Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Letter Article

Greener Synthesis of Potential Anti-bacterial Pyrimidin-2(1H)-one Derivatives using Recyclable Nanocatalyst, Fe3O4@SiPr@vanillin@TGA

Author(s): Mohammad Nikpassand*, Leila Z. Fekri, Rajender S. Varma and Elaheh Hoseinnezhad

Volume 19, Issue 6, 2023

Published on: 15 November, 2022

Page: [748 - 757] Pages: 10

DOI: 10.2174/1573413718666221007140454

Price: $65

Abstract

Background: Dihydropyrimidinones are an essential component of heterocycles due to their useful attributes, such as calcium channel blockers, anti-inflammatory agents, anti-neoplastic agents, anti-bacterial agents, anti-hypertensives, , and, anti-virals.

Objective: Synthesis of Fe3O4@SiPr@vanillin@TGA MNPs and their structure and morphology determination by FT-IR, VSM, EDX, XRD, TEM, FE-SEM, Zeta potential, and TGA.

Methods: A synthetic mixture of aldehydes, acetophenone, urea, H2O and Fe3O4@SiPr@ vanillin@ TGA MNPs, were stirred at room temperature to establish the appropriate and optimum reaction time.

Results: An efficient and greener method for the synthesis of arylpyrimidinones using Fe3O4@SiPr@vanillin@TGA MNPs in aqueous medium has been accomplished.

Conclusion: Higher yields, simpler handling, ease of separation and recycling of the magnetic catalysts, and following the green chemistry tenets for waste minimization and exploitation of abundant natural materials are some of the key features of this process. The anti-bacterial activity of compounds 4a-n and 6a-e were evaluated, and all four bacteria studied were affected by the synthesized compounds.

Graphical Abstract

[1]
Kumar, K.S.; Kanth, V.A.; Reddy, K.T.; Omprakash, G. Synthesis and characterization of some novel pyrimidines via aldol condensation. J. Chem. Pharm. Res., 2011, 3, 234-252.
[2]
Pothiraj, C.; Velan, A.S.; Joseph, J.; Raman, N. Simple method of preparation and characterization of new antifungal active biginelli type heterocyclic compounds. Mycobiology, 2008, 36(1), 66-69.
[http://dx.doi.org/10.4489/MYCO.2008.36.1.066] [PMID: 23997611]
[3]
Couto, I.; Tellitu, I.; Dominguez, E. searching for a direct preparation of dihydropyrimidine-5-carboxamides under biginelli reaction conditions. ARKIVOC, 2011, 2, 115-126.
[4]
Deres, K.; Schröder, C.H.; Paessens, A.; Goldmann, S.; Hacker, H.J.; Weber, O.; Krämer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R.N.A.; Reimann, A.; Jaeger, R.; Groß, R.; Beckermann, B.; Schlemmer, K.H.; Haebich, D.; Rübsamen, W.H. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science, 2003, 299(5608), 893-896.
[http://dx.doi.org/10.1126/science.1077215] [PMID: 12574631]
[5]
Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41(20), 6173-6181.
[http://dx.doi.org/10.1039/c2dt30106g] [PMID: 22475989]
[6]
Nasr, E.M.; Hosieni, J.; Mohammadi, F. Fe3O4 magnetically recoverable catalyst for the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones under solvent-free conditions. Chin. J. Catal., 2016, 32, 1484-1489.
[http://dx.doi.org/10.1016/S1872-2067(10)60263-X]
[7]
Rad, A.M.; Mokhtary, M. Efficient one-pot synthesis of pyrido[2,3-d]pyrimidines catalyzed by nanocrystalline MgO in water. Int. Nano Lett., 2015, 5(2), 109-123.
[http://dx.doi.org/10.1007/s40089-015-0145-8]
[8]
Rakhi, C.; Ramesh, K.; Darbem, M.P.; Branquinho, T.A.; De Oliveira, A.R.; Manjari, P.S.; Domingues, N.L.C. Novel multi-component syntheses of pyrimidines using β-CD in aqueous medium. Tetrahedron Lett., 2016, 57(15), 1656-1660.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.106]
[9]
Abaszadeh, M.; Seifi, M. KF/Al2O3: As a solid phase and recyclable basic catalyst for synthesis mono and bis pyrimidine derivatives. Iran. J. Chem. Chem. Eng., 2017, 36, 35-43.
[10]
Li, J.T.; Yin, Y.; Sun, M.X. An efficient one-pot synthesis of 2,3-epoxyl-1,3-diaryl-1-propanone directly from acetophenones and aromatic aldehydes under ultrasound irradiation. Ultrason. Sonochem., 2010, 17(2), 363-366.
[http://dx.doi.org/10.1016/j.ultsonch.2009.09.007] [PMID: 19853491]
[11]
Nikpassand, M.; hoseinnezhad, E. Green synthesis of 4,6-bisarylpyrimidin-2(1H)-ones and azo-linked 4-arylpyrimidin-2(1H)-ones using NiFe2O4@SiO2Pr@glucose amine as a mild nano catalyst. Arab. J. Chem., 2020, 13(12), 8995-9004.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.022]
[12]
Fekri, L.Z.; Nikpassand, M.; Khakshoor, S.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@ -proline reusable catalyst in aqueous media. J. Organomet. Chem., 2019, 894, 18-27.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.004]
[13]
Chatel, G.; Varma, R.S. Ultrasound and microwave irradiation: Contributions of alternative physicochemical activation methods to green chemistry. Green Chem., 2019, 21(22), 6043-6050.
[http://dx.doi.org/10.1039/C9GC02534K]
[14]
Mahmoodi, N.O.; Parvizi, J.; Sharifzadeh, B.; Rassa, M. Facile regioselective synthesis of novel bis-thiazole derivatives and their antimicrobial activity. Arch. Pharm., 2013, 346(12), 860-864.
[http://dx.doi.org/10.1002/ardp.201300187] [PMID: 24136795]
[15]
Nikpassand, M. NiFe2O4@SiO2@glucose amine nanoparticle catalyzed reaction of azo-linked thiosalicylic acid with CO2: Access to azo-linked benzo[d]oxathiine-2,4-diones. Dyes Pigments, 2020, 173, 107936.
[http://dx.doi.org/10.1016/j.dyepig.2019.107936]
[16]
Fekri, L.Z.; Nikpassand, M.; Pour, K.H. Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4 under ultrasound irradiation. Curr. Org. Synth., 2015, 12, 76-79.
[http://dx.doi.org/10.2174/1570179411666140806005614]
[17]
Nikpassand, M.; Farshami, M.J. One-pot synthesis of novel 3-pyrazolyl-4H-1,2,4-triazoles using amino glucose‐functionalized silica-coated NiFe2O4 nanoparticles as a magnetically separable catalyst. J. Cluster Sci., 2021, 32(4), 975-982.
[http://dx.doi.org/10.1007/s10876-020-01855-y]
[18]
Xie, X.; Shen, W. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale, 2009, 1(1), 50-60.
[http://dx.doi.org/10.1039/b9nr00155g] [PMID: 20644860]
[19]
Bhushan, M.; Jha, R. Surface activity correlations of mesoporous 3-D hierarchical ZnS nanostructures for enhanced photo and electro catalytic performance. Appl. Surf. Sci., 2020, 528, 146988.
[http://dx.doi.org/10.1016/j.apsusc.2020.146988]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy