx.doi.org/10.1016/j.molstruc.2020.129245]
[31]
Scozzafava, A.; Supuran, C.T. Protease inhibitors. Part 8: Synthesis of potent Clostridium histolyticum collagenase inhibitors incorporating sulfonylated L-alanine hydroxamate moieties. Bioorg. Med. Chem., 2000, 8(3), 637-645.
[http://dx.doi.org/10.1016/S0968-0896(99)00316-8] [PMID: 10732980]
[32]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[33]
Murugavel, S. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2 (1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes. J. Mol. Struct., 2017, 1131, 51-72.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.035]
[34]
Durrant, J.D.; Amaro, R.E.; McCammon, J.A. AutoGrow: A novel algorithm for protein inhibitor design. Chem. Biol. Drug Des., 2009, 73(2), 168-178.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00761.x] [PMID: 19207419]
[35]
Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys., 1952, 20(4), 722-725.
[http://dx.doi.org/10.1063/1.1700523]
[36]
Fukui, K. Role of frontier orbitals in chemical reactions. Science, 1982, 218(4574), 747-754.
[http://dx.doi.org/10.1126/science.218.4574.747]
[37]
Rauk, A. Orbital interaction theory of organic chemistry; John Wiley & Sons: Hoboken, New Jersey, 2004.
[38]
Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci., 1999, 39(5), 868-873.
[http://dx.doi.org/10.1021/ci990307l]
[39]
Scrocco, E.; Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. In: Advances in Quantum Chemistry; Elsevier: Amsterdam, Netherlands, 1978; pp. 115-193.
[40]
Luque, F.J.; López, J.M.; Orozco, M. Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theor. Chem. Acc., 2000, 103(3), 343-345.
[http://dx.doi.org/10.1007/s002149900013]
[41]
Okulik, N.; Jubert, A.H. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Des., 2005, 4(1), 17-30.
[42]
Politzer, P.; Laurence, P.R.; Jayasuriya, K. Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena. Environ. Health Perspect., 1985, 61, 191-202.
[http://dx.doi.org/10.1289/ehp.8561191] [PMID: 2866089]
[43]
Scrocco, E.; Tomasi, J. The electrostatic molecular potential as a tool for the interpretation of molecular properties. In: New concepts II; Springer: Heidelberg, Germany, 1973; pp. 95-170.
[http://dx.doi.org/10.1007/3-540-06399-4_6]
[44]
Politzer, P. Relationships between the energies of atoms and molecules and the electrostatic potentials at their nuclei. In: Chemical Applications of Atomic and Molecular Electrostatic Potentials; Springer Heidelberg, Germany; , 1981, pp. 7-28.
[http://dx.doi.org/10.1007/978-1-4757-9634-6_2]
[45]
Bocca, C.C.; Gauze, G.F.; Basso, E.A. Substituent effects on the reduction of 2-OMe, 2-SMe and 2-SeMe cyclohexanones by LiAlH4: An investigation of conformational equilibrium and transition states. Chem. Phys. Lett., 2005, 413(4-6), 434-439.
[http://dx.doi.org/10.1016/j.cplett.2005.08.025]
[46]
Li, Y.; Liu, Y.; Wang, H.; Xiong, X.; Wei, P.; Li, F. Synthesis, crystal structure, vibration spectral, and DFT studies of 4-aminoantipyrine and its derivatives. Molecules, 2013, 18(1), 877-893.
[http://dx.doi.org/10.3390/molecules18010877] [PMID: 23344199]
[47]
Mohamed, H.S.H.; Ahmed, S.A. Reviewing of synthesis and computational studies of pyrazolo pyrimidine derivatives. J. Chem. Rev., 2019, 1(3), 183-232.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.3.3]
[48]
Abdelrheem, D.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. Bis-indole alkaloid caulerpin from a new source Sargassum platycarpum: isolation, characterization, in vitro anticancer activity, binding with nucleobases by DFT calculations and MD simulation. J. Biomol. Struct. Dyn., 2021, 39(14), 5137-5147.
[http://dx.doi.org/10.1080/07391102.2020.1784285] [PMID: 32579063]
[49]
Politzer, P.; Murray, J.S. An overview of strengths and directionalities of noncovalent interactions: σ-holes and π-holes. Crystals, 2019, 9(3), 165.
[http://dx.doi.org/10.3390/cryst9030165]
[50]
El-Mageed, H.R.A.; Abdelrheem, D.A.; Ahmed, S.A.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A.; El-Bassuony, A.A.; Mohamed, H.S. Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: Insights from molecular docking study. Struct. Chem., 2021, 32(4), 1415-1430.
[http://dx.doi.org/10.1007/s11224-020-01723-5] [PMID: 33437137]
[51]
Pansare, D.N.; Shelke, R.N. Synthesis and anticancer evaluation of benzenesulfonamide derivatives. In: Heterocycles-Synthesis and Biological Activities; IntechOpen: London, UK, 2019.
[52]
Bhati, S.; Kaushik, V.; Singh, J. In silico identification of piperazine linked thiohydantoin derivatives as novel androgen antagonist in prostate cancer treatment. Int. J. Pept. Res. Ther., 2019, 25(3), 845-860.
[http://dx.doi.org/10.1007/s10989-018-9734-5]
[53]
Orellana, E.A.; Kasinski, A.L.; Sulforhodamine, B. SRB) assay in cell culture to investigate cell proliferation. Bio Protoc., 2016, 6(21), e1984.
[http://dx.doi.org/10.21769/BioProtoc.1984] [PMID: 28573164]
[54]
Liyana, P.C.; Dexter, J.; Shahidi, F. Antioxidant properties of wheat as affected by pearling. J. Agric. Food Chem., 2006, 54(17), 6177-6184.
[http://dx.doi.org/10.1021/jf060664d] [PMID: 16910705]
[55]
Amin, K.M.; Syam, Y.M.; Anwar, M.M.; Ali, H.I.; Abdel, G.T.M.; Serry, A.M. Synthesis and molecular docking studies of new furochromone derivatives as p38α MAPK inhibitors targeting human breast cancer MCF-7 cells. Bioorg. Med. Chem., 2017, 25(8), 2423-2436.
[http://dx.doi.org/10.1016/j.bmc.2017.02.065] [PMID: 28291685]
[56]
Vollmer, M.; Beitel, R.E.; Schreiner, C.E.; Leake, P.A. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex. J. Neurophysiol., 2017, 117(1), 47-64.
[http://dx.doi.org/10.1152/jn.00392.2016] [PMID: 27733594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy